电参量自适应测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
傅里叶变换是常用的电参量分析方法,本文在分析傅里叶变换的特点和不足的基础上,将神经网络和功率谱估计应用于电参量测量,提出增强型Adaline神经网络和谐波基函数神经网络两种自适应电参量分析模型,以适应更短采样数据、更高频率分辨率、更快学习速度的电参量测量要求。
     傅里叶变换在电参量测量中的局限性在于它存在频谱泄漏和栅栏效应,频率分辨率受采样数据长度限制,以及无法直接应用于非稳态周期信号的测量。针对非稳态周期信号,提出基于搜索的同步化算法,通过逆向搜索在非同步采样数据中截取整周期的采样序列,然后通过离散傅里叶变换得到所需电参量。针对稳态周期信号的非同步测量,基于Hanning窗与基于Blackman和Blackman-Harris等窗函数的插值傅里叶变换方法存在测量精度与运算量之间的矛盾,提出改进的Hanning窗插值傅里叶变换方法,通过消除基波对二次谐波的频谱泄漏,提高了Hanning窗插值傅里叶变换的总体分析精度,而附加的运算量很小。
     Adaline神经网络应用于电参量分析时通过自适应滤波原理进行测量,无需事先对神经网络权值进行样本训练,但要求信号频率事先已知,较小的频率偏差会引起较大的分析误差。提出改进的增强型Adaline神经网络和谐波基函数(HBF)神经网络模型,将基波频率作为待定的权值,可以同时估计信号频率、幅值和相位。在学习算法中增加动量项并采用频率延迟调整策略,提高了算法的收敛速度。分析自适应电参量分析算法的收敛性条件,讨论学习率和动量因子等参数对算法收敛性的影响,给出学习率和动量因子的优化选择范围。仿真算例表明增强型Adaline和HBF神经网络电参量分析方法具有分析精度高、收敛速度快的优点。
     针对傅里叶变换在分析间谐波时存在频率分辨率低的不足,提出现代功率谱估计与自适应神经网络相结合的间谐波分析方法。先通过AR Burg算法或MUSIC算法估算信号中谐波和间谐波的个数及频率初值,然后应用增强型Adaline和HBF神经网络分析谐波和间谐波的频率、幅值和相位。仿真算例表明现代功率谱估计与自适应神经网络相结合的间谐波分析方法具有频率分辨率高、分析精度高、收敛速度快的优点,适用于非同步采样、数据长度较短等情况下的间谐波分析。
     最后通过电参量数据采集系统对计算机用电和几种家用电器用电进行了采样,应用自适应神经网络方法进行了电参量分析,验证了所提出的自适应电参量测量方法的有效性和适用性,并得出了计算机和几种家用电器的用电数据及用电特点。
Fourier transform is the commonly used method for the analysis of electrical parameters. The paper analyzed the characteristics and laps of the Fourier transform and introduced the neurual network and power spectral density (PSD) estimation in the measurement of the electrical parameters. Two adaptive electrical parameter analysis models, enhanced Adaline neural network and harmonic basis function neural network, were proposed to meet up to the electrical measurement requirement of shorter sample data, higher frequency resolution and faster learning speed.
     The limitation of Fourier transform in the measurement of electrical parameters is that it exists the spectral leakage and fence effect, its frequency resolution is decided by the sample data length, and it can not be directly applied to non-stationary periodic signal measurement. For the non-stationary periodic signal, the paper presented a searching based synchronizing approach. In the approach, the integer cycles of sequence were truncated from the asynchronous sample data by reverse searching method, and then the electrical parameters were obtained by discrete Fourier transform. For the asynchronous measurment of the stationary periodic signal, there are conflicts between the measurement precision and the computational burden for the windowed interpolating Fourier transform methods such as Hanning, Blackman or Blackman-Harris window. The paper presented an improved Hanning windowed interpolating Fourier transform method which eliminated the spectral leakage on the second hamonic generated by the fundamental component. The improved method promoted the orerall analytical accuracy of the Hanning interpolating Fourier transform with a small amount of additional computation.
     Adaline neural network measures electrical parameters through the principle of adaptive filtering, without prior sample training of the neural network weights. But Adaline requests the signal frequency known in advance, otherwise small frequency deviation may generate large analytical error. The paper proposed improved enhanced Adaline neural network and harmonic basis function (HBF) neural network models, which treated the fundamental frequency as the weight to be determined, so as to estimate the frequency, amplitudes and phases at the same time. The momentum and the delayed frequency adjustment were adopted in the learning algorithms to promote the convergence speed. The convergence conditions of the adaptive algorithms were analyzed, the impacts of the learning rates and the momentum factors on the algrithm convergence performances were discussed, and their optimal ranges of choices were presented. The simulation examples demonstrated that the enhanced Adaline neural network and the HBF neural network approaches achieved high precision and rapid convergence.
     An interhamonic analysis method of combining modern PSD emstimation with the adaptive neural network was presented to overcome the disadvantage of Fourier transform of low frequency resolution. In the supposed method, AR Burg algorithm or MUSIC algorithm was used to estimate the numbers and the pre-estimated frequencies of harmonics and interharmonics, and then all the frequencies, amplitudes and phases were obtained by the enhanced Adaline or HBF neural network. The simulation results showed that the proposed method had the advantages of high frequency resolution, good analytical accuracy and fast convergence speed, and was applicable for interhamonic analysis of asynchronous sampling and short data length.
     Finally, the electrical comsuptions of computers and several home appliances were sampled through an electrical data acquisition system, and their electrical parameters were analyzed by the adaptive neural network method. The analysis results further verified the validity and applicability of the proposed adaptive measurement methods for electrical parameters, as well as obtained the electricity comsuption data and characteristics of computers and several home appliances.
引文
[1]陈可中,谭半翔,董建杰,等.红外测温仪的设计[J].电子测量技术,2007,30(10):11-14,25.
    [2]刘国强,郑召全.基于单片机技术的轮胎压力监测系统[J].电子技术应用,2006,(12):66-68.
    [3]尚群立,殷玲玲.基于磁阻原理非接触式位移测量的非线性方法[J].仪器仪表学报,2007,28(3):524-528.
    [4]程浩忠,艾芊,张志刚,等.电能质量[M].北京:清华大学出版社,2006.
    [5]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [6]林海雪.现代电能质量的基本问题[J].电网技术,2001,25(10):5-12.
    [7]Heydt G. Electric power quality:a tutorial introduction [J]. IEEE Computer Applications in Power,1998, 11(1):15-19.
    [8]Yacamini R. Power system harmonics part 3 Problems caused by distorted supplies[J]. Power Engineering Journal,1995,9(5):233-238.
    [9]Grady W, Santoso S. Understanding power system harmonics[J]. IEEE Power Engineering Review,2001, 21(11):8-11.
    [10]肖雁鸿,毛筱,周靖林,等.电力系统谐波测量方法综述[J].电网技术,2002,26(6):61-64.
    [11]林海雪.电力系统中的间谐波问题[J].供用电,2001,18(3):6-9.
    [12]Yacamini R. Power system harmonics part 4 Interharmonics[J]. Power Engineering Journal,1996,10(4): 185-193.
    [13]Gunther E W. Interharmonics in power systems [C]. IEEE Power Engineering Society Summer Meeting. Vancouver, BC, Canada,2001:813-817.
    [14]Li C, Xu W, Tayjasanant T. Interharmonics:basic concepts and techniques for their detection and measurement[J]. Electric Power Systems Research,2003,66(1):39-48.
    [15]林海雪.电力系统中电压暂降和短时断电[J].供用电,2002,19(1):9-11,13.
    [16]肖湘宁,徐永海.电能质量问题剖析[J].电网技术,2001,25(3):66-69.
    [17]Stones J, Collinson A. Power quality[J]. Power Engineering Journal,2001,15(2):58-64.
    [18]Bollen M. What is power quality?[J]. Electric Power Systems Research,2003,66(1):5-14.
    [19]Lin T, Domijan A. On power quality indices and real time measurement[J]. IEEE Transactions on Power Delivery,2005,20(4):2552-2562.
    [20]韩英铎,严干贵,姜齐荣,等.信息电力与FACTS及DFACTS技术[J].电力系统自动化,2000,24(19):1-7,20.
    [21]陈隆道.过程信号周期域分析与应用的研究[博士学位论文].杭州:浙江大学,1999.
    [22]付周兴,赵永秀.电网谐波测量技术的现状与发展[J].工矿自动化,2004(2):18-21.
    [23]李庆波,王菽蓉,徐勇.采样计算式测量方法的特点及应用[J].电测与仪表,1999,36(9):4-6,26.
    [24]Schuster G. Thermal measurement of ac power in comparison with the electrodynamic method[J]. IEEE Transactions on Instrumentation and Measurement,1976,25(2):529-533.
    [25]李荣武.PZ105真有效值交直流数字电压表[J].电测与仪表,1989,26(3):13-17.
    [26]Turgel R S. Wattmeter using sampling method[J]. IEEE Transactions on Instrumentation and Measurement,1974,23(4):337-341.
    [27]Jain V K, Collins W L, Davis D C. High-accuracy analog measurements via interpolated FFT[J]. IEEE Transactions on Instrumentation and Measurement,1979,28(2):113-122.
    [28]Grandke T. Interpolation algorithms for discrete Fourier transforms of weighted signals[J]. IEEE Transactions on Instrumentation and Measurement,1983,32(2):350-3550.
    [29]方伟林,王立功.双速率同步采样法在交流测量中的应用[J].电测与仪表,1997,34(376):21-23.
    [30]潘文诚.参数自寻优等间隔同步采样法[J].电测与仪表,1999,36(11):7-10.
    [31]戴先中.准同步采样及其在非正弦功率测量中的应用[J].仪器仪表学报,1984,5(4):390-396.
    [32]Dai X, Gretsch I. Quasi-synchronous sampling algorithm and its applications [J]. IEEE Transactions on Instrumentation and Measurement,1994,43(2):204-209.
    [33]Malouka M F. A wide range digital power/energy meter for systems with nonsinusoidal wave forms[J]. IEEE Transactions on Industrial Electronics,1982,29(1):18-31.
    [34]Luthra A. Extension of Parsevals relation to nonuniform sampling[J]. IEEE Transactions on Accoustics, Speech and Signal Processing,1988,36(12):1909-1911.
    [35]唐统一,赵伟.电测与仪表技术的回顾与展望[J].电测与仪表,2000,37(1):5-9,43.
    [36]陈隆道.虚拟仪器——测试技术的新领域[J].科技通报,1999,15(1):24-29.
    [37]乐叶青,徐政.电力系统间谐波及其检测方法综合分析[J].电气应用,2006,25(12):110-113.
    [38]McEachern A. Roles of intelligent systems in power quality monitoring-past, present, and future[C]. Proceedings of Power Engineering Society Summer Meeting 2001, Vancouver, BC, Canada,2001: 1003-1005.
    [39]McGranaghan M. Trends in power quality monitoring[J]. IEEE Power Engineering Review,2001,21(10): 3-9,21.
    [40]Daponte P, Penta M D, Mercurio G. Transient meter:a distributed measurement system for power quality monitoring[J]. IEEE Transactions on Power Delivery,2004,19(2):456-463.
    [41]赵文韬,王树民,朱桂萍,等.基于Internet的电能质量监测与分析系统的研制[J].电力系统自动化,2002,26(6):69-72.
    [42]艾欣,禹超,郭学艳,等.DataSocket技术在电能质量网络化监测系统中的应用[J].电力系统自动化,2004,28(1):79-82.
    [43]Cataliotti A, Cosentino V, Nuccio S. A phase-locked loop for the synchronization of power quality instruments in the presence of stationary and transient disturbances[J]. IEEE Transactions on Instrumentation and Measurement,2007,56(6):2232-2239.
    [44]Ferrero A, Ottoboni R. High-accuracy Fourier analysis based on synchronous sampling techniques[J]. IEEE Transactions on Instrumentation and Measurement,1992,41(6):780-785.
    [45]胡晓菁,宋政湘,王建华,等.数字倍频原理的频率跟踪技术的误差分析与改进[J].电力系统自动化,2007,31(1):85-88.
    [46]周军,李孝文,盛艳.双速率同步采样法在电力系统谐波测量中的应用[J].计量学报,1999,20(2):151-155.
    [47]蔡菲娜,张建奇.一种非均匀同步采样及其DFT算法[J].电测与仪表,2004,41(462):11-13.
    [48]蒋毅,古天祥.用非均匀采样实现谐波的高精度分析[J].仪器仪表学报,2005,26(12):1290-1292.
    [49]马仁政,陈明凯.减少频谱泄漏的一种自适应采样算法[J].电力系统自动化,2002,26(7):55-58.
    [50]陈隆道,钱照明,张圣训.周期域分析中非同步取样数据的同步化[J].电子学报,2001,29(7):1-4.
    [51]杨川,徐云.一种解决谐波分析非整周期采样问题的新方法[J].仪器仪表学报,2003,24(3):295-296,308.
    [52]蒋毅,古天祥.一种修正的FFT高精度谐波分析方法[J].电子测量与仪器学报,2006,20(1):19-21.
    [53]Xi J, Chicharo J F. A new algorithm for improving the accuracy of periodic signal analysis[J]. IEEE Transactions on Instrumentation and Measurement,1996,45(4):827-830.
    [54]Hidalgo R M, Femandez J G, Rivera R R, et al. A simple adjustable window algorithm to improve FFT measurements[J]. IEEE Transactions on Instrumentation and Measurement,2002,51(1):31-36.
    [55]蔡忠法,陈隆道,周箭.非同步采样的同步化谐波分析算法[J].浙江大学学报(工学版),2008,42(4):682-685.
    [56]祁才君,陈隆道,王小海.应用插值FFT算法精确估计电网谐波参数[J].浙江大学学报(工学版), 2003,37(1):112-1 16.
    [57]赵文春,马伟明,胡安.电机测试中谐波分析的高精度FFT算法[J].中国电机工程学报,2001,21(12):83-87,92.
    [58]Andria G, Savino M, Trotta A. Windows and interpolation algorithms to improve electrical measurement accuracy[J]. IEEE Transactions on Instrumentation and Measurement,1989,38(4):856-863.
    [59]Qian H, Zhao R, Chen T. Interharmonics analysis based on interpolating windowed FFT algorithm[J]. IEEE Transactions on Power Delivery,2007,22(2):1064-1069.
    [60]张介秋,梁昌洪,陈砚圃.基于卷积窗的电力系统谐波理论分析与算法[J].中国电机工程学报,2004,24(11):48-52.
    [61]Xue H, Yang R. Optimal interpolating windowed discrete Fourier transform algorithms for harmonic analysis in power systems[J]. IEE Proceedings-Generation Transmission and Distribution,2003,150(5): 583-587.
    [62]Offelli C, Petri D. Interpolation techniques for real-time multifrequency waveform analysis[J]. IEEE Transactions on Instrumentation and Measurement,1990,39(1):106-111.
    [63]Zhang F, Geng Z, Yuan W. The algorithm of interpolating windowed FFT for harmonic analysis of electric power system[J]. IEEE Transactions on Power Delivery,2001,16(2):160-164.
    [64]庞浩,李东霞,俎云霄,等.应用FFT进行电力系统谐波分析的改进算法[J].中国电机工程学报,2003,23(6):50-54.
    [65]吴静,赵伟.一种用于分析电网谐波的多谱线插值算法[J].中国电机工程学报,2006,26(8):55-60.
    [66]Liguori C, Paolillo A, Pignotti A. Estimation of signal parameters in the frequency domain in the presence of harmonic interference:a comparative analysis[J]. IEEE Transactions on Instrumentation and Measurement,2006,55(2):562-569.
    [67]周林,夏雪,万蕴杰,等.基于小波变换的谐波测量方法综述[J].电工技术学报,2006,21(9):67-74.
    [68]Barros J, Diego R I. A new method for measuremnt of harmonic groups in power systems using wavelet analysis in the IEC standard fromework[J]. Electric Power Systems Research,2006, vol.76:200-208.
    [69]Lobos T, Leonowicz Z, Rezmer J, et al. High-resolution spectrum-estimation methods for signal analysis in power systems[J]. IEEE Transactions on Instrumentation and Measurement,2006,55(1):219-225.
    [70]Nguyen T. Parametric harmonic analysis[J]. IEE Proceedings-Generation Transmission and Distribution, 1997,144(1):21-25.
    [71]Girgis A A, Chang W B, Makram E B. Digital recursive measurement scheme for on-line tracking of power system harmonics[J]. IEEE Transactions on Power Delivery,1991,6(3):1153-1160.
    [72]Routray A, Pradhan A K, Rao K P. A novel Kalman filter for frequency estimation of distorted signals in power systems[J]. IEEE Transactions on Instrumentation and Measurement,2002,51(3):469-479.
    [73]Zin A A M, Rukonuzzaman M, Shaibon H, et al. Neural network approach of harmonics detection[C]. Proceedings of Energy Management and Power Delivery, Singapore,1998:467-472.
    [74]Wijayakulasooriya J, Putrus G, Ng C. Fast non-recursive extraction of individual harmonics using artificial neural networks[J]. IEE Proceedings-Generation Transmission and Distribution,2005,152(4): 539-587.
    [75]王群,吴宁,王兆安.一种基于人工神经网络的电力谐波测量方法[J].电力系统自动化,1998,22(11):35-39.
    [76]肖雁鸿,毛筱,罗瑞琼,等.神经网络理论在谐波测量中的应用[J].电工技术学报,2002,17(2):101-104.
    [77]汤胜清,程小华.一种基于多层前向神经网络的谐波检测方法[J].中国电机工程学报,2006,26(18):90-94.
    [78]Osowski S. Neural network for estimation of harmonic components in a power system[J]. IEE Proceedings-C,1992,139(2):129-135.
    [79]Cichocki A, Lobos T. Artificial neural networks for real-time estimation of basic waveforms of voltages and currents[J]. IEEE Transactions on Power Systems,1994,9(2):612-618.
    [80]Dash P K, Swain D P, Liew A C, et al. An adaptive linear combiner for on-line tracking of power system harmonics[J]. IEEE Transactions on Power Systems,1996,11(4):1730-1735.
    [81]El-Amin I, Arafah I. Artificial neural networks for power systems harmonic estimation[C]. Proceedings of ICHQP'98, Athens, Greece,1998:999-1009.
    [82]El Shatshat R, Kazerani M, Salama M M A. On-line tracking and mitigation of power system harmonics using ADALINE-based active power filter[C]. Proceedings of Electrical and Computer Engineering, 2004. Canadian,2004:2119-2124.
    [83]Wang Q, Wu N, Wang Z. A neuron adaptive detecting approach of harmonic current for APF and its realization of analog circuit[J]. IEEE Transactions on Instrumentation and Measurement,2001,50(1): 77-84.
    [84]Abdel-Galil T K, El-Saadany E F, Salama M M A. Power quality event detection using Adaline[J]. Electric Power Systems Research,2003, vol.64:137-144.
    [85]高大威,孙孝瑞.基于自适应线性神经元网络的三相畸变电流检测方法及实现[J].中国电机工程学报,2001,21(3):49-52.
    [86]于志豪,刘志珍,徐文尚.基于电路模型和神经网络的谐波电流检测方法[J].电工技术学报,2004,19(9):86-89.
    [87]柴旭峥,文习山,关根志,等.一种高精度的电力系统谐波分析算法[J].中国电机工程学报,2003,23(9):67-70.
    [88]王公宝,向东阳,马伟明.基于FFT和神经网络的非整数次谐波分析改进算法[J].中国电机工程学报,2008,28(4):102-108.
    [89]王小华,何怡刚.一种新的基于神经网络的高精度电力系统谐波分析算法[J].电网技术,2005,29(3):72-75.
    [90]曾喆昭,文卉,王耀南.一种高精度的电力系统谐波智能分析方法[J].中国电机工程学报,2006,26(10):23-27.
    [91]Cooley J W, Tukey J W. An algorithm for the machine computation of complex Fourier series[J]. Mathmatics of computation,1965(19):297-301.
    [92]张贤达.现代信号处理(第2版)[M].北京:清华大学出版社,2002.
    [93]Oppenheim A V, Schafer R W, Buck J R.刘树棠,黄建国译.离散时间信号处理(第2版)[M].西安:西安交通大学出版社,2001.
    [94]祁才君.数字信号处理技术中的算法分析与应用[M].北京:机械工业出版社,2005.
    [95]Schoukens J, Pintelon R, Van hamme H. The interpolated fast Fourier transform:a comparative study[J]. IEEE Transactions on Instrumentation and Measurement,1992,41(2):226-232.
    [96]周俊,王小海,祁才君.基于Blackman窗函数的插值FFT在电网谐波信号分析中的应用[J].浙江大学学报(理学版),2006,23(6):650-653.
    [97]曾博,滕召胜,温和,等.莱夫-文森特窗插值FFT谐波分析方法[J].中国电机工程学报,2009,29(10):115-120.
    [98]潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论(Ⅱ)双插值FFT理论[J].电工技术学报,1994,9(5):53-56.
    [99]黄纯.基于离散傅立叶变换校正的电参量微机测量新算法及应用研究[J].中国电机工程学报,2005,25(7):86-91.
    [100]Thomas D W P, Woolfson M S. Evaluation of frequency tracking methods[J]. IEEE Transactions on Power Delivery,2001,16(3):367-371.
    [101]黄纯,彭建春,刘光晔,等.周期电气信号测量中软件同步采样方法的研究[J].电工技术学报,2004,19(1):75-79.
    [102]韩春林,何子述.基于Burg叠代的多径信号DOA估计算法[J].通信学报,2003,24(7):24-29.
    [103]王振朝,师洁,张俊林.基于功率谱相对值判决的多载波编码调制[J].电力系统及其自动化学报,2007,19(1):117-121.
    [104]姬红兵,李洁,谢维信,等.基于AR模型参数双谱估计的雷达目标识别[J].电子科学学刊,1999,21(6):843-847.
    [105]卜正明,李相迎,黄顺东.基于小波功率谱估计的空间目标RCS特性分析[J].现代雷达,2004,26(2):47-49,60.
    [106]肖立,米彦,陈攀,等.现代功率谱估计在绝缘子污秽诊断中的应用[J].高电压技术,2006,32(2):32-33,56.
    [107]李涛,李艾华,王涛,等.短时AR谱分析及在内燃机故障诊断中的应用[J].振动、测试与诊断,2005,25(4):285-288,318.
    [108]沈民奋,孙丽萍.心音信号的非高斯AR模型双谱分析[J].中国生物医学工程学报,2000,19(1):72-77.
    [109]牛海军,万明习,王素品,等.基于高阶累计量的肺音信号AR模型参数和双谱估计[J].生物物理学报,2000,16(2):741-747.
    [110]陈雯海,顾岚.谱分析在我国经济波动理论中的应用[J].数理统计与管理,1994,13(1):1-8.
    [111]徐梅,李宗耀,陈通,等.谱分析方法在经济波动分析中的应用研究[J].系统工程学报,1999,14(3):272-275.
    [112]Lobos T, Rezmer J. Real-Time determination of power system frequency[J]. IEEE Transactions on Instrumentation and Measurement,1997,46(4):877-881.
    [113]Leonowicz Z, Lobos T, Rezmer J. Advanced spectrum estimation methods for signal analysis in power electronics[J]. IEEE Transactions on Industrial Electronics,2003,50(3):514-519.
    [114]Bracale A, Caramia P, Carpinelli G. Adaptive Prony method for waveform distortion detection in power systems[J]. Electrical Power and Energy Systems,2007,29(5):371-379.
    [115]石要武,戴逸松,丁宏.有色噪声背景下正弦信号频率估计的互谱Pisarenko和MUSIC方法[J].电子学报,1996,24(10):46-50.
    [116]马秉伟,周莉,刁均伟.基于现代谱估计方法的间谐波检测[J].继电器,2005,33(3):25-27.
    [117]武艳华,黄纯,邢耀广,等.基于AR模型的间谐波检测算法的研究[J].继电器,2006,34(2): 41-45,52.
    [118]马秉伟,刘会金,周莉,等.一种基于自回归模型的间谐波谱估计的改进算法[J].中国电机工程学报,2005,25(15):79-83.
    [119]石敏,吴正国,尹为民.基于多信号分类法和普罗尼法的间谐波参数估计[J].电网技术,2005,29(15):81-84.
    [120牛卢璐.基于ESPRIT的谐波和间谐波参数估计方法[J].继电器,2007,35(9):37-40,51.
    [121]高培生,谷湘文,吴为麟.基于空间谱和支持向量回归机的间谐波分析[J].电力系统自动化,2007,31(24):67-70.
    [122]张玲华,郑宝玉.随机信号处理[M].北京:清华大学出版社,2003.
    [123]施吉林,刘淑珍,陈桂芝.计算机数值方法[M].北京:高等教育出版社,1999.
    [124]Akaike H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974,19(6):716-722.
    [125]Barron A, Rissanen J, Yu B. The minimum description length principle in coding and modeling[J]. IEEE Transactions on Information Theory,1998,44(6):2743-2760.
    [126]Akaike H. Statistical predictor identification[J]. Annuals of the Institute of Statistical Mathematics,1970, 22(1):203-217.
    [127]Shcmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation,1986,34(3):276-280.
    [128]Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(7):984-995.
    [129]Pisarenko V F. The retrieval of harmonics from a covariance function[J]. Geophysical Journal of the Royal Astronomical Society,1973,33(3):347-366.
    [130]王志群,朱守真,周双喜.基于Pisarenko谐波分解的间谐波估算方法[J].电网技术,2004,28(15):72-77,82.
    [131]赵永芹.特征向量法功率谱估计的改进与仿真[J].计算机与数字工程,2006,34(9):123-125.
    [132]Lobos T, Leonowicz Z, Rezmer J, et al. High-resolution spectrum-estimation methods for signal analysis in power systems[J]. IEEE Transactions on Instrumentation and Measurement,2006,55(1): 219-225.
    [133]徐仲,张凯院,陆全,等.矩阵论简明教程(第2版)[M].北京:科学出版社,2005.
    [134]Barabell A J. Improving the resolution performance of eigenstructure-based direction-finding algorithms[C]. Proceedings of IEEE ICASSP'83, Boston, MA,1983:336-339.
    [135]Rao B D, Hari K V S. Performance analysis of root-music[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(12):1939-1949.
    [136]高培生.电力系统中的间谐波频谱分析[博士学位论文].杭州:浙江大学,2008.
    [137]Widrow B, Lehr M A.30 years of adaptive neural networks:perceptron, madaline, and backpropagation[J]. Proceedings of the IEEE,1990,78(9):1415-1442.
    [138]乔新勇,刘玮.基于Adaline神经网络的自适应滤波方法[J].计算机工程与应用,2008,44(22):169-171,185.
    [139]李目,刘祖润.自适应神经网络在消除矿井内噪声中的应用[J].中国矿业,2006,15(3):29-31.
    [140]方春恩,段雄英,邹积岩.基于自适应神经元的短路电流参数提取[J].中国电机工程学报,2003,23(8):115-118.
    [141]Ai Q, Zhou Y, Xu W. Adaline and its application in power quality disturbances detection and frequency tracking[J]. Electric Power Systems Research,2007, vol.77:462-469.
    [142]周玉光,艾芊,顾丹珍,等.自适应线性神经元在电能质量扰动诊断和频率跟踪中的应用[J].上海交通大学学报,2005,39(12):2072-077,2087.
    [143]何振亚.自适应信号处理[M].北京:科学出版社,2002.
    [144]张跃勤,张文希.计算机群对实验室用电的谐波污染分析及对策[J].电测与仪表,2004,41(8):59-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700