网络化电能质量监测系统若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络化、信息化、标准化和智能化已成为电能质量监测系统(PQMS)的必然发展趋势,而嵌入式系统与网络通信技术的快速发展为电能质量网络化监测方案的提出创造了机遇。网络化PQMS系统可以实现多点、连续的在线监测,中心工作站汇集丰富的全局性信息并配置各种智能诊断软件,可实现趋势判断、概率统计、综合评价、扰动事件辨识、Web服务等高级功能,为配电网络提供先进的电能质量监督和服务手段,具有传统单测点监测方案无法比拟的优势。
     网络化PQMS系统是电能质量监测研究的新领域。本论文首次概括了网络化PQMS系统研究和应用推广过程中存在的功能算法、技术实现及经济成本等多方面的挑战,并对其中若干关键技术进行了深入的研究,主要包括:动态电能质量扰动辨识、区域电能质量综合评价、扰动事件源自动定位以及低成本、高性能的通信网络构建方案等。本论文的创新成果主要包括以下几个方面:
     1.提出一种由高速配电线载波通信(DLCC)网络、电能质量工作站及数量众多的电能质量监测终端(PQM)组成的网络化PQMS系统构建方案,并对其结构、功能进行了详细的分析、设计与规划。
     2.基于“扰动生成→特征提取→模式分类→结果分析”的思路,提出一种基于广义S变换和多级支持向量机(SVMs)的动态电能质量扰动辨识算法。首先利用广义S变换将动态电能质量扰动信号变换到相空间中,定义多种特征曲线并据此提取特征量,然后构建、训练了一种多级SVMs分类决策树结构的模式分类器。仿真结果表明,该算法对瞬时性、随机性及非平稳性的动态电能质量扰动具有灵活、快速、准确的辨识能力。
     3.基于物元和可拓学理论,提出一种由单测点到各等级区域的电能质量多级可拓综合评价体系。单测点综合评价中,提出一种新的基于关联度的时变客观赋权法,并对传统的主观赋权法进行了一致性判定的改进。区域综合评价中,建立了一种以所属子区域的电压等级、负荷容量、用户数、用户重要性、用户敏感度及质量性能为特征项的综合评价指标体系,并据此分别设计了其主、客观赋权算法。案例分析验证了该区域电能质量多级可拓综合评价方法的有效性。
     4.提出了一种基于链表和矩阵算法的配电网电能质量扰动事件源三级自动定位算法。I级定位,实现基于链表法的扰动馈线子区域快速预判;II级定位,基于系统监测覆盖矩阵和方向信息矩阵实现扰动事件源的初步判定;III级定位,定义“虚拟PQM”,基于扩展矩阵算法实现扰动事件源的准确定位。研究表明,该算法具有简洁直观、计算量小、快速、精确、适于计算机编程实现等特点。
     5.为降低网络化PQMS系统的构建成本,提出采用一种基于OFDM技术的高速DLCC网络方案。首先,对系统中各PQM的通信速率需求及该DLCC网络通信速率性能进行了论证;其次,提出了一种改进型的DLCC信道衰减特性分析方法,并对系统在信道特性、基带调制方式及信号输出功率三个因素影响下的通信质量性能进行了仿真研究。最后,提出了一种基于信号广播及传输矩阵的DLCC网络通信链路动态拓扑结构的确定方法,并以中继跳数最小化为目标实现了DLCC网络的路由优化。仿真和分析验证了该通信网络方案的可行性,能够满足网络化PQMS系统的通信需求。
It is an inevitable future trend of power quality monitoring system (PQMS) to realize network, informatization, standardization and intelligent. Rapid development of embedded system and network communication technology creates an opportunity for putting forward the network monitoring scheme of power quality, which can realize continuous on-line monitoring of multiple-spots. With abundant and overall information centralized and various intelligent diagnostic softwares configured, those advanced functions such as tendency judgment, probability statistic, comprehensive evaluation, disturbance event identification and Web services can be achieved in the center workstation. The network PQMS provides advanced supervision and service methods for power quality in distribution network, with increasing incomparable advantages compared to the traditional single-point monitoring scheme.
     The network PQMS is a new research field of power quality monitoring. This paper summarizes multifaceted challenges for the first time, such as function algorithms, technical realization, economical costs, etc., which are existing in the process of research and application extending of the network PQMS. Several key technologies have been in-depth studied, mainly including disturbance identification of dynamic power quality, comprehensive evaluation of regional power quality, automatic location of disturbance event source, construction of low-cost and high-performance communications network, etc. The creative works of this paper mainly include the following aspects:
     1.A new system construction scheme of the network PQMS is proposed, which is composed by high-speed distribution line carrier communication (DLCC) network, power quality workstation and a large number of power quality monitors (PQM). Then, structure and functions of the network PQMS are carried out a detailed analysis, design and planning.
     2.According to the idea of“disturbances generation→characteristics extraction→pattern classification→result analysis”, an identification algorithm for dynamic power quality disturbances (PQD) based on Generalized S-transform (GST) and multi-level support vector machines (SVMs) is presented. The PQD signals are transformed into phase space by GST firstly, then, multiple characteristic curves are defined and characteristics are extracted. After that, a pattern classifier is constructed and trained, with the structure of classification decision tree based on multi-level SVMs. Simulation results show that, for dynamic PQD signals with the features such as instantaneity, randomness and nonstationarity, the algorithm has the ability to identify them flexibly, quickly and accurately.
     3.Based on matter-element and extension theory, a multi-stage extension method is suggested to realize the comprehensive evaluation (CE) of power quality from single-point to various levels of regional. In single-point CE process, a new objective weighting method with time-varying characteristic based on correlation degree is designed, and the traditional subjective weighting method is been improved for its difficulties to determine consistency. In regional CE process, a new index system is established, which’s characteristic items include voltage level, load capacity, number of users, importance of the user, user sensitivity, quality performance of the subregions. Based on this, the subjective and objective weighting algorithms for regional CE are developed respectively. Case studies validate the effectiveness of the multi-stage CE method of power quality.
     4.The location problem of PQD event source in distribution network is explored, and one kind of three-level automatic location algorithm basing on linked-list and matrix algorithm is put forward. Firstly, rapid predict for the feeder sub-regional with PQD is achieved using linked-list method. Secondly, preliminary judgment for PQD event source is realized according to the monitoring coverage matrix and direction information matrix. Thirdly, after the concept of virtual PQM defined, accurate location for PQD event source is implemented with extension matrix algorithm. It shows that the proposed algorithm has many advantages, such as simple and intuitive, low computational complexity, fast and accurate, suitable for computer programming, and etc.
     5.To reduce construction costs of the network PQMS, a type of high-speed DLCC network scheme with the OFDM technology is adopted. After analyzing the requirement of communication rate to each PQM, the performance of communication rate of the DLCC network is discussed. Then, with the improved analysis method for channel attenuation and the simulation model of the DLCC system based on the OFDM technology, the performance of communication quality is researched, under the influence of three factors including channel characterization, base-band modulation and signal output power. By combining with means of signal broadcasting and transfer matrix, communication link dynamic topology of the DLCC network can be determined. Aiming to minimization of the relay hops, a novel routing optimization method for the DLCC network is proposed. Simulation and analysis verified the feasibility of the DLCC network scheme, and it is able to meet the communication requirements of the network PQMS.
引文
[1]朱永强,尹忠东,肖湘宁,等.电能质量监测技术综述[J].电气时代, 2007(5): 66-69.
    [2]程浩忠,艾芊,张志刚,等.电能质量[M].北京:清华大学出版社. 2006.
    [3]肖湘宁.电能质量分析与控制[M].北京:中国电力出版社. 2004.
    [4] Mceachern A. Roles of intelligent systems in power quality monitoring past present and future[A]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference[C]. Canada: Institute of Electrical and Electronics Engineers Inc., 2001, 1103-1105.
    [5]林海雪.现代电能质量的基本问题[J].电网技术, 2001, 25(10): 5-12.
    [6] GB/T 12325-2008,电能质量供电电压允许偏差[S].
    [7] GB/ 5945-2008,电能质量电力系统频率允许偏差[S].
    [8] GB/T 4549-1993,电能质量公用电网谐波[S].
    [9] GB/T 15543-2008,电能质量三相电压允许不平衡度[S].
    [10] GB/T 12326-2008,电能质量电压允许波动与闪变[S].
    [11] GB/T 18481-2001,电能质量暂时过电压和瞬态过电压[S].
    [12] IEEE Std 1159-1995. IEEE Recommended Practice for Monitoring Electric Power Quality[S]. IEEE, New York, USA, 1995.
    [13]翁国庆,张有兵.网络化电能质量监测与分析系统的设计[J].电力系统自动化, 2008, 32(15): 79-83.
    [14] Mohamed Amin Eldery, Ehab F. El-Saadany, Magdy M. A. Salama et a1. A Novel Power Quality Monitoring Allocation Algorithm[J]. IEEE Trans. Power Del, 2006, 4(1): 768-777.
    [15] Christian Ammer, Herwig Renner. Determination of the optimum measuring position for power quality monitoring[A]. Proc of the 11th International Conference on Harmonics and Quality of Power[C]. Lake Placid, NY: Institute of Electrical and Electronics Engineers Inc., 2004, 684-689.
    [16] Dong-Jun Won, Seung-I1 Moon. Optimal number and locations of power quality monitors considering system topology[J]. IEEE Trans. Power Del, 2008, 23(1): 288-295.
    [17]方群会,刘强,周林,等.模式分类方法在电能质量扰动信号分类中的应用综述[J].电网技术, 2009, 31(1): 31-36.
    [18] Zhang Fusheng, Geng Zhongxing, Yuan Wei. The Algorithm of Interpolating Windowed FFT for Harmonic Analysis of Electric Power System [J]. IEEE Transactions on Power Dlivery, 2001, 16 (2): 160-164.
    [19] P.K. Dash, B.K.Panigrahi, P.K.Sahoo et al. Power Quality Disturbance Data Compression, Detection, and Classification Using Integrated Spline Wavelet and S-Transform[J]. IEEE Transactions on Power Delivery, 2003, 18(2): 595-600.
    [20] Huang Shyh-Jier, Hsieh Cheng-Tao. Coiflet Wavelet Transform Applied to Inspect Power System Disturbance-Generated Signals [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 (1): 204-210.
    [21] RG Stockwell, L Mansinha, RP Lowe. Localization of the Complex Spectrum: The S Transform [J]. IEEE Trans. On Signal Processing, 1996, 44(4): 998-1001.
    [22] PK Dash, BK Panigrahi, G Panda. Power quality analysis using S-transform[J], IEEE Trans. on Power Delivery, 2003, 18(2): 406~411.
    [23]高静怀,陈文超,李幼铭,等.广义S变换与薄互层地震响应分析[J].地球物理学报, 2003, 46(4): 526-532.
    [24]易吉良,彭建春.基于广义S变换的短时电能质量扰动的模糊模式识别[J].电力系统保护与控制, 2008, 36(22): 20-24.
    [25]占勇,程浩忠,丁屹峰,等.基于S变换的电能质量扰动支持向量机分类识别[J].中国电机工程学报, 2005, 25(4): 51-56.
    [26] Chengyong Zhao, Xia Zhao, Xiufang Jia. A new method for power quality assessment based on energy space[A]. Proc of the 2004 IEEE Power Engineering Society General Meeting. June[C]. Denver, US: Institute of Electrical and Electronics Engineers Inc., 2004, 963-967.
    [27]徐永海,肖湘宁.电力市场环境下的电能质量问题[J].电网技术, 2004, 28(22): 48-52.
    [28]赵霞.基于电力市场的电压质量综合评价[D].华北电力大学硕士论文, 2004.
    [29]刘颖英,徐永海,肖湘宁.地区电网电能质量综合评价新方法[J].中国电机工程学报, 2008, 28(22):130-136.
    [30]唐会智,彭建春.基于模糊理论的电能质量综合量化指标研究[J].电网技术, 2003, 27(12): 85-88.
    [31] Cui Xue, Huijin Liu, Liming Ying. Multi-level Fuzzy Comprehensive Evaluation of Power Supply Service Quality[A]. Proc of the 2006 International Conference on Power System Technology[C]. Chongqing, China: Institute of Electrical and Electronics Engineers Inc., 2007.
    [32]黄剑,周林,粟秋华,等.基于物元分析理论的电能质量综合评价[J].重庆大学学报(自然科学版), 2007, 30(6): 25-29.
    [33]丁立,贾秀芳,赵成勇,等.基于可拓学的电能质量综合评价[J].电力自动化设备, 2007, 27(12) :44-52.
    [34]周林,栗秋华,张凤.遗传投影寻踪插值模型在电能质量综合评价中的应用[J].电网技术, 2007, 31(7): 32-35.
    [35]张曼,林涛,曹健,等.理想区间法在电能质量综合评价中的应用[J].电网技术, 2009, 33(3): 33-38.
    [36] Weng Guoqing, Zhang Youbing, Wang Jing. Algorithm Research and Application for Locating Power-Quality Event Source[A]. Proc of the 43rd International Universities Power Engineering Conference [C]. Padova, Italy: Technological Educational Institute, 2008, 199-203.
    [37]楼书氢,徐永海,陈恩黔.配电网中电压暂降源的检测方法比较[J].继电器, 2006, 34(15): 63-67.
    [38] Peter G. V. Axelberg and Math H. J. Bollen. An Algorithm for Determining the Direction to a Flicker Source[J]. IEEE Trans. Power Del. 2006, 1(2): 755-760.
    [39] Dahai Zhang, Wilsun Xu. Flicker Source Identification by Interharmonic Power Direction[A]. Proc of the Canadian Conference on Electrical and Computer Engineering 2005[C]. Saskatoon, Canada: Institute of Electrical and Electronics Engineers Inc., 2005, 549-552.
    [40]张哲,陈红坤.谐波源辨识研究的现状和发展[J].电力系统及其自动化学报,2005, 17(5): 37-41.
    [41] Massimo Aiello, Antonio Cataliotti. A Self-Synchronizing Instrument for Harmonic Source Detection in Power Systems[J]. IEEE Trans. Instrumentation and Measurement. 2005, 54(1): 15-23.
    [42]王继东,王成山.基于小波变换的电容器投切扰动源定位[J].电力自动化设备, 2004, 24(5): 20-23.
    [43] M. H. J. Bollen, Understanding Power Quality Problems: Voltage Sags and Interruptions. New York: IEEE Press, 2000.
    [44] Dong-Jun Won, Il-Yop Chung, Joong-Moon Kim et al. A New Algorithm to Locate Power-Quality Event Source With Improved Realization of Distributed Monitoring Scheme[J]. IEEE Trans. Power Del, 2006, 21(3): 1641-1647.
    [45] Il-Yop Chung, Dong-Jun Won, Joong-Moon Kim et al. Development of a network-based power quality diagnosis system[J]. ELSEVIER Electric Power Systems Research, 2007, 77: 1086-1094.
    [46] Loredana Cristaldi, alessandro Ferrero, Simona Salicone. A distributed system for electric power quality measurement[J]. IEEE Trans. Instrumentation and Measurement, 2002, 51(4): 776-781.
    [47] Giovanni Bucci, Edoardo Fiorucci, Carmine Landi. Digital measurement station for power quality analysis in distributed environment[J]. IEEE Trans. Instrumentation and Measurement, 2003, 52(1): 75-84.
    [48]郑涛,张保会.利用低压电力线传输数据存在的技术问题及对策[J].电网技术, 2004, 28(22): 44-47.
    [49]汤效军.“十一五”期间电力线载波通信的发展对策[J].电力系统通信, 2006, 27(168): 75-79.
    [50]李万林,王呈呈,郭经红.输电线高速数字载波通信及其应用[J].军事通信技术, 2008, 29(2):94-98.
    [51]李胜利,焦邵华,秦立军,等.中低压电力线载波通信方案的研究[J].电测与仪表, 2002,39(443) : 29-33.
    [52]韩谷静,殷小贡,林涛.面向配电自动化的中压电力线高速数据通信终端设计[J].电工技术学报, 2007, 22(3): 128-133.
    [53]汪晓岩,汤效军,叶亚英,等.中压配电线载波通信的频谱干扰测试与研究[J].电力系统通信, 2006, 27(169): 1-5.
    [54] PK Dash, MV Cbilukuri. Hybrid S-transforn and kalma filter approach for detectiom and measurement of short duration disturbances in power networks[J]. Instrumentation and Measurement, 2004, 53(2): 588~596.
    [55]陈学华,贺振华,黄德济.广义S变换及其时频滤波[J],信号处理, 2008, 24(1): 28-31.
    [56]陈学华,贺振华.改进的S变换及在地震信号处理中的应用[J].数据采集与处理, 2005, 20(4): 449-453.
    [57]全惠敏,戴瑜兴.基于S变换模矩阵的电能质量扰动信号检测与定位[J],电工技术学报, 2007, 22(8): 120-125.
    [58]刘守亮,肖先勇,杨洪耕.基于S变换模时频矩阵相似度的短时电能质量扰动分类[J],电网技术, 2006, 30(5): 67-71.
    [59] Wang Jing, Shen Yueyue, Wen Guoqing, et al. The Study of Generalized S-transform in Power Quality Disturbances Analysis[A]. Proc of the 2009 Asia-Pacific Power and Energy Engineering Conference[C]. Wuhan, China: Inst. of Elec. and Elec. Eng. Computer Society, 2009, 1255-1258.
    [60]赵凤展,杨仁刚.基于S变换和时域分析的电能质量扰动识别[J],电网技术, 2006, 30(15): 90-94.
    [61]祁亨年.支持向量机及其应用研究综述[J],计算机工程, 2004, 30(10): 6-9.
    [62]张全明,刘会金.最小二乘支持向量机在电能质量扰动分类中的应用[J],中国电机工程学报, 2008, 28 (1): 106-110.
    [63]唐发明,王仲东,陈绵云.一种新的二叉树多类支持向量机算法[J],计算机工程与应用, 2005, 7(24):24-26.
    [64]陈增照,杨扬,何秀玲,等.基于核聚类的SVM多类分类方法[J],计算机应用, 2007, 27(1): 47- 49.
    [65]吕干云,程浩忠,郑金菊,等.基于S变换和多级SVM的电能质量扰动检测识别[J],电工技术学报, 2006, 21(1): 121-126.
    [66] N.kolcio, J.A.Halladay, G.D. Allen et a1. Transient Over voltages and Overcurrents on 12.47KV Distribution Lines: Computer Modeling Results[J]. IEEE Transactions on Power Delivery, 1993, 8(1): 359-366.
    [67]张斌,刘晓川,许之晗.基于变换的电能质量分析方法[J].电网技术, 2001, 25(1):26-29.
    [68]林智仁, http://www.csie.ntu.edu.tw/~cjlin/, 2009.8.
    [69]郝海,踪家峰.系统分析与评价方法[M].北京:经济科学出版社2007.
    [70]郭亚军.综合评价理论、方法及应用[M].北京:科学出版社2007.
    [71]蔡文.物元模型及其应用[M].北京:科学技术文献出版社,1994.
    [72]李立希,杨春燕,李铧汶.可拓策略生成系统[M].北京:科学出版社,2006.
    [73]李连结,姚建刚,龙立波,等.组合赋权法在电能质量模糊综合评价中的应用[J].电力系统自动化. 31(4), 2007, 56-60.
    [74] D.L.Brooks,R.C.Dugan,Marek Waclawiak, et al. Indices for assessing utility distribution system RMS Variation Performance[J]. IEEE Transactions on Power Dilivery, 1998, 13(1): 254-259.
    [75] Shen C C, Wang A C, Chang R F, et al. Quantifying disturbance levelof voltage sag events[A]. Power Engineering Society General Meeting[C]. San Francisco, US: Institute of Electrical and Electronics Engineers Inc., 2005, 2314-2318.
    [76]徐泽水.模糊互补判断矩阵排序的一种算法[J].系统工程学报, 2001, 16(4): 3ll-314.
    [77]姚敏,张森.模糊一致性矩阵及其再软科学中的应用[J].系统工程, 1997 (2): 54-56.
    [78]李永.多目标决策中目标权重的确定法[J].甘肃工业大学学报, 2003, 29 (3):118-119.
    [79]周林,栗秋华,刘华勇,等.用模糊神经网络模型评估电能质量.高电压技术[J]. 2007, 33(9): 66-69.
    [80]刘健,毕鹏翔,董海鹏.复杂配电网简化分析与优化[M].北京:中国电力出版社, 2002.
    [81]刘瓒武.应用图论[M].北京:国防科技大学出版社, 2006.
    [82]翁蓝天,刘开培,刘晓莉,等.复杂配电网故障定位的链表法[J].电工技术学报, 2009, 24(5): P190-196.
    [83] Buckley F, Lewinter M. A friendly introduction to graph theory[M]. New York: Prentice Hall, 2003.
    [84] Parsons A C, Grady W M, Powers E J, et al. A Direction Finder for Power Quality Disturbances Based upon Disturbance and Energy[J]. IEEE Trans. Power Del, 2000, 15(3): 1081-1086.
    [85] Parsons A C, Grady W M, Powers E J, et al. Rules for Locating the Sources of Capacitor Switching Disturbances[A]. Proceedings of the Power Engineering Society Summer Meeting[C]. Edmonton, Canada: IEEE, 1999, 794-799.
    [86] Pradhan A K, Routray A. Applying Distance Relay for Voltage sag Source Detection[J]. IEEE Trans. Power Del, 2005, 20(1): 529-531.
    [87] Li C, Tayjasanant T, Xu W, et al.. Method for Voltage Sag Source Detection by Investigation Slope of the System Trajectory[J]. IEEE Proceedings on Center,Transform and Distrib,2003,150(3):367-372.
    [88]李凡.乌鲁木齐配电网电压暂降检测与可靠性评估[D].新疆:新疆大学, 2007.
    [89] Heydt G T. Identification of harmonic source by a state estimation technique[J]. IEEE Trans on Power Delivery, 1989, 4 (1) : 569- 576.
    [90] Tanaka T ,A kagi H. A new method of harmonic power detection based on the instantaneous active power in three phase circuits [J]. IEEE Trans on Power Delivery, 1995, 10 (4) : 1737- 1742.
    [91] Aiello M , Cataliotti A , Cosentino V , et al. A self-synchronizing instrument for harmonic sources detection in power systems[A]. Proceedings of the 20th IEEE Instrumentation and Measurement Technology Conference [C]. Colorado, USA: Institute of Electrical and Electronics Engineers Inc., 2003, 1364-1369.
    [92] K. Srinivasan. RMS fluctuations attributable to a single customer[J]. Power Quality Solutions, 1995.
    [93] P. Axelberg. Measurement Methods for Calculation of the Direction to a Flicker Source[J]. Ph.D. dissertation, Dept. Elect. Power Eng., Chalmers Univ. Technol., Gothenburg, Sweden, 2003.
    [94] Peter G. V. Axelberg, Math H. J. Bollen. An Algorithm for Determining the Direction to a Flicker Source[J]. IEEE Trans on Power Delivery, 2006, 21 (2) : 755- 759 .
    [95] G. Krumpholz, K. Clements, and P. Davis. Power system observability: A practical algorithm using network topology[J]. IEEE Trans. Power App. Syst., 1980, 99(4): 1534-1542.
    [96] M. E. Baran, A. W. Kelley. State estimation for real-time monitoring of distribution systems[J]. IEEE Trans. Power Syst., 1994, 9(3): 1601-1609.
    [97] Manfred Zimmermann, Klaus Dostert. A multipath model for the powerline channel[J]. IEEE Trans. Communications, 2002, 50(4): 553-559.
    [98]焦绍华,刘万顺,郑卫文,等.配电网载波通信的衰耗分析.电力系统自动化, 2000, 24(8): 37-40.
    [99]张有兵.低压电力线OFDM数字通信技术[D].浙江:浙江大学, 2005.
    [100] Philipps H. Development of a statistical model for power line communication channels[A]. Proceeding of the 4th International Symposium on Power-line Communications and Its Applications[C], 2000, Limerick, Ireland.
    [101]宋健,赵丙镇,李效.宽带电力线通信网络设计.北京:人民邮电出版社, 2008.
    [102]韩谷静,殷小贡,林涛.面向配电自动化的中压电力线高速数据通信终端设计.电工技术学报,2007, 22(3): 128-133.
    [103]董亚波,高锋.低压电力线载波通信网络结构分析.电网技术, 2003, 27(2): 58-62.
    [104]李胜利,焦邵华,秦立军,等.中低压电力线载波通信方案的研究.电测与仪表, 2002, 39(443): 29-33.
    [105]周陶涛,马正新,王剑,等.低压电力线通信性能测试分析与路径选择.电工技术学报, 2008, 23(8): 126-130.
    [106]俞天白,杨将新,赵玉玺.楼宇控制系统中的电力线载波通信路由算法.电网技术, 2006, 30(9): 88-91.
    [107]彭启伟,张浩.基于多叉树遍历的中压配电线载波自适应中继算法.电力系统通信, 2009, 30(197): 81-84.
    [108]刘晓胜,戚佳金,宋其涛,等.基于蚁群算法的低压配电网电力线通信组网方法.中国电机工程学报, 2008, 28(1): 71-76.
    [109]李臣波,刘润涛.一种基于Dijkstra的最短路径算法.哈尔滨理工大学学报, 2008, 13(1): 35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700