基于S变换的电能质量扰动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电能质量扰动会导致设备过热、电机停转、保护失灵以及计量不准等严重后果,因此电能质量问题引起了广泛的关注。电能质量扰动类型较多,单一的时域或频域方法难以胜任所有类型的电能质量扰动分析,因而时频分析方法成了电能质量扰动分析的常用工具。S变换作为小波变换和短时傅立叶变换的继承和发展,省却了对基小波的选择,同时克服了小波变换受噪声影响大以及短时傅立叶变换窗宽固定的缺陷,近年成了电能质量扰动分析的热点工具。本文依据国内外相关电能质量标准,结合电能质量研究现状和工程实际需要,重点研究了利用S变换进行电能质量扰动分析的一系列方法。
     针对电能质量扰动信号的噪声水平估计问题,利用改进S变换提出了电能质量扰动信号的白噪声方差估计方法。根据电能质量扰动信号在改进S变换域的时频特性,提出了能量聚集度概念,即扰动信号能量在改进S变换时频面的聚集程度。通过使扰动信号的能量聚集度达到最小确定改进S变换的窗宽因子,保证扰动信号和白噪声在时频面的混叠区域最小,便于扰动信号和噪声的分离。进而根据白噪声在改进S变换域的分布特性检测时频面的噪声和非噪声区域,利用噪声区域估计白噪声的方差。仿真实验验证了采用所提方法估计的白噪声方差有很高的可信度,有望应用于电能质量扰动信号的降噪。
     针对电能质量扰动信号的降噪问题,基于改进S变换的能量聚集度概念和噪声估计方法提出了两种电能质量扰动信号的降噪方法。方法一利用白噪声估计过程中确定的非噪声区域,通过硬阈值方法实现降噪。方法二通过简单的迭代算法实现,首先反复计算信号的改进S变换能量聚集度及由其确定阈值采用硬阈值算法进行降噪后得到的修正S变换,直至由能量聚集度二次变化率最小值确定的迭代次数为止,然后对修正S变换进行反变换得到降噪后的扰动信号。通过与小波降噪方法的降噪效果进行比较,证明了所提的两种降噪方法有一定的优势。
     针对电能质量扰动分类问题,利用改进S变换和决策树提出了电能质量扰动分类的新方法。首先讨论了改进S变换的特征向量,阐明了频率-幅值包络和时间-幅值向量能够反映扰动信号的主要频域和时域特征,并从中提取了4个统计特征量,然后采用简单的分类二叉树实现了9种电能质量扰动的分类。仿真结果表明,所提的分类方法识别正确率高,对噪声不敏感。
     针对S变换计算量大的问题,提出了不完全S变换以改善其在电能质量扰动分析应用中的计算速度。电能质量扰动的检测通常只需要利用扰动信号S变换主要频率分量,因此,在计算S变换的过程中仅计算对应于扰动信号主要频率的S变换时间分量,就可以减少S变换的运算时间,而主要频率是由扰动信号功率谱包络的动态测度方法确定的。仿真结果证明,在保证检测精度的基础上,不完全S变换能大大缩短计算时间。
     针对电能质量扰动参数估计问题,结合改进S变换时频分辨率可调和不完全S变换计算速度快的优点,提出了基于改进不完全S变换的电能质量扰动参数估计方法。算法根据不同扰动类型自适应地选择窗宽因子,进而计算扰动信号的改进不完全S变换的各主要频率分量,最后利用这些分量实现各种扰动参数的估计。仿真结果证明了所提方法具有估计精度高,计算速度快的特点。
     针对电容器投切扰动源的定位问题,利用S变换的相位与扰动信号具有直接联系的特点,提出了基于交叉S变换的电容器投切扰动源定位的新方法。算法首先通过计算瞬时扰动电压和电流信号的不完全S变换得到相应的两个扰动频率分量,然后求它们的向量积得到交叉S变换的相位差谱,最后利用扰动起始时刻的相位差极性确定投切电容器相对于监测点的位置,结合多处监测点确定投切电容器的准确位置。仿真结果证明了算法的有效性。
     根据上述提出的基于S变换的系列电能质量扰动分析方法,设计了综合电能质量扰动分析系统。系统由前处理单元、电力参数测量及电能计量单元、扰动触发单元、电能质量分析系统和评估系统等功能单元组成。在各功能单元的阐述中,主要提出了基于动态测度的基波频率精确测量方法,扰动检测触发信号的动态测度产生方法以及基于上位机的电能质量扰动的专家分析系统,将提出的基于S变换的系列电能质量扰动分析方法有效地整合于该系统中。
     本文提出的基于S变换的电能质量扰动分析的系列方法和综合电能质量扰动分析系统,为电能质量实时检测和离线分析提供了有效的工具。
Power Quality disturbances cause several problems, such as overheating, failure of motors, disoperation of protective equipment and inaccurate metering. As a consequence, more concern about different issues that relate to the power quality has been raised in recent years. It is failed to accomplish analysis of all the types of power quality disturbances utilizing single time or frequency means because of the diversity of power quality disturbances. Therefore, the time-frequency analysis methods become the hot tools. The S-transform can be seen either as an extension of ideas of wavelet or short-time Fourier transform, and it has characteristics superior to them because it has no use for the choice of base function. S-transform is more robust to noise than wavelet and it is essentially a short-time Fourier-transform whose window width varies inversely with the frequency. In accordance with national and international power quality standard and research situations, systematic and in-depth researches about power quality disturbances analysis approaches are carried out. The main contributions of this dissertation are listed as follows:
     A modified S-transform based method for noise level estimation of power quality signal is proposed. According to the time-frequency property of power quality in modified S-transform, the concept of energy congregation level is defined. The time-frequency resolution is determined by making the value of energy congregation level minimum, so there has the minimal aliasing area to facilitate the separation of disturbances signal and noise. By use of white noise distribution characteristic the area of power quality signal’s energy and noise in modified S-transform plane is detected. Based on the time-frequency plane only contains the power spectrum in noise area the estimation of noise variance is implemented. Simulation results show that the estimation results of noise variance are of high degree of confidence while the sampling rate achieves a certain extent.
     Two denoising approaches of power quality signals are proposed based on concept of energy congregation level and method of noise estimation respectively. One of the ways of denoising is realized just using iterative algorithm. The rectified S-transform is obtained by computing the energy congregation level and hard threshold denoising algorithm is carried out repeatedly. The quadratic change rate of energy congregation level is defined to find the optimal iterations number used in iterating algorithm to obtain satisfactory denoising results. Then the inverse rectified S-transform is performed to get the denoised power quality disturbances signals. The other way of denoising is realized by utilizing the power quality region of the time-frequency plane which is determined in the process of noise estimation and the hard threshold algorithm is used to verify the value of the modified S-transform matrix elements. The denoising results compared with wavelet-based method illustrate the advantage of the proposed approaches.
     A classification method of power quality disturbances is proposed using modified S-transform and decision tree. The approach is realized by extracting 4 features from modified S-transform module matrix and employing binary classification tree. 9 types of disturbances are recognized effectively using the proposed method. The simulation results show that the proposed classification methods are feasible for real applications for their significant accuracy and immune to noise.
     In order to overcome the defect of large amount calculation of S-transform, the definition of incomplete S-transform is proposed and applied to power quality disturbances detection. The detection methods of power quality based on S-transform usually use the major vectors of S-transform module time-frequency matrix instead of all of the vectors. If just the major vectors corresponding disturbances major frequency fractional are computed, much computation time will be saved. Dynamics is utilized to describe the envelope of power spectrum so as to detect the valid frequency samples of FFT. The simulation results illustrate that the proposed method increases speed of algorithm and has no loss of detection precision.
     A new method of parameters estimation of power quality disturbances is proposed based on modified incomplete S-transform, which combine the modified S-transform with incomplete S-transform that have complementary advantages in time frequency resolutions and computation speed. The optimal windowing coefficients in connection with different disturbances are adaptively selected, and then the major vectors obtained using the modified incomplete S-transform and these vectors are utilized to estimate the parameters. Simulation results verified that the proposed method has characteristics of lower complexity, less computation and high precision.
     On the basis of phase property of S-transform that it provides multi-resolution analysis while retaining the absolute phase of each frequency, a cross S-transform method for locating capacitor switching disturbances is proposed. The disturbance frequency vectors of S-transform of transient voltage and current, which are obtained by performing incomplete S-transform, are employed to perform cross S-transform and the phase difference spectrum is obtained. The phase difference of transient voltage and current is determined by extracting the value at disturbance start point from the phase spectrum. The relative location of switching capacitor is determined by the polarity of the value and the exact location can be obtained by combining with detection results of multiple monitoring stations. The proposed method has been verified by simulation experiments.
     A comprehensive power quality analysis system is designed based on the series algorithm described above. The architecture is designed witch consists of pre- processing unit, power parameter and energy measurement unit, disturbance triggering unit, power quality analysis unit and assessment system. Some key algorithms are proposed in the process that elaborates the function units, including dynamic-based frequency measurement method, triggering signal generating approach and PC-based power quality analysis expert system. The series S-transform-based power quality analysis method are effectively integrated in the system.
     The series S-transform-based power quality disturbances analysis methods and comprehensive analysis system expounded in the dissertation aim to provide effective theorem basis and algorithms for power quality on-line detection and off-line analysis, and may be used in engineering practice.
引文
[1]肖湘宁,尹忠东,徐永海.现代电能质量综述[J]. 2004, (11): 48-52.
    [2]程浩忠,艾芊,张志刚,等.电能质量[M].北京:清华大学出版社, 2006.
    [3] Shih-An Yin, Chun-Lien Su, Rung-Fang Chang. Assessment of Power Quality for High-Tech Industry[C]. IEEE Power India Conference, New Delhi, 2006, 1-6.
    [4] Leonardo-Energy. European Power Quality Survey[EB/OL]. http://www.leonardo-energy.org/webfm_send/253.pdf, 2008-01-25.
    [5]林海雪.电能质量技术问答(天津站) [EB/OL]. http://www.apqi.org/file/attachment/200973/155133.pdf, 2009-07-04.
    [6]王晶,束洪春,陈学允.人工智能和数学变换用于电能质量的研究综述[J].继电器, 2004, 32(2): 34-40.
    [7]赵凤展.基于时频分析的电能质量扰动检测与识别方法的研究[D].北京:中国农业大学博士学位论文, 2006.
    [8]肖湘宁.电能质量分析与控制[M].北京:中国电力出版社, 2004.
    [9]胡铭,陈珩.电能质量及其分析方法综述[J].电网技术, 2000, 24(2): 36-38.
    [10] IEC 610002221 (1990). Electromagnetic Compatibility (EMC)-Part 2 Environment. Section 1: Description of the Environment - Electromagnetic Environment for Low-Frequency Conducted Disturbances and Signaling in Public Power Supply System [S]. 1990.
    [11] IEEE Std 115921995. IEEE Recommended Practice for Monitoring Electric Power Quality [S]. 1995.
    [12] IEEE Std 1159. 322003. IEEE Recommended Practice for the Transfer of Power Quality Data [S]. 2003.
    [13]林海雪.电能质量标准的新进展[J].供用电, 2009, 26(5): 4-10.
    [14] Akagi H ,Sato shi Ogasawara, Hyosung Kim. The theory of instantaneous power in three-phase four-wire systems: a comprehensive approach[J]. IEEE Transactions on Industry Applications, 1999, 1: 431-439.
    [15] Vasco Socares, Pedro Verdelho, Gil D Marques. An instantaneous active and reactive current component method for active filters[J]. IEEE Transactions on Power Electronics, 2000, 15(4): 660-669.
    [16]魏磊,张伏生,耿中行,等.基于瞬时无功功率理论的电能质量扰动检测、定位与分类方法[J].电网技术, 2004, 28(6): 53-58.
    [17]刘进军,刘波,王兆安.基于瞬时无功功率理论的串联混合型单相电力有源滤波器[J].中国电机工程学报,1997, 17(1): 37~41.
    [18]冯小明,杨仁刚.动态电压恢复器的形态学—dq变换综合检测算法[J].中国电机工程学报, 2004, 24(11): 193-198.
    [9] H. Kim, S.-J. Lee, S.-K., Sul. A Calculation for the Compensation Voltages in Dynamic Voltage Restorers by Use of PQR Power Theory[C]. IEEE Applied Power Electronics Conference and Exposition, Anaheim California, 2004, 573-579.
    [20]舒泓.电能质量扰动检测和分类问题的研究[D].北京:北京交通大学博士论文,2008.
    [21]程佩青.数字信号处理教程(第三版)[M].北京:清华大学出版社, 2007.
    [22]赵文春,马伟明,胡安.电机测试中谐波分析的高精度FFT算法[J].中国电机工程学报, 2001, 21(12): 83-88.
    [23] Heydt G T, Fjeld P S, Liu C C, et al. Applications of the windowed FFT to electric power quality assessment. IEEE Transactions on Power Delivery, 1999, 14(4): 1411-1416.
    [24] P M Xu. A Method of Improving the Accuracy of FFT Linear Spectrum[C]. Proceedings of the Fifth International Conference on Condition Monitoring (Condition Monitoring’97). Beijing, 1997, 291-295.
    [25]丁康,钟舜聪,朱小勇.离散频谱相位差校正方法研究[J].振动与冲击, 2001, 20(2): 52-55.
    [26]朱利民,熊有伦.一个通用的频谱误差校正快速算法[J].振动工程学报, 2001, 14(2): 166-171.
    [27] Xie Ming, Ding Kang. Correction for the Frequency, Amplitude and Phase in FFT of Harmonic Signal[J]. Mechanical System and Signal Processing. 1996, 10(2): 211-221.
    [28]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社, 2002.
    [29] Zbigneiew Leonowicz, Tadeusz Lobos, Jacek Rezmer. Adcanced Spectrum Estimation Methods for Signal Analysis in Power Electronics[J]. IEEE Transactions on Industrial Electronics. 2003, 50(3): 514-519.
    [30] T. Lobos, Z. Leonowicz, J. Rezmer. Harmonics and Interharmonics Estimation Using Advanced Signal Processing Methods[C]. The 9th International Conference on Harmonics and Quality of power, Orlando Florida, 2000, 335-340.
    [31]高培生,谷湘文,吴为麟.基于求根多重信号分类和遗传算法的谐波间谐波频谱估计[J].电工技术学报, 2008, 23(6): 109-113.
    [32]石敏,吴正国,尹为民.基于多信号分类法和普罗尼法的间谐波参数估计[J].电网技术, 2005, 29(15): 81-84.
    [33]丁屹峰,程浩忠,吕干云,等.基于Prony算法的谐波和间谐波频谱估计[J].电工技术学报, 2005, 20(10): 94-97.
    [34]马秉伟,刘会金,周莉,等.一种基于自回归模型的间谐波谱估计的改进算法[J].中国电机工程学报, 2005, 25(15): 79-83.
    [35]张斌,刘晓川,许之晗.基于变换的电能质量分析方法[J].电网技术, 2001, 25(1): 26-29.
    [36] YuHua Gu, H.J. Bollen. Time-Frequency and Time-Scale Domain Analysis of Voltage Disturbances[J]. IEEE Transactions on Power Delivery, 2000, 15(4): 1279-1284.
    [37] Francisco Jurado, Jose’R.Saenz. Comparison Between Discrete STFT and wavelets for the Analysis of Power Quality Events[J]. Electric Power Systems Research, 2002, 62(3): 183-190.
    [38]赵成勇,何明锋.基于特定频带的短时傅里叶分析[J].电力系统自动化, 2004, 28(14): 41-44.
    [39]江亚群,何怡刚.基于自适应短时傅立叶变换的电频率跟踪测量算法[J].电子测量与仪器学报, 2006, 20(2): 10-15.
    [40]赵凤展,杨仁刚.基于短时傅立叶变换的电压暂降扰动检测[J].中国电机工程学报, 2007, 27(10): 28-35.
    [41]耿云玲.电能质量扰动分析中小波变换的应用研究[D].湖南:湖南大学博士学位论文, 2006.
    [42] Staphane Mallat, Wen Liang Hwang. Singularity Detection and Processing with Wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2): 617-643.
    [43] Olivier Poisson, Pascal Rioual, Michel Meunier. Detection and Measurement of Power Quality Disturbances Using Wavelet Transform[J]. IEEE Transactions on Power Delivery, 2000, 15(3): 1039-1044.
    [44]耿云玲,王群,何怡刚.基于复数小波相位信息的电能质量扰动的检测、定位与分类[J].电工技术学报, 2006, 21(8): 113-117.
    [45]李霖,杨洪耕,赵艳粉.基于二维离散平稳小波变换的短时电能质量扰动检测方法[J].电网技术, 2007, 31(11): 49-53.
    [46]陈祥训.采用小波技术的几种电能质量扰动的测量与分类方法[J].中国电机工程学报, 2002, 22(10): 1-6.
    [47]刘安定,肖先勇,邓武军.基于离散余弦变换和小波变换的电能质量扰动信号检测方法[J].电网技术, 2005, 29(10): 70-74.
    [48]崔雪,刘会金,张全明,等.基于形态-复小波暂态电能质量扰动检测及定位[J].高电压技术, 2008, 34(5): 989-994.
    [49]刘守亮,肖先勇. Daubechies复小波的生成及其在短时电能质量扰动检测中的应用[J].电工技术学报, 2005, 25(11): 106-110.
    [50]周林,夏雪,万蕴杰,等.基于小波变换的谐波测量方法综述[J].电工技术学报, 2006, 21(9): 67-74.
    [51] A.Al-Zaben, W.Abu-Elhaija, M.Alomoush. Identification of three phase transformer abnormal conditions using wavelet entropy[C]. IEEE International Electric Machines & Drives Conference, Antalya, 2007, 1529-1533.
    [52] Ece D G, Gerek O N. Power Quality Event Detection Using Joint 2-D-Wavelet Subspaces[J].IEEE Transactions on Instrumentation and Measurements, 2004, 53(4): 1040-1046.
    [53] Tao Lin, Mineo Tsuji, Eiji Yamade. A Wavelet Approach to Real Time Estimation of Power System Frequency[C]. The 27nd Annyal Conference of the IEEE Industrial Electronics Society, Denver, 2001, 58-65.
    [54] Pham V L, Wong K P. Antidistortion Method for Wavelet Transform Filter Banks and Nonstationary Power System Waveform Harmonic Analysis[J]. IEE Proceedings on Generation, Transmission and Distribution, 2001, 148(2): 117-122.
    [55]周文晖,林丽莉,周兆经.基于小波变换的谐波检测法.仪器仪表学报, 2001, 22(z2): 5-10.
    [56]王晶,束洪春,陈学允.动态电能质量的分形指数小波分析方法[J].中国电机工程学报, 2004, 24(5): 40-45.
    [57]何正友,陈小勤.基于多尺度能量统计和小波能量熵测度的电力暂态信号识别方法[J].中国电机工程学报, 2006, 26(10): 33-39.
    [58] Zwe Lee Gaing. Wavelet-Based Neural Network for Power Disturbance Recognition and Classification[J]. IEEE Transactions on Power Delivery, 2004, 19(4): 1560-1568.
    [59] T. X. Zhu, S. K. Tso, K. L. Lo. Wavelet-Based Fuzzy Reasoning Approach to Power Quality Disturbance Recognition[J]. IEEE Transactions on Power Delivery, 2004, 19(4): 1928-1935.
    [60]孔英会,车辚辚,苑津莎.基于小波分解和数据挖掘中决策树算法的电能质量扰动识别方法[J].电网技术, 2007, 31(23): 78-82.
    [61]王成山,王继东.基于小波包分解的电能质量扰动分类方法[J].电网技术, 2004, 28(15): 78-82.
    [62]耿云玲,王群,何怡刚.电能质量小波检测与定位及基于多尺度能量曲线分类[J].仪器仪表学报, 2006, 27(2): 180-183.
    [63] (?)mer Nezih Gerek, Dogan G?khan Ece. 2-D Analysis and Compression of Power Quality Event Data[J]. IEEE Transactions on Power Delivery, 2004, 19(2): 791-798.
    [64]剧高峰,罗安.离散小波变换用于电能质量扰动数据实时压缩[J].电力系统自动化, 2002, 26(19): 61-63.
    [65] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
    [66]黄文清,戴瑜兴.电能质量扰动的Block-Thresholding去噪方法[J].电工技术学报, 2007, 22(10): 160-166.
    [67]杨慧中,钟豪,丁锋.基于多重小波变换的信号去噪及其在软测量中的应用[J].仪器仪表学报, 2007, 28(7): 1245-1249.
    [68]欧阳森,宋政湘,陈德桂,等.小波软阈值去噪技术在电能质量检测中的应用[J].电力系统自动化, 2002, 26(19): 56-60.
    [69]欧阳森,宋政湘,王建华,等.基于信号相关性和小波方法的电能质量去噪算法[J].电工技术学报, 2003, 18(3): 111-116.
    [70] Hong Tzer Yang, Chiung Chou Liao. A De-noising Scheme for Enhancing Wavelet-Based Power Quality Monitoring System[J]. IEEE Transactions on Power Dilivery, 2001, 16(3): 353-360.
    [71]刘志刚,曾怡达,钱清泉.多小波在电力系统信号消噪中的应用[J].中国电机工程学报, 2004, 24(1): 30-34.
    [72]张吉先,钟秋海,戴亚平.小波门限消噪法应用中分解层数及阈值的确定[J]. 2004, 24(2): 118-122.
    [73]彭文季,罗兴锜,郭鹏程.基于第2代小波的水电机组振动信号预处理[J].中国电机工程学报, 2007, 27(30): 103-107.
    [74]王继东,王成山.基于小波变换的电容器投切扰动源定位[J].电力自动化设备, 2004, 24(5): 20-23.
    [75]张文涛,王成山.基于改进扰动功率和能量法的暂态扰动定位[J].电力系统自动化, 2007, 31(8): 32-35.
    [76]张文涛,王成山.基于小波熵的电容器扰动识别和定位[J].电力系统自动化, 2007, 31(7): 71-74.
    [77]乐叶青,徐政.基于时频分布的电能质量交叉扰动检测[J].电力系统及其自动化学报, 2007, 19(6): 114-117.
    [78]樊荣.基于Wigner分布和经验模态分解的谐波分析方法[J].科技创新导报, 2008(12): 9-10.
    [79] Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[C]. The Royal Society of London, London, 1998.
    [80]李天云,程思勇,杨梅.基于希尔伯特-黄变换的电力系统谐波分析[J].中国电机工程学报, 2008, 28(4): 109-113.
    [81]刘稳坚,黄纯,邢耀广,等.经验模态分解及Hilbert谱分析在电压闪变检测中的应用[J].计算机测量与控制, 2006, 14(6): 707-710.
    [82]樊荣.基于Wigner分布和经验模态分解的谐波分析方法[J].科技创新导报, 2008(12): 9-10.
    [83] Stockwell R G,Mansinha L, Lowe R P. Localization of the Complex Spectrum: The S Transform[J]. IEEE Transactions on Signal Process, 1996, 44(4): 998-1001.
    [84] P. K. Dash, B. K. Panigrahi, G.Panda. Power Quality Analysis Using S–Transform [J]. IEEE Transactions on Power Delivery, 2003, 18(2): 406-411.
    [85] P. K. Dash, B. K. Panigrahi, D. K. Sahoo. Power Quality Disturbance Data Compression, Detection, and Classification Using Integrated Spline Wavelet and S-Transform[J]. IEEE Transactions on Power Delivery, 2003, 28(2): 595-600.
    [86] S. Mishra, C. N. Bhende, B. K. Panigrahi. Detection and Classification of Power Quality Disturbances Using S-Transform and Probabilistic Neural Network[J]. IEEE Transactions on Power Delivery, 2008, 23(1): 280-287.
    [87] Ameen Gargoom, Nesimi Ertugrul, Wen L. Soong. Power Quality Indices Measurement Using the S-transform[J]. International Journal of Power and Energy Conversion, 2009, 1(1): 31-48.
    [88]付娟,周汉勇,姜勤.基于S变换的暂态电能质量扰动检测与仿真[J].电力系统保护与控制, 2009, 37(21): 86-89.
    [89]刘守亮,肖先勇,杨洪耕.基于S变换时频等值线图与幅值包络线的短时电能质量扰动检测与分类[J].继电器, 2005, 33(22): 49-52.
    [90]全惠敏,戴瑜兴.基于S变换模矩阵的电能质量扰动信号检测与定位[J].电工技术学报,2007, 22(8): 119-125.
    [91]易吉良,彭建春,谭会生.采用不完全S变换的电能质量扰动检测方法[J].高电压技术, 2009, 35(10): 2562-2567.
    [92]方群会,刘强,周林,等.模式分类方法在电能质量扰动信号分类中的应用综述[J].电网技术, 2009, 33(1): 31-36.
    [93] I. W. C. Lee, P. K. Dash. S-Transform-Based Intelligent System for Classification of Power Quality Disturbance Signals[J]. IEEE Transactions on Industrial Electronics, 2003, 50(4): 800-805.
    [94]何为,杨洪耕.基于S变换和扩张神经网络的电能质量扰动分类[J].继电器, 2007, 35(5): 63-68.
    [95]唐求,王耀南,郭斯羽,等.基于S变换与PNN的电能质量多扰动检测[J].仪器仪表学报, 2009, 30(8): 1668-1673.
    [96] Weiming Tong, Xuelei Song. A Parallel RBFNN Classifier Based on S-Transform for Recognition of Power Quality Disturbances[C]. Proceeding of the 4th International Symposium on Neural Networks: Part II–Advances in Neural Network, Nanjing, China, 2007, 746-755.
    [97] Murat Uyar, Selcuk Yildirim, Muhsin Tunay Gencoglu. An Expert System Based on S-transform and Neural Network for Automatic Classification of Power Quality Disturbances[J]. Expert Systems with Applications, 2009, 36 (3): 5962-5975.
    [98]占勇,程浩忠,丁屹峰,等.基于S变换的电能质量扰动支持向量机分类识别[J].中国电机工程学报, 2005, 25(4): 51-56.
    [99]吕干云,程浩忠,郑金菊,等.基于S变换和多级SVM的电能质量扰动检测识别[J].电工技术学报, 2006, 21(1): 121-126.
    [100]M F Faisal, A Mohamed, A Hussain, et al. Support Vector Regression Based S-transform for Prediction of Single and Multiple Power Quality Disturbances[J]. European Journal of Scientific Research, 2009, 34(2): 237-251.
    [101]王学伟,张宏财.基于S变换和最小二乘支持向量机的电能质量扰动识别[J].电测与仪表, 2009, 46(8): 1-5.
    [102]杨洪耕,刘守亮,肖先勇,等.基于S变换的电压凹陷分类专家系统[J].中国电机工程学报, 2007, 27(1): 98-104.
    [103]杨洪耕,刘守亮,肖先勇.利用S变换时频等值线图与幅值包络向量实现电压凹陷的分类[J].电工技术学报, 2006, 21(8): 75-80.
    [104]M F Faisal, A Mohamed. Identification of Multiple Power Quality Disturbance Using S-transform and Rule Based Classification Technique[J]. Journal of Applied Sciences, 2009, 9(15): 2688-2700.
    [105]Fengzhan Zhao, Rengang Yang. Power Quality Disturbance Recognition Using S-transform[J], IEEE Transactions on Power Delivery, 2007, 22(2): 944-950.
    [106]H.S. Behera, P.K. Dash. Power Quality Time Series Data Mining UsingS-transform and Fuzzy Expert System[J]. Applied Soft Computing, 2009, 9(10): 1-11.
    [107]M. V. Chilukuri, P. K. Dash. Multiresolution S-Transform Based Fuzzy Recognition System for Power Quality Events[J]. IEEE Transaction on Power Delivery, 2004, 19(1): 323-330.
    [108]刘守亮,肖先勇,杨洪耕.基于S变换模时频矩阵相似度的短时电能质量扰动分类[J].电网技术, 2006, 30(5): 67-71.
    [109]刘鑫,杨洪耕,赵俊.基于S变换模时频矩阵局部相似度的短时电能质量扰动分类[J].电力系统自动化, 2009, 33(8): 62-66.
    [110]S.R. Samantaray, P.K. Dash. Transmission Line Distance Relaying Using a Variable Window Short-time Fourier Transform[J]. Electric Power Systems Research, 2008, 78(4): 595–604.
    [111]S. R. Samantaray, L. N. Tripathy, P. K. Dash, et al. S-Transform Based Directional Bus-bar Protection[C]. IEEE Region 10 Conference, TENCON 2008, 2008, 1-6.
    [112]S.R. Samantaray, B.K. Panigrahi, P.K. Dash, et al. Power Transformer Protection Using S-transform with Complex Window and Pattern Recognition Approach[J]. IET Generation Transmission and Distribution, 2007, 1(2): 278–286.
    [113]肖先勇,李逢,邓武军.雷击与短路故障的S变换特征量识别方法[J].高电压技术, 2009, 35(4): 817-822.
    [114]Chien Chunhuang, Sheng Fuliang, Ming Shing Young, et al. A Novel Application of The S-transform in Removing Powerline Interference from Biomedical Signals[J]. Physiological Measurement, 2009, 30(1): 13-27.
    [115]高静怀,满蔚仕,陈树民.广义S变换域有色噪声与信号识别方法[J].地球物理学报, 2004, 22(5): 869-875.
    [116]全惠敏,戴瑜兴.电能质量扰动的广义S变换分析和决策树算法分类[J].湖南大学学报(自然科学版), 2009, 36(4): 43-47.
    [117]全惠敏,王炼红,戴瑜兴.采用广义S变换的电能质量扰动免疫分类算法[J].高电压技术, 2009, 35(9): 2880-2885.
    [118]易吉良,彭建春.基于广义S变换的短时电能质量扰动的模糊模式识别[J].电力系统保护与控制, 2008, 36(22): 20-25.
    [119]B. Biswal , P.K. Dash, B.K. Panigrahi. Non-stationary Power Signal Processing for Pattern Recognition Using HS-transform[J]. Applied Soft Computing, 2009, 9(1): 107-117.
    [120]C.R.Pinnegar, L.Mansiha. Time-local Spectral Analysis for Non-stationary Time Series: The S-transform for Noise Signal[J]. Fluctuation and Noise Letters, 2003, 3(3): 357-364.
    [121]易吉良,彭建春,谭会生.基于改进S变换估计电能质量信号的噪声水平[J].电网技术, 2009, 33(20): 71-75.
    [122]唐良瑞,祁兵,杨雪,等.一种基于高斯滤波器的电能质量信号去噪算法[J].中国电机工程学报, 2006, 26(19): 19-23.
    [123]秦代春,刘强,周林,等.电能质量信号去噪方法研究[J].华东电力, 2009, 37(5): 767-772.
    [124]韩骏,何敬锁,刘菁.基于D-J阈值的加性白噪声方差估计改进方法研究[J].首都师范大学学报(自然科学版), 2007, 28(2): 36-40.
    [125]邢占峰,张凯,吕扬生.改进的小波收缩消噪技术及确定消噪门限的方法[J].电子测量与仪器学报, 2003, 17(3): 37-41.
    [126]唐矩,许中荣,孙才新,等.应用复小波变换抑制GIS局部放电信号中白噪声干扰的研究[J].中国电机工程学报, 2005, 25(16): 30-34.
    [127]张全明,刘会金,兰泉逆.基于小波混合阈值方法的电能质量信号去噪[J].电力系统自动化设备, 2008, 28(8): 28-35.
    [128]Youssef A M, Abdel-Galil T K, El-Saadany E F, et al. Disturbance classification utilizing dynamic time warping classifier[J]. IEEE Transactions on Power Delivery, 2004, 19(1): 272-278.
    [129]Robert G. Stockwell. S-Transform Analysis of Gravity Wave Activity from a Small Scale Network of Airglow Imagers[D]. London : Ph. D. Dissertation, The University of Western Ontario, 1999.
    [130]陈学华,贺振华,黄德济.基于广义S变换的信号提取与抑噪[J].成都理工大学学报(自然科学版), 2006, 33(4): 331-335.
    [131]赵成勇,何明峰.基于特定频带的短时傅里叶分析[J].电力系统自动化, 2004, 28(14): 41-44.
    [132]高静怀,程文超,李幼铭,等.广义S变换与薄互层地震响应[J].地球物理学报, 2003, 46(4): 526-52.
    [133]Sergios Theodoridis, Konstantinos Koutroumbas. Pattern Recognition, Third Edition[M]. Singapore: Elsevier Pte Ltd, 2006.
    [134]易吉良,彭建春.基于广义S变换的电能质量扰动信号分类[J].电网技术, 2009, 33(5): 22-27.
    [135]曾纪勇,丁洪发,段献忠.基于数学形态学的谐波检测与电能质量扰动定位方法[J].中国电机工程学报, 2005, 25(21): 57-62.
    [136]刘昊,唐轶,冯宇,等.基于时域变换特性分析的电能质量扰动分类方法[J].电工技术学报, 2008, 23(11): 159-165.
    [137]冯宇,唐轶,吴夕科.采用电量参数分析方法的电能质量扰动参数估计[J].中国电机工程学报, 2009, 29(16): 100-107.
    [138]祁才君,王小海.基于插值FFT的间谐波参数估计[J].电工技术学报, 2003, 18(1): 92-95.
    [139]陈祥训,刘兵,赵波.分析电能质量扰动的实小波域修正相子法[J].中国电机工程学报, 2006, 26(24): 37-42.
    [140]李玲,金国彬,黄绍平.基于时频平面脊信息提取的电能质量扰动检[J].高电压技术, 2008, 34(4): 772-776.
    [141]刘应梅,白晓民,张红斌,等.基于动态测度的电能质量扰动检测[J].中国电机工程学报, 2003, 23(10): 57-62.
    [142]YongJune Shin, Edward J.Powers, W.Mack Grady, et al. Signal Processing-Based Direction Finder for Transient Capacitor Switching Disturbances[J]. IEEE Trans on Power Delivery, 2008, 23(4): 2555-2562.
    [143]Anthony C.Parsons, W.Mark Grady, Edward J.Powers, et al. A Direction Finder for Power Quality Disturbances Based Upon Disturbance Power and Energy[J]. IEEE Trans on Power Delivery, 2000, 15(3): 1081-1086.
    [144]Jiseong Kim, W.Mack Grady, Ari Arapostathis, et al. A Time-Domain Procedure for Locating Switched Capacitors in Power Distribution Systems[J]. IEEE Trans on Power Delivery, 2002, 17(4): 1044-1049.
    [145]Gary W.Chang, Jupeng Chao, Hunter M.Huang, et al. On Tracking the Source Location of Voltage Sags and Utility Shunt Capacitor Switching Transients[J]. IEEE Trans on Power Delivery, 2008, 23(4): 2124-2131.
    [146]D.Sochuliakova, D.Niebui, D.Richardson, et al. Identification of Capacitor Position in a Radial System[J]. IEEE Trans on Power Delivery, 1999, 14(4): 1368-1373.
    [147]G.W.Chang, M.H.Shih, S.Y.Chu, et al. An Efficient Approach for Tracking Transients Generated by Utility Shunt Capacitor Switching[J]. IEEE Trans on Power Delivery, 2006, 21(1): 510-512.
    [148]孙辉.配电网络电能扰动辨识与电能质量调节研究[D].大连:大连理工大学博士学位论文, 2002.
    [149]徐遐龄,查晓明.电能质量监测评估系统的研究[J].高电压技术, 2008, 34(1): 158-162.
    [150]潘晓杰,刘涤尘,邹江峰.基于DSP的电能质量在线监测装置[J].高电压技术, 2005, 31(2): 73-75.
    [151]粟时平.基于DSP的暂态电能质量小波变换检测方法[J].电力科学与技术学报, 2007, 22(1): 77-81.
    [152]谢志强.基于DSP的电能质量监测仪功能扩展研究[J].电力技术, 2009, (11): 38-41.
    [153]TMS320LF2407A芯片技术手册. Texas Instruments公司, 2004.
    [154]许鹏翔,蒋大林,刘芳亮.基于AD73360电力参数测量的算法实现[J].仪器仪表学报, 2006, 27(6): 20-22.
    [155]刘和平,余银辉,常猛.智能发电设备电参量测量仪的研制[J].重庆大学学报, 2008, 31(10): 1154-1159.
    [156]程佩青.数字信号处理教程[M].北京:清华大学出版社, 2001.
    [157]胡为兵,李开成,方聪.综合电能质量监控系统的研制[J].仪器仪表学报, 2008, 29(8): 1735-1740.
    [158]程志友,梁栋,王年,等.一种快速暂态电能质量扰动定位方法[J].电力系统自动化, 2007, 31(12): 73-76.
    [159]孙即祥.现代模式识别[M].长沙:国防科技大学出版社, 2002.
    [160]S. Santoso, J. Lamoree, W. M. Grady, et al. A Scalable PQ Event Identification System[J]. IEEE Transaction on Power Delivery, 2000, 15(4): 738-743.
    [161]E. Styvaktakis, Math. J. Boolen, Irene Y. H. Gu. Expert System for Classification and Analysis of Power System Events[J]. IEEE Transactions on Power Delivery, 2002, 17(2): 423-428.
    [162]M. B. I. Reaz, F. Choong, M. S. Sulaiman, et al. Expert System for Power Quality Disturbance Classifier[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1979-1988.
    [163]付孝锦,张运陶,朱斌. Matlab与VB无缝集成配平化学反应方程式[J].西华师范大学学报(自然科学版), 2004, 25(3): 263-266.
    [164]孔庆霞,朱全银. Matlab在线实验系统关键技术的研究与实现[J].实验技术与管理, 2009, 26(4): 87-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700