电力谐波和间谐波参数估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大量非线性、冲击性负荷在电力系统中投入使用,给电网带来了严重的谐波污染,现代电网中不仅含有整数次谐波而且还存在非整数次谐波,即间谐波。谐波和间谐波治理的前提是对其参数准确估计,本文主要从傅立叶变换、小波变换、现代谱估计和自适应神经网络等几个方面探讨电力谐波和间谐波的参数估计算法。
     傅立叶变换是最基本的谐波和间谐波分析方法,已被IEC 61000-4-7标准采用。利用傅立叶变换进行谐波分析的缺点是在非同步采样时存在频谱泄露和栅栏效应,频率分辨率与采样数据长度成反比。加窗插值傅立叶变换是抑制频谱泄漏和消除栅栏效应的有效方法,然而现有的加窗插值傅立叶变换方法在分析精度和计算量之间存在着矛盾,例如,Hanning窗插值算法简单,但分析精度低,Blackman-Harris窗插值算法分析精度高,但计算量大。因此,提出3项3阶Nuttall窗和4项5阶Nuttall窗插值傅立叶变换方法及其改进策略,其插值系数求解简单,计算量小,同时谐波分析精度可媲美Blackman窗和Blackman-Harris窗插值傅立叶变换方法。通过消除基波对二次谐波或基波和谐波对其附近间谐波的频谱泄漏,提高了Nuttall窗插值傅立叶变换方法的总体分析精度,而计算量增加不大。
     小波变换克服了傅立叶变换在频域完全局部化而在时域完全无局部性的缺点,可以同时提取信号的时频信息,近年来也被用于谐波分析,但利用小波变换方法分析稳态谐波信号时,频谱混叠比较严重,分析精度不高。提出一种基于递归滤波器的谐波和间谐波分析方法,该方法有效克服了小波变换的频谱混叠现象,能够准确估计谐波和间谐波的频率和幅值,并且递归滤波器的输出值可按采样点来逐点更新,仅由信号的前六个采样值和递归滤波器的前七个输出值决定,计算复杂性与采样频率无关。
     针对傅立叶变换在短数据条件下频率分辨率低的缺点,将现代谱估计方法用于谐波和间谐波的频率估计,提出最优加权Burg算法和基于传播算子的MUSIC算法。最优加权Burg算法能够减小Burg算法的谱峰偏移和消除其谱线分裂。利用传播算子估计噪声子空间时不需要估计自相关矩阵和特征分解,计算复杂度低,并且信号源数的适当过估计将会使基于传播算子的MUSIC算法的频率估计性能媲美MUSIC算法。利用基于多级维纳滤波器的TLS-ESPRIT算法估计正弦信号频率时同样能减小计算量。通过多个仿真算例,从不同角度验证了所提算法具有频率分辨率高的优点,适用于非同步采样、短数据条件下的谐波和间谐波频率估计。
     将Adaline神经元用于谐波和间谐波分析,提出复数域Adaline神经网络谐波分析模型和增强型Adaline神经网络的频率学习率自适应选择方法。复数域Adaline神经网络模型的输入向量和权向量仅为Adaline神经元的一半,简化了网络结构。对各谐波和间谐波的频率学习率根据频率的变化量进行自动调整,能够改善增强型Adaline神经网络的收敛性和分析精度。将LMS牛顿算法、变步长LMS算法、RLS算法等自适应算法应用于Adaline神经网络,能够大大提高Adaline神经网络的收敛速度。仿真算例表明,所提出的Adaline神经网络模型和算法具有分析精度高、收敛速度快的优点。
     最后利用基于传播算子的求根MUSIC和Adaline神经网络相结合的方法对计算机用电、微波炉用电、球磨机电流和杭州某锻造厂电流的实测数据进行分析,验证了所提出谐波和间谐波自适应分析算法的有效性,并得出各自的谐波和间谐波参数及用电特点。
With extensive applications of nonlinear or impact loads in power system, that causes serious harmonics contamitation to the electric network. There are not only integer harmonics but also many non-integer harmonics which are interharmonics in modern electric network. The accurate estimation of harmonics and interharmonics parameters is the premise for their compensation. The paper mainly investigated the parameters estimation algorithm of harmonics and interharmonics in Fourier transform, wavelet transform, modern spectral estimation and Adaline neural network.
     Fourier transform is the most elementary method for the analysis of harmonics and interharmonics, which has been adopted by IEC 61000-4-7 standard. The disadvantage of applying Fourier transform to harmonics analysis is that it exists the spectral leakage and fence effect, its frequency resolution is inversely proportional to the sample data length in asynchronous sampling. The windowed interpolating Fourier transform is the effective method to restrain spectral leakage and eliminate fence effect, however there are conflicts between the measurement precision and the computational burden for the current windowed interpolating Fourier transform methods. For example, Hanning window interpolating algorithm is simple, but its accuracy is low; Blackman-Harris window interpolating algorithm has high precision, but its computational amount is large. Therefore, the interpolating Fourier transform algorithm and its improved strategy based on three-term third derivative and four-term fifth derivative Nuttall window were proposed in this paper. The solution of their interpolating coefficients is simple, while the analytical accuracy of harmonics are comparable to Blackman or Blackman-Harris window interpolating algorithm. The improved method which eliminated the spectral leakage on the second hamonic generated by the fundamental component or the interharmonics near the fundamental component and harmonics promoted the orerall analytical accuracy of the Nuttall interpolating Fourier transform with a small amount of additional computation.
     Wavelet transform which overcomes the faults of Fourier transform complete localization in frequency domain and no localization in time domain and can extract time-frequency information of signal is used to harmonics analysis recently. However, for the stationary harmonic signal, the analytical accuracy of wavelet transform is not high because of its serious spectral aliasing. An analytical method of haromnics and interharmonics based on recursive filter was proposed in this paper. The method which overcomes spectral aliasing of wavelet transform can accurately estimate amplitudes and phases of harmonics and interharmonics. Moreover, the recursive filter output is only decided by six previous sample values and seven previous recursive filter outputs, that computational complexity is independent of the sampling frequency.
     Modern spectral estimation was used to frequency estimation of harmonics and interharmonics to overcome the disadvantage of Fourier transform of low frequency resolution in short sample data. An optimal weighted Burg algorithm and a MUSIC algorithm based on propagator method (PM) were proposed. The optimal weighted Burg algorithm can reduce spectral peak excursion and eliminate spectral line splitting of Burg algorithm. The estimation of noise subspace based on PM doesn't require estimation of covariance and eigenvalue decomposition, and computational load is low. Moreover the appropriate overestimation of signal numbers will make frequency estimation performance of MUSIC based on PM be comparable to MUSIC. The frequency estimation using TLS-ESPRIT based on Multi-stage wiener filter can reduce computational burden too. The multiple simulation examples showed the proposed method had the advantages of high frequency resolution, and was applicable for harmonics and interhamonics frequency estimation of asynchronous sampling and short data length.
     The paper introduced Adaline neuron in the analysis of harmonics and interharmonics, complex Adaline neural network harmonic analysis model and an adaptive selecting method of frequency learning rates on enhanced Adaline neural network were proposed. The complex Adaline neural network model reduced input vectors and weights to half that of Adaline neuron. The frequency learning rates of harmonics and interharmonics were automatic adjustment according to change frequency, that could improve convergence performance and analytical precision of enhanced Adaline neural network. Several adaptive algorithms such as least mean square (LMS) Newton algorithm, variable step size LMS algorithm, recursive least square algorithm were used to Adaline neural network, that could greatly improve the convergence speed. The simulation examples demonstrated that the proposed Adaline neural network and learning algorithm achieved high precision and rapid convergence.
     Finally, the actual sampling data of the electrical comsuptions of computer and microwave oven, the current of ball mill and a forging plant in Hangzhou were analyzed by Root-MUSIC based on PM and Adaptive neural network method. The analysis results further verified the validity of the proposed adaptive analysis algorithm for harmonics and interharmonics, as well as obtained their parameters of harmonics (interharmonics) and electricity comsuption characteristics.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [2]肖湘宁,徐永海.电能质量问题剖析[J].电网技术,2001,25(3):66-69.
    [3]林海雪.现代电能质量的基本问题[J].电网技术,2001,25(10):5-12.
    [4]Dugan R C, Santoso S, McGranaghan M F. Electrical power systems quality[M]. New York:McGraw-Hill, 1996.
    [5]肖湘宁,尹忠东,徐永海.现代电能质量问题综述[J].电气时代,2004,(11):48-52.
    [6]IEEE 1159. IEEE Recommended Practice for Monitoring Electric Power Quality[S].
    [7]林海雪.电力系统中的间谐波问题[J].供用电,2001,18(3):6-9
    [8]Yacamini R. Power system harmonics.part 4 Interharmonics[J]. Power Engineering Journal,1996,10(4): 185-193.
    [9]IEC 61000-2-1. Electromagnetic compatibility (EMC)-Part 2:Environment-Section 1:Description of the environment-Electromagnetic environment for low-frequency conducted disturbances and signaling in public power supply systems[S].1990.
    [10]Gunther E W. Interharmonics in power systems[C]. IEEE Power Engineering Society Summer Meeting. Vancouver, BC, Canada,2001.813-817.
    [11]袁强,范大伟,孙少华.电力系统谐波的产生、危害及防治[J].现代制造技术与装备,2008,(4):85-86.
    [12]Grady W, Santoso S. Understanding power system harmonics[J]. IEEE Power Engineering Review,2001, 21(11):8-11.
    [13]郝江涛,刘念,幸晋渝,等.电力系统间谐波分析[J].电力自动化设备,2004,24(12):36-39.
    [14]马小亮.大功率交-交变频调速及矢量控制技术[M].北京:机械工业出版社,1998.
    [15]杨帆,李晓明,郑秀玉,等.电力系统分数次谐波的产生机理、危害与特征[J].高电压技术,2007,33(12):153-156.
    [16]Yacamini R. Power system harmonics. part 3 Problems caused by distorted supplies[J]. Power Engineering Journal,1995,9(5):233-238.
    [17]张大海,徐文远.间谐波相序特性的研究[J].中国电机工程学报,2005,25(12):29-34.
    [18]肖雁鸿,毛筱,周靖林,等.电力系统谐波测量方法综述[J].电网技术,2002,26(6):61-64.
    [19]Arruda L N, Silva S M, Filho B C. PLL structures for utility connected systems[C]. IEEE Industry Applications Conference, Thirty-Sixth ISA Annual Meeting,2001:2655-2660.
    [20]李根,庞浩,徐健飞,等.一种基于改进锁相环的谐波分析逻辑电路[J].电力系统自动化,2007,31(21):82-85.
    [21]Ferrero A. High accuracy Fourier analysis based on synchronous sampling techniques[J]. IEEE Transactions on Instrument and Measurement,1992,41(6):780-785.
    [22]蒋毅,古天祥.用非均匀采样实现谐波的高精度分析[J].仪器仪表学报,2005,26(12):1290-1292.
    [23]马仁政,陈明凯.减少频谱泄漏的一种自适应采样算法[J].电力系统自动化,2002,26(7):55-58.
    [24]陈隆道,钱照明,张圣训.周期域分析中非同步取样数据的同步化[J].电子学报,2001,29(7):1-4.
    [25]Xi J, Joe F. Chicharo. A new algorithm for improving the accuracy of periodic signal analysis[J]. IEEE Transactions on Instrument and Measurement,1996,45(4):827-830.
    [26]Hidalgo R, Femandez J G, Rivera R R, et al. A simple adjustable window algorithm to improve FFT measurements[J]. IEEE Transactions on Instrument and Measurement,2002,51(1):31-36.
    [27]蔡忠法,陈隆道,周箭.非同步采样的同步化谐波分析算法[J].浙江大学学报(工学版),2008,42(4):682-685.
    [28]Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of the IEEE,1978,61(1):51-83.
    [29]Grandke T. Interpolation algorithms for discrete Fourier transforms of weighted signals[J]. IEEE Transactions on Instrumentation and Measurement,1983,32(2):350-3550.
    [30]祁才君,陈隆道,王小海.应用插值FFT算法精确估计电网谐波参数[J].浙江大学学报(工学版),2003,37(1):112-116.
    [31]周俊,王小海,祁才君.基于Blackman窗函数的插值FFT在电网谐波信号分析中的应用[J].浙江大学学报:理学版,2006,33(6):650-653.
    [32]Zhang F, Geng Z, Yuan W. The algorithm of interpolating windowed FFT for harmonic analysis of electric power system[J]. IEEE Transactions on Power Delivery,2001,16(2):160-164.
    [33]赵文春,马伟明,胡安.电机测试中谐波分析的高精度FFT算法[J].中国电机工程学报,2001,21(12):83-87,92.
    [34]Andria G, Savino M, Trotta A. Windows and interpolation algorithms to improve electrical measurement accuracy[J]. IEEE Transactions on Instrument and Measurement,1989,38(4):856-863.
    [35]Qian H, Zhao R, Chen T. Interharmonics Analysis Based on Interpolating Windowed FFT Algorithm[J]. IEEE Transactions on Power Delivery,2007,22(2):1064-1069.
    [36]曾博,滕召胜,温和,等.莱夫-文森特窗插值FFT谐波分析方法[J].中国电机工程学报,2009,29(10):115-120.
    [37]卿柏元,滕召胜,高云鹏,等.基于Nuttall窗双谱线插值FFT的电力谐波分析方法[J].中国电机工程学报,2008,28(25):153-158.
    [38]温和,滕召胜,王一,等.基于布莱克曼-纳托尔窗的高精度电力谐波智能分析方法[J].中国电机工程学报,2009,29(25):92-97.
    [39]赵黎丽.基于相关Hanning窗插值的间谐波分析算法[J].电工技术学报,2008,23(11):153-158.
    [40]张介秋,梁昌洪,陈砚圃.基于卷积窗的电力系统谐波理论分析与算法[J].中国电机工程学报,2004,24(11):48-52.
    [41]黄纯,江亚群.谐波分析的加窗插值改进算法[J].中国电机工程学报,2005,25(15):26-32.
    [42]Wen H, Teng Z, Guo S. Triangular self-convolution window with desirable sidelobe behaviors for harmonic analysis of power system[J]. IEEE Transactions on Instrumentation and Measurement,2010,59(3): 543-552.
    [43]Xue H, Yang R. Optimal interpolating windowed discrete Fourier transform algorithms for harmonic analysis in power systems[J]. IEE Proceedings-Generation Transmission and Distribution,2003,150(5): 583-587.
    [44]庞浩,李东霞,俎云霄,等.应用FFT进行电力系统谐波分析的改进算法[J].中国电机工程学报,2003,23(6):50-54.
    [45]吴静,赵伟.一种用于分析电网谐波的多谱线插值算法[J].中国电机工程学报,2006,26(8):55-60.
    [46]Offelli C, Petri D. Interpolation techniques for real-time multifrequency waveform analysis[J]. IEEE Transactions on Instrumentation and Measurement,1990,39(1):106-111.
    [47]杨桦,任震.基于小波变换检测谐波的新方法.电力系统自动化[J].1997,21(10):39-42.
    [48]Barros J, Diego R I. A new method for measurement of harmonic groups in power systems using wavelet analysis in the IEC standard framework[J]. Electric Power Systems Research,2006, vol.76:200-208.
    [49]陈宇,段哲民.小波多分辨率算法在电力谐波检测中的应用[J].计算机测量与控制,2008,16(10):1493-1495,1518.
    [50]Barros J, Diego R. Application of the wavelet-packet transform to the estimation of harmonic groups in current and voltage waveforms[J]. IEEE Transactions on Power Delivery,2006,21(1):533-535.
    [51]尹晓琦.小波包变换在电网谐波检测中的应用[J].淮阴师范学院学报(自然科学版),2002,1(3):43-46.
    [52]黄文清,戴瑜兴,全慧敏.基于Daubechies小波的谐波分析算法[J].电工技术学报,2006,21(6):45-48,53.
    [53]薛蕙,杨仁刚,罗红.利用小波包变换实现电力系统谐波分析[J].电网技术,2004,28(5):41-45.
    [54]陈亦文,邱公伟,魏勇.基于小波包分析的时变谐波分析[J].仪器仪表学报,2005,26(5):457-459,491.
    [55]Pham V L, Wong K P. Wavelet-transform-based algorithm for harmonic analysis of power system waveforms [J]. IEE Proceedings Generation Transmission and Distribution,1999,146(3):249-254.
    [56]薛蕙,杨仁刚.利用Morlet连续小波变换实现非整次谐波的检测[J].电网技术,2002,26(12):41-44.
    [57]薛蕙,杨仁刚.基于连续小波变换的非整数次谐波测量方法[J].电力系统自动化,2003,27(5):49-53.
    [58]刘桂英,粟时平.利用小波傅里叶变换的谐波与间谐波检测[J].高电压技术,2007,33(6):184-188.
    [59]赵成勇,何明锋.基于复小波变换相位信息的谐波检测算法[J].中国电机工程学报,2005,25(1):38-42.
    [60]苏鹏声,王欢.短窗MORLET复小波用于电力系统信号处理的探讨[J].电力系统自动化,2004,28(9):36-42.
    [61]武艳华,黄纯,邢耀广,等.基于AR模型的间谐波检测算法的研究[J].继电器,2006,34(2):41-45,52.
    [62]马秉伟,刘会金,周莉,等.一种基于自回归模型的间谐波谱估计的改进算法[J].中国电机工程学报,2005,25(]5):79-83.
    [63]石敏,吴正国,尹为民.基于多信号分类法和普罗尼法的间谐波参数估计[J].电网技术,2005,29(15):81-84.
    [64]丁屹峰,程浩忠,吕干云,等.基于Prony算法的谐波和间谐波频谱估计[J].电工技术学报,2005,20(10):94-97.
    [65]沈睿佼,杨洪耕.基于特征空间求根法的非整数次谐波估计方法[J].中国电机工程学报,2006,26(24):72-76.
    [66]王志群,朱守真,周双喜.基于Pisarenko谐波分解的间谐波估算方法[J].电网技术,2004,28(15):72-77,82.
    [67]Lobos T, Leonowicz Z, Rezmer J, et al. High-resolution spectrum-estimation methods for signal analysis in power systems[J]. IEEE Transactions on Instrumentation and Measurement,2006,55(1):219-225.
    [68]李晶,裴亮,郁道银,等.一种用于电力系统谐波和间谐波分析的超分辨率算法[J].中国电机工程学报,2006,26(15):35-39.
    [69]高培生,谷湘文,吴为麟.基于空间谱和支持向量回归机的间谐波分析[J].电力系统自动化,2007,31(24):67-70.
    [70]张静,徐政,牛卢璐.TLS-ESPRIT在电力系统信号高精度频谱估计中应用[J].电力自动化设备,2009,29(5):48-51.
    [71]Wijayakulasooriya J, Putrus G, Ng C. Fast non-recursive extraction of individual harmonics using artificial neural networks[J]. IEE Proceedings-Generation Transmission and Distribution,2005,152(4):539-587.
    [72]肖雁鸿,毛筱,罗瑞琼,等.神经网络理论在谐波测量中的应用[J].电工技术学报,2002,17(2):101-104.
    [73]汤胜清,程小华.一种基于多层前向神经网络的谐波检测方法[J].中国电机工程学报,2006,26(18):90-94.
    [74]王群,吴宁,王兆安.一种基于人工神经网络的电力谐波测量方法[J].电力系统自动化,1998,22(11):35-39.
    [75]李红,马新瑜.多层前馈神经网络在电力系统谐波测量中的应用[J].电测与仪表,2003,40(446):15-17.
    [76]Dash P K, Swain D P, Liew A C, et al. An adaptive linear combiner for on-line tracking of power system harmonics[J]. IEEE Transactions on Power Systems,1996,11(4):1730-1735.
    [77]柴旭峥,文习山,关根志,等.一种高精度的电力系统谐波分析算法[J].中国电机工程学报,2003,23(9):67-70.
    [78]王公宝,向东阳,马伟明.基于FFT和神经网络的非整数次谐波分析改进算法[J].中国电机工程学报,2008,28(4):102-108.
    [79]王小华,何怡刚.一种新的基于神经网络的高精度电力系统谐波分析算法[J].电网技术,2005,29(3):72-75.
    [80]El-Amin I, Arafah I. Artificial neural networks for power systems harmonic estimation[C]. Proceedings of ICHQP'98, Athens, Greece,1998:999-1009.
    [81]曾喆昭,文卉,王耀南.一种高精度的电力系统谐波智能分析方法[J].中国电机工程学报,2006,26(10):23-27.
    [82]宁薇薇,裴源,刘立彦,等.基于傅立叶基函数神经网络算法的电力系统间谐波分析方法[J].电力系统保护与控制,2008,36(12):12-16.
    [83]Cooley J W, Turkey J W. An algorithm for the machine computation of complex Fourier series[J]. Mathematics of Computation,1965, (19):297-301.
    [84]IEC 61000-4-7. Second edition. Electromagnetic compatibility(EMC)-Part 4-7. Testing and measurement techniques-General guide on harmonic and interharmonic measurements and instrumentation, for power supply systems and equipment connected thereto[S].2002.
    [85]祁才君.数字信号处理技术中的算法分析与应用[M].北京:机械工业出版社,2005.
    [86]Oppenheim A V, Schafer R W, Buck J R.刘树棠,黄建国译.离散时间信号处理[M].第2版.西安:西安交通大学出版社,2001.
    [87]Nuttall A H. Some windows with very good sidelobe behavior[J]. IEEE Transaction on Acoustics, Speech, and Signal Processing,1981, ASSP-29(1):84-91.
    [88]Daubecies I. Where do wavelets come from? A personal point of view[J]. Proceedings of IEEE,1996,84(4): 510-513.
    [89]Gaouda A M, Salama M M A, Sultam M R, et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J]. IEEE Transactions on Power Dilivery,1999,14(4): 1469-1476.
    [90]陈国志,陈隆道,蔡忠法.近似线性相位复小波的电能质量扰动监测[J].电力系统及其自动化学报,2009,21(2):53-56.
    [91]邰能灵,侯志俭,李涛,等.基于小波分析的电力系统短期负荷预测方法[J].中国电机工程学报,2003,23(1):45-50.
    [92]向峥嵘,王学平.基于小波-神经网络的电力系统短期负荷预测[J].系统仿真学报,2008,20(18):5018-5020.
    [93]Barros J, Diego R. Analysis of harmonics in power systems using the wavelet-packet transform[J]. IEEE Transactions on Instrument and Measurement,2008,57(1):63-69.
    [94]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999.
    [95]周林,夏雪,万蕴杰,等.基于小波变换的谐波测量方法综述[J].电工技术学报,2006,21(9):67-74.
    [96]Hamid E Y, Kawasaki Z I, Mardiana R. Wavelet packet transform for RMS and power measurements[C]. IEEE Power Engineering Society and Summer Meeting,2001,2:1243-1245.
    [97]Lin T, Domijan A. On power quality indices and real time measurement J]. IEEE Transaction on Power Delivery,2005,20(4):2552-2562.
    [98]Lin T, Domijan A. Recursive algorithm for real-tine measurement of electrical variables in power systems[J]. IEEE Transaction on Power Delivery,2006,21(1):15-22.
    [99]Delao J, Altuve H, Diaz I. A new digital filter for phasor computation part I:theory [J]. IEEE Transaction on Power Systems,1998,13(3):1026-1031.
    [100]祁才军,王小海.基于插值FFT算法的间谐波参数估计[J].电工技术学报,2003,18(1):92-95.
    [101]李涛,成曙,唐茜,等.基于非高斯AR模型双谱估计的发动机气门机构故障诊断[J].内燃机工程,2010,31(1):82-87.
    [102]崔博文,任章.基于谱估计的三相逆变器故障诊断[J].电工技术学报,2009,24(11):192-198.
    [103]孙长印,保铮,张林让.一种快速有效的雷达成像超分辨算法[J].西安电子科技大学学报,1999,26(6):737-742.
    [104]张翼,柯亨玉,程丰,等.基于MUSIC算法高频地波雷达的角分辨率[J].电波科学学报,2003,18(3):264-269.
    [105]Rubsamen M, Gershman A B. Direction-of-arrival estimation for nonuniform sensor arrays:from manifold separation to Fourier domain MUSIC methods[J]. IEEE Transactions on Signal Processing,2009, 57(2):588-599.
    [106]高星辉,张承云,常鸿森.改进MUSIC算法对信号DOA的估计[J].系统仿真学报,2005,17(1):223-225.
    [107]Lobos T, Rezmer J. Real-Time determination of power system frequency[J]. IEEE Transactions on Instrumentation and Measurement,1997,46(4):877-881.
    [108]Leonowicz Z, Lobos T, Rezmer J. Advanced spectrum estimation methods for signal analysis in power electronics[J]. IEEE Transactions on Industrial Electronics,2003,50(3):514-519.
    [109]Nam S R, Kang S H, Park J K. An analytic method for measuring accurate fundamental frequency components[J]. IEEE Transactions on Power Delivery.2002,17(2):405-411.
    [1]0]张贤达.现代信号处理[M].第2版.北京:清华大学出版社,2002.
    [111]Swingler D N. A modified Burg algorithm for maximum entropy spectral analysis[J]. Proceedings of the IEEE,1979,67(9):1368-1369.
    [112]Kaveh M, Lippert G A. An optimum tapered Burg algorithm for linear prediction and spectral analysis[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1983, ASSP-31(2):438-444.
    [113]Campbell W, Swingler D N. Frequency estimation performance of several weighted Burg algorithms[J]. IEEE Transactions on Signal Processing,1993,41(3):1237-1247.
    [114]Ibrahim M K. Improvement in the speed of the data-adaptive weighted Burg technique[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1987, ASSP-35(10):1474-1476.
    [115]Shcmidt R O. Multiple emitter location and signal parameter estimation [J]. IEEE Transactions on Antennas and Propagation,1986,34(3):276-280.
    [116]Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(7):984-995.
    [117]程云鹏,张凯院,徐仲.矩阵论[M].西安:西北工业大学出版社,2001.
    [118]Pisarenko V F. The retrieval of harmonics from a covariance function[J]. Geophysical Journal of the Royal Astronomical Society,1973,33(3):347-366.
    [119]Barabell A J. Improving the resolution performance of eigenstructure-based direction-finding algorithms[C]//Proceedings of IEEE ICASSP'83, Boston, MA,1983:336-339.
    [120]Rao B D, Hari K V S. Performance analysis of root-music[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(12):1939-1949.
    [121]Akaike H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974,19(6):716-722.
    [122]Wax M, Kailath T. Detection of signals by information theoretic criteria[J]. IEEE Transaction on Acoustics, Speech, and Signal Processing,1985, ASSP-33(2):387-392.
    [123]Wu H T, Yang J F, Chen F K. Source number estimators using transformed gerschgorin radii[J]. IEEE Transaction on Signal Processing,1995,43(6):1325-1333.
    [124]Marcos S, Marsal A, Benidir M. The propagator method for source bearing estimation[J]. Signal Processing,1995,42(2):121-138.
    [125]周争光,廖桂生,王洪洋,等.基于PM的波达方向、频率的快速估计方法[J].电波科学学报,2006,21(3):428-431.
    [126]Qasaymeh M M, Gami H, Tayem N, et al. Joint time delay and frequency estimation without Eigen-decomposition[J]. IEEE Signal Processing Letters,2009,16(5):422-425.
    [127]Roy R, Paulraj A, Kailath T. ESPRIT-a subspace rotation approach to estimation of parameters of cisoids in noise[J]. IEEE Transaction on Acoustics, Speech, Signal Processing,1986,34(5):1340-1342.
    [128]黄磊,吴顺君,张林让,等.快速子空间分解方法及其维数的快速估计[J].电子学报,2005,33(6):977-981.
    [129]黄磊,吴顺君,张林让.基于多级维纳滤波器的信号子空间拟合方法[J].电子与信息学报,2005,27(8):1197-1200.
    [130]Goldstein J S, Reed I S, Scharf L L. A multistage representation of the Wiener filter based on orthogonal projections[J]. IEEE Transactions on Information Theory,1998,44(7):2943-2959.
    [131]Huang L, Wu S, Li X. Reduced-rank MDL method for source enumeration in high-resolution array processing[J]. IEEE Transactions on Signal Processing,2007,55(22):5658-5667.
    [132]Huang L, Wu S. Low-complexity MDL method for accurate source enumeration[J]. IEEE Signal Processing Letters,2007,14(9):581-584.
    [133]程浩忠,艾芊,张志刚,等.电能质量[M].北京:清华大学出版社,2006.
    [134]Widrow B, Lehr M A.30 years of adaptive neural networks:perceptron, madaline, and backpropagation[J]. Proceedings of the IEEE,1990,78(9):1415-1442.
    [135]Cirrincione M, Pucci M, Vitale G, et al. Current harmonic compensation by a single-phase shunt active power filter controlled by Adaptive neural filtering[J]. IEEE Transactions on Industrial Electronics,2009, 56(8):3128-3143.
    [136]Wang Q, Wu N, Wang Z. A neuron adaptive detecting approach of harmonic current for APF and its realization of analog circuit[J]. IEEE Transactions on Instrumentation and Measurement,2001,50(1): 77-84.
    [137]章兢,于晶荣.基于ADALINE的有源电力滤波器预测电流控制策略[J].电工技术学报,2009,24(6):77-84.
    [138]Abdel-Galil T K, El-Saadany E F, Salama M M A. Power quality event detection using Adaline[J]. Electric Power Systems Research,2003(64):137-144.
    [139]Ai Q, Zhou Y, Xu W. Adaline and its application in power quality disturbances detection and frequency tracking[J]. Electric Power Systems Research,2007(77):462-469.
    [140]Chang G W, Chen C, Liang Q. A two-stage ADALINE for harmonics and interharmonics measurement[J]. IEEE Transactions on Industrial Electronics,2009,56(6):2220-2228.
    [141]蔡忠法,陈隆道.基于AR谱估计和Adaline神经元的间谐波分析[J].电力系统自动化,2007,31(17):78-82.
    [142]蔡忠法,周箭,陈隆道.增强型ADALINE神经网络谐波分析方法研究[J].浙江大学学报(工学版),2009,31(1):166-171.
    [143]危韧勇,李智勇.基于人工神经元网络的电力系统谐波测量方法[J].电网技术,1999,23(12):20-23.
    [144]何振亚.自适应信号处理[M].北京:科学出版社,2002.
    [145]Gelfand S B, Wei Y, Krogmeier J V. The stability of variable step-size LMS algorithms[J]. IEEE Transactions on Signal Processing,1999,47(12):3277-3288.
    [146]Aboulnasr T, Mayyas K. A robust variable step-size LMS-type algorithm:Analysis and simulationsfJ]. IEEE Transactions on Signal Processing,1997,45(3):631-639.
    [147]Kwong R H, Johnston E W. A variable step size LMS algorithm[J]. IEEE Transactions on Signal Processing,1992,40(7):1633-1642.
    [148]覃景繁,欧阳景正.一种新的变步长LMS自适应滤波算法[J].数据采集与处理,1997,12(3):171-174.
    [149]罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报,2006,34(6):1123-1126.
    [150]李辉,吴正国,邹云屏,等.变步长自适应算法在有源滤波器谐波检测中的应用[J].中国电机工程学报,2006,26(9):99-103.
    [151]曲轶龙,谭伟璞,马垚,等.一种模糊变步长自适应谐波检测算法[J].电力系统自动化,2008,32(23):71-75.
    [152]杨波,冯久超.一种改进的自适应滤波算法及其在回波消除中的应用[J].电子与信息学报,2008,30(1):121-124.
    [153]董航,孙洪.变速率更新自适应算法在回声抵消中的应用[J].自动化学报,2008,34(9):1184-1187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700