影响直角坐标激光直写曝光质量的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光直写技术无需掩模、加工灵活,可制作出边缘平滑的复杂特征结构,是制作衍射微结构光学元件的重要技术手段之一。随着科学技术的发展,对微结构光学元件的大口径和精细化的需求日益迫切,这就要求更高的激光直写精度。曝光是激光直写技术的重要工序,对加工精度起着决定性的作用,但目前还存在三个与此工序相关且不够完善需要解决的问题:曝光模型不够准确、邻近效应校正方法不够完善和定位精度不高,这些因素不利于激光直写技术的实验研究和加工质量的提高。
     课题“影响直角坐标激光直写曝光质量的若干关键技术研究”的目的是对影响直角坐标激光直写曝光质量的上述三个关键问题进行研究,在深入分析直写曝光过程的基础上,建立与实际工况相符的直角坐标激光直写动态曝光模型,完善邻近效应校正方法,以及探讨降低宏微系统定位噪声的方法,为高加工精度的激光直写机的研制提供理论依据和技术基础。本课题的研究可为大口径、复杂结构衍射微光学元件的加工提供可靠的模型和技术。
     本文为了更加精确地预测直角坐标激光直写获得的光刻线条质量,建立了一种兼顾胶层的光吸收特性、直写光束的高斯分布特征以及直写光束与胶层的相对运动的直角坐标激光直写动态曝光模型,据此模型分析了直写速度和直写光功率的变化对光刻胶内线条线宽和侧壁角的影响,从而可以创建满足线条质量要求的直写系统的加工工艺窗,为开展激光直写光刻实验提供了理论指导。
     为了有效校正激光直写中的邻近效应,提出了声光调制器低分辨力时邻近效应的校正方法,该方法基于误差校正迭代方法,先以虚拟的高分辨力声光调制器对直写图案进行校正,再对各误差区域重心的最邻近光点的曝光量数据进行调制寻优,可有效克服误差校正迭代方法不能以低分辨力声光调制器校正直写图案以及寻优不彻底的缺点。
     为了合理选择耦合阻尼抑制宏微系统中的定位噪声,基于并行双伺服控制策略建立了包含耦合阻尼的宏微系统控制模型,研究分析了耦合阻尼的作用规律,从而揭示了耦合阻尼对噪声传递和宏、微工作台动态特性等的影响,为宏微系统采用耦合阻尼方式改善定位稳定性、达到纳米级的定位噪声提供了一定的理论指导。
     最后对课题所研究的若干关键技术进行了实验验证。首先,对所提出的声光调制器低分辨力时邻近效应的校正方法进行了实验验证。实验表明:以“L”直写图案为例,相比在声光调制器低分辨力情况下无法对直写图案优化校正的误差校正迭代方法,用本文所提方法能对直写图案进行优化校正,并使图案误差相对于原始误差减小了70.88%。然后,研制了宏微系统的耦合阻尼器,完成了宏微系统的搭建、调试和性能测试,并就宏微系统控制模型的有效性和耦合阻尼的作用效果进行了实验验证。实验表明:在控制参数不变的条件下,实验结果与所推导的宏微系统中的耦合阻尼特性一致,且增加阻尼系数为293.78N/(m/s)的耦合阻尼器后,本文所研制的宏微系统的定位噪声由80nm(峰峰值)降为60nm(峰峰值)。
Laser direct writing (LDW) is one of the important technologies used to fabricate diffractive micro-optical elements for its flexibility, simplicity and ability to make complex feature structure with smooth edge. With the development of science and technology, the urgent requirements for large aperture and refinement of micro-optical elements make the writing accuracy of LDW get more and more strict. Exposure is one of the most important working procedures, which plays a decisive role in the processing accuracy. However, there still exist three shortcomings relevant to exposure process such as low accurate exposure model, inadequate perfection of optical proximity correction method and poor positioning precision, which block the experimental research and processing quality improvement of LDW.
     The subject“Study of Key Techniques Impacting on Exposure Quality of Laser Direct Writing in Cartesian Coordinate”is to do research on the key techniques relevant to exposure quality, and focused on building the dynamic exposure model of actual condition, improving the optical proximity correction method, and discussing the method of reducing the positioning noise of coarse-fine driving table, which provides a powerful theoretical and technical basis for high precision LDW. The research of this subject also provides reliable models and techniques for making large aperture and complex structure diffractive micro-optical elements.
     In order to predict the laser direct writing quality in Cartesian coordinate, a new dynamic exposure model is established by taking into consideration the effect of the photoresist absorbing beam energy, the Gaussian attribute of the writing beam and the relative movement between writing beam and photoresist, to describe the influence of a change in writing velocity and writing power on the line width and sidewall angle in the photoresist, so that critical dimension process window can be obtained to provide a theoretical basis for LDW experiment.
     Correction method with low resolution acoustooptic modulator is proposed to efficiently correct the optical proximity effect in laser direct writing. Firstly, based on Iterative Error-Correction Method (IECM) proposed by Rajesh Menon, one virtual high resolution acoustooptic modulator is used to correct the direct writing pattern, then the exposure data of spots nearest to each error area barycenter are modulated, and the above steps help IECM correct the optical proximity with low resolution acoustooptic modulator and make a thorough optimization.
     In order to reasonably choose coupling damp to suppress the positioning noise of coarse-fine stage, model of dual stage with coupling damp is established based on parallel dual servo control and used to study the effect law of coupling damp, which reveals the effect of coupling damp on noise transmission and dynamic characteristic of each stage, and provides theoretical basement for the improvement of positioning stability and the accomplishment of nano-precision positioning with damp.
     In the last section of the paper, several key techniques in this subject have been studied through experiments. Firstly, the optical proximity correction method with low resolution acoustooptic modulator has been carried out through experimental study. Experimental results indicate that, taking“L”design pattern as example, compared with IECM unable to correct the direct writing pattern with low resolution acoustooptic modulator, the proposed method in this subject can correct the direct writing pattern, which decreases pattern error value by 70.88% relative to the initial error value. Then, the coarse-fine stage with damping oil damper has been developed, and the validity of coarse-fine system model and the action effect of coupling damp has been tested through experiments. Experimental results indicate that, based on the developed system and the same control parameters, the experimental coupling damp characteristics agree with the theoretical results, and the coupling damper with damping coefficient 293.78 N/(m/s) suppresses the positioning noise of coarse-fine driving control system from 80nm(pk-pk) to 60nm(pk-pk).
引文
1 H. P.赫尔齐克.微光学元件、系统和应用.国防工业出版社. 2002: 107~147
    2金国藩,严瑛白,邬敏贤,等.二元光学.北京:国防工业出版社. 1998: 1~16
    3 O. Cakmakci, J. Rolland. Comparative Analysis of Doublets versus Single-layer Diffractive Optical Elements in Eyepiece or Magnifier Design. Appl. Opt. 2007, 46(33): 8140~8148
    4王希军,周海宪.机载微光夜视仪折衍混合物镜的设计研究.电光与控制. 2002, 9(3): 34~36
    5 Z. S. Yun, Y. L. Lam, Y. Zhou, et al. Eyepiece Design with Refractive-diffractive Hybrid Elements. SPIE. 2000, 4093: 474~480
    6 F. Furer, M. Schmitz, O. Bryngdahl. Diffraction Efficiency Improvement of Diffractive Cylinder Lenses by Gaussian-beam Illumination. Opt. Express. 1997, 1(8): 234~239
    7 D. Feng, Y. B. Yan, S. Lu, et al. Design of Diffractive Optical Element Used for Beam Shaping in the Fresnel Domain. Semiconductor Photonics and Technology. 2003, 9(2): 107~111
    8 V. Yurlov, A. Lapchuk, S. Yun, et al. Speckle Suppression in Scanning Laser Display. Appl. Opt. 2008, 47(2): 179~187
    9 R. De Saint Denis, N. Passilly, et al. Beam-shaping Longitudinal Range of a Binary Diffractive Optical Element. Appl. Opt. 2006, 45(31): 8136~8141
    10 J. S. Liu, A. J. Caley, M. R. Taghizadeh. Diffractive Optical Elements for Beam Shaping of Monochromatic Spatially Incoherent Light. Appl. Opt. 2006, 45(33): 8440~8447
    11 Rong Wu, Fang-jie Shu, Wei Zhang, et al. Extended Algorithm for the Design of Diffractive Optical Elements around the Focal Plane. Appl. Opt. 2007, 46(23): 5779~5783
    12 B. G. Hoover, V. L. Gamiz. Diffractive Bidirectional Reflectance Distributions of Surfaces with Large Effective Roughness in One Dimension. SPIE. 2004, 5575: 37~142
    13 T. A. Berkoff, D. N. Whiteman, R. D. Rallison, et al. Remote Detection ofRaman Scattering by Use of a Holographic Optical Element as a Dispersive Telescope. Opt. Lett. 2000, 25(16): 1201~1203
    14 J. C. Marron, K. S. Schroeder. Holographic Laser Radar. Opt. Lett. 1993, 18(5): 385~387
    15 G. K. Schwemmer, R. D. Rallison, T. D. Wilkerson, et al. Holographic Optical Elements as Scanning Lidar Telescopes. Lasers and Optics in Engineering. 2006, 44(9): 881~902
    16 Chandra Shakher, Shashi Prakash, Daya Nand, et al. Collimation Testing with Circular Gratings. Appl. Opt. 2001, 40(8): 1175~1179
    17 Michael H. Ayliffe, Marc Chateauneuf, Davie R. Rolston, et al. Six-degrees-of-freedom Alignment of Two-dimensional Array Components by Use of Off-axis Linear Fresnel Zone Plates. Appl. Opt. 2001, 40(35): 6515~6526
    18 M. C. Hutley, R. F. Stevens. Use of Diffracting Optics in Metrology and Sensing. SPIE. 1997, 3099: 6~12
    19 J. G. Smith, L. Ramos-Izquierdo, A. Stockham, et. al. Diffractive Optics for Moon Topography Mapping. SPIE. 2006, 6223: 622304
    20 X. G. Tang, F. H. Gao, F. Gao, et al. Analysis of Near-field of Diffractive Gratings Used in Inertial Confinement Fusion Driver. SPIE. 2005, 5635: 325~332
    21 X. D. Xu, Y. L. Hong, S. J. Fu. VUV and Soft X-ray Diffraction Gratings Fabrication by Holographic Ion Beam Etching. SPIE. 2005, 5636(1): 165~175
    22舒方杰. ICF中的衍射光学元件及均匀照明系统的设计和实验分析.中国科学技术大学. 2007, 5: 1~10
    23薛晓春,王雪华.隐身与反隐身技术的发展研究.现代防御技术. 2004, 32(2): 60~65
    24袁俊. F-22“猛禽”制空主力战斗机.航空科学技术. 2005,(5): 18~20
    25 A. Britten, S. M. Herman, et al. Manufacture, Optical Performance and Laser Damage Characteristics of Diffractive Optics for the National Ignition Facility. SPIE. 1999, 3578: 337~346
    26 John A. Marozas. Fourier Transform-based Continuous Phase-plate Design Technique: a High-pass Phase-plate Design as an Application for OMEGA and the National Ignition Facility. J. Opt. Soc. Am. A. 2007, 24(1): 74~83
    27唐雄贵.厚胶光学光刻技术研究.四川大学. 2006, 4: 23~30
    28 M. T. Gale, K. Knop. The Fabrication of Fine Lens Arrays by Laser BeamWriting. SPIE. 1983, 398: 347~353
    29 C. Rensch, S. Hell, M. v. Schickfus, et al. Laser Scanner for Direct Writing Lithography. Appl. Opt. 1989, 28(17): 3754~3758
    30 William Goltsos and Sharlene Liu. Polar Coordinate Laser Writer for Binary Optics Fabrication. Proc.SPIE. 1990, 1211: 137~147
    31 J. H. Burge, D. S. Anderson, T. D. Milster, et al. Measurement of a Convex Secondary Mirror Using a Holographic Test Plate. Proc. SPIE. 1994, 2199: 193~198
    32 H. I. Smith. A Proposal for Maskless Zone-plate-array Nanolithography. J. Vac. Sci. Technol. B. 1996, 14(6): 4318~4322
    33 D. Gil, R. Menon, D. J. D. Carter, et al. Lithographic Patterning and Confocal Imaging with Zone Plates. J. Vac. Sci. Technol. B. 2000, 18(6): 2881~2885
    34 D. Gil, R. Menon, H. I. Smith. Fabrication of High-numerical-aperture Phase Zone Plates with a Single Lithography Exposure and No Etching. J. Vac. Sci. Technol. B. 2003, 21(6): 2956~2960
    35 D. Gil, R. Menon, D. J. D. Carter, et al. The Promise of Diffractive Optics in Maskless Lithography. Microelec. Eng. 2004, 73(6): 35~41
    36 www.lumarray.com
    37 A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, et al. Polar Coordinate Laser Pattern Generator for Fabrication of Diffractive Optical Elements with Arbitrary Structure. Appl. Opt. 1999, 38(8):1295~1301
    38 A. Poleshchuk, J. Burge. Polar Coordinate Writing Systems: Error Analysis of Fabricated DOEs. SPIE. 2001, 4440: 161~172
    39 http://www.himt.de/en/products/dwl2000.php
    40杜春雷,林大键,冯伯儒,等.激光直接光刻制作微透镜阵列的方法研究.光学学报. 1996, 16(8): 1194~1196
    41侯德胜,杜春雷,邱传凯,等. ISI-2802激光直写系统及其应用.光电工程. 1997, 24: 26~30
    42梁宜勇.可变线宽的无掩膜光刻理论与技术研究.杭州:浙江大学. 2005: 30, 97~98
    43米凤文,戴旭涵,沈亦兵,等.精密工作台定位控制系统的设计与研究.光学仪器. 1998, 20(5): 18~22
    44李凤有.激光直写光刻技术研究.长春光学精密机械与物理研究所. 2002, 5, 18~25
    45魏国军,邵洁,周小红.用于二元光学器件制作的激光直写系统.光电子·激光. 2006, 17(10): 1212~1215
    46颜树华,戴一帆,吕海宝,等.灰度掩模并行激光直写系统的总体设计.光电子·激光. 2002, 13(6): 559~562
    47 Yang Guoguang, Sheng Yibing. Research on Laser Direct Writing System and Its Lithography Properties. Proc. SPIE. 1998, 3550: 409~418
    48 JoséRamón Salgueiro, Vicente Moreno, Jesús Li?ares. Model of Linewidth for Laser Writing on a Photoresist. Appl. Opt. 2002, 41(5): 895~901
    49李凤有,谢永军,孙强,等.激光直写光刻中线条轮廓的分析.光子学报. 2004, 33(12): 136~139
    50 F. H. Dill, W. P. Hornberger, P. S. Hauge, et al. Characterization of Positive Photoresist. IEEE Trans. Electron Devices. 1975, ED-22(7): 445~452
    51 Chris A. Mack. 30 Years of Lithography Simulation. Proc. SPIE. 2004, 5754(1): 1~12
    52 M. Ekberg, F. Nikolajeff, M. Larsson, et al. Proximity Compensated Blazed Transmission Grating Manufacture with Direct Writing, Electron Beam Lithography. Appl. Opt. 1994, 33(1): 103~107
    53 T. Hessler, Markus Rossi, Rino E. Kunz, et al. Analysis and Optimization of Fabrication of Continuous-relief Diffractive Optical Elements. Appl. Opt. 1998, 37(19): 4069~4079
    54 Victor P. Korolkov, Ruslan K. Nasyrov, Ruslan V. Shimansky. Zone Boundary Optimization for Direct Laser Writing of Continuous Relief Diffractive Optical Elements. Appl. Opt. 2006, 45(1): 53~62
    55 Rajesh Menon, Ami Patel, Dario Gil, et al. Maskless Lithography. Materials Today. 2005, 8(2): 26~33
    56 P. C. Allen. Laser Scanning for Semiconductor Mask Pattern Generation. Proc IEEE. 2002, 90(10): 1653~1669
    57孙艳军,陈宇,曹子维,等.二元光学器件光刻掩模的设计与制作.长春理工大学学报. 2007, 30(4): 40~43
    58 Jiubin Tan, Mingguang Shan, Chenguang Zhao, et al. Design and Fabrication of Diffractive Microlens Arrays with Continuous Relief for Parallel Laser Direct Writing. Applied Optics. 2008, 47(10): 1430~1433
    59杜惊雷,郭永康,黄奇忠,等.校正激光直写邻近效应的快速方法.光电工程. 1998, 25(6): 51~54
    60李凤友,李红军,卢振武,等.激光直写系统焦斑整形的研究.光学精密工程. 2001, 9(1): 14~18
    61杜惊雷,黄奇忠,姚军,等.激光直写邻近效应的校正.光学学报. 1999, 19(7): 953~957
    62 Yongkang Guo, Jinglei Du, Qizhong Huang. Optical Proximity Correction for Submicrometer Lithography by Laser Direct Writing. SPIE. 1999, 3679: 686~680
    63 R. Menon. Diffractive Optics for Maskless Lithography and Imaging. PhD dissertation, Massachusetts Institute of Technology, Cambridge. 2003: 145~173
    64马建霞,吴纬国,张庆中,等.浅谈光刻胶在集成电路制造中的应用性能.半导体技术. 2005, 30(6): 32~36
    65 www-eng.llnl.gov/lodtm/about_pg2.html
    66 Junhong Mao, Hiroyuki Tachikawa, Akira Shimokohbe. Precision Positioning of a DC-motor-driven Aerostatic Slide System. Precision Eng. 2003, 27(1): 32~41
    67 Kihyun Kim, Young-Man Choi, Dae-Gab Gweon, et al. Control of High Precision Decoupled Dual-stage with Reaction Force Compensator. Proceedings of the 37th International Symposium on Robotics. 2006, 5: 315
    68 Young-Man Choi, Jung Jae Kim, Jinwoo Kim, et al. Design and Control of a Nanoprecision XYΘScanner. American Institute of Physics. 2008, 045109: 1~7
    69 www.pi.ws
    70 TAL J. Servomotors Take Piezoceramic Transducers for a Ride. Machine Design. 1999, 9: 1~3
    71 H. J. Pahk, D. S. Lee, J. H. Park. Ultra Precision Positioning System for Servo Motor-piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation. International Journal of Machine Tools & Manufacture. 2001, 41: 51~63
    72 A. T. Elfizy, G. M. Bone, M. A. Elbestawi. Design and Control of a Dual-stage Feed Drive. International Journal of Machine Tools and Manufacture. 2005, 45: 153~165
    73王立松,苏宝库,董申,等.大行程高精度两级定位工作台的控制方法研究.机械设计与制造. 2001, (4): 71~72
    74节德刚.宏/微驱动高速高精度定位系统的研究.哈尔滨工业大学. 2006,12: 21~51
    75刘红忠,卢秉恒,丁玉成,等.超高精度定位系统及线性补偿研究.西安交通大学学报. 2003, 37(3): 277~281
    76李鸣鸣.大行程纳米定位系统若干关键技术研究.上海大学. 2007: 15~29
    77米凤文,戴旭涵,沈亦兵. 0.1μm大行程精密定位控制系统的研究.仪器仪表学报. 1998, 21(1): 89~94
    78 J. S. Chen, I. C. Dwang. A Ballscrew Drive Mechanism with Piezo-Electric Nut for Preload and Motion Control. International Journal of Machine Tools and Manufacture. 2000, 40: 513~526
    79 Boudewijn Sluijk, Tom Castenmiller, Richard du Croo de Jongh, et al. Per-formance Results of a New Generation of 300mm Lithography Systems. SPIE. 2001, 4346: 544~557
    80 http://www.asml.com/asml/show.do?ctx=6720&rid=36951
    81 H. Shinno, H. Hashizume. High Speed Nanometer Positioning Using a Hybrid Linear Motor. Annals of the CIRP. 2001, 50(1): 243~246
    82 http://www.fabtech.org/product_briefings/
    83 http://www.canon.com/technology/canon_tech/category/step.html
    84宋亦旭,王健发,杨开明,等.高速高精度叠层直线运动控制系统.机械工程学报. 2006, 42(4): 196~200
    85 Li Hong, Zhou Yunfei, Shi Yangchun. Motion Control for Wafer Stage of 0.1μm Lithography. Proceedings of the 2007 IEEE International Conference on Integration Technology. 2007: 338~342
    86赵惠英,蒋庄德,田世杰.纳米级大尺度超精密线位移测量方法的研究.计量学报. 2004, 25(3): 215~218
    87 Hiroaki Furuichi, Ronald S. Fearing. A Planar Capacitive Micro Positioning Sensor. IEEE Proc. of the 7th International Symposium on Micro Machine and Human Science, 1996: 85~90
    88 M. H. Bonse, F. Zhu, H. Van Beek. Long-range Capacitive Displacement Sensor Having Micrometre Resolution. Measurement Science & Technology. 1993, 4(8): 801~807
    89 http://www.lambdaphoto.co.uk/pdfs/zmi4004_ds.pdf
    90朱涛.极紫外光刻机工件台精密机械及控制相关技术.中国科学院电工研究所. 2006, 4: 40~56
    91 T. Hirano, L. S. Fan, W. Y. Lee, et al. High-bandwidth High-accuracy Rotary Micro-actuators for Magnetic Hard Disk Drive Tracking Servos. IEEE/ASME Trans. Mechatron. 1998, 3: 156~165
    92 K. Mori, T. Munemoto, H. Otsuki, et al. A Dual-stage Magnetic Disk Drive Actuator Using a Piezoelectric Device for a High Track Density. IEEE Trans. Magnetics. 1991, 27: 5298~5300
    93 T. Semba, T. Hirano, J. Hong, et al. Dual-stage Servo Controller for HDD Using MEMS Microactuator. IEEE Transactions on Magnetics. 1999, 35(5): 2271~2273
    94 S. J. Schroceck, W. C. Messner. On Compensator Design for Linear Time-invariant Dual-input Single-output Systems. IEEE/ASME Transactions on Mechatronics. 2001, 6(1): 50~57
    95 X. Hu, W. Guo, T. Huang, et al. Discrete-time LQG/LTR Dual Stage Controller Design and Implementation for High Tracking Density HDDs. Proceedings of the American Control Conference, San Diego, CA, USA. 1999, 6: 4111~4115
    96 M. Rotunno, R. A. Callafon. Fixed Order H∞Control Design for Dual-stage Hard Disk Drives. In Proceedings of the 39th IEEE Conference on Decision and Control. Sidney, Australia. 2000, 4: 3118~3119
    97 D. Harnandez, S. S. Park, R. Horowitz, et al. Dual-stage Tracking-following Servo Design for Hard Disk Drive. Proceedings of the American Control Conference, San Diego, CA, USA. 1999: 4116~4121
    98 Y. Michellod, P. Mullhaupt, D. Gillet. Strategy for the Control of a Dual-stage Nano-positioning System with a Single Metrology. In 2006 IEEE International Conference on Robotics, Automation & Mechatronics (RAM). 2006, 12: 1~8
    99刘彦,谭久彬,王雷.差动电磁作动器的超大型光学仪器隔振基础主动控制机理.光学精密工程. 2007, 15(10): 1602~1608
    100刘俊标,薛虹,顾文琪.微纳加工中的精密工件台技术.北京:北京工业大学出版社. 2004: 92~108
    101张鸣,朱煜,段广洪.超精密气浮工件台的微振动及其抑制.设计与研究. 2005, (11): 47~49
    102叶佩青,杨开明,尹文生.基于振动模型的精密工作台运动控制.清华大学学报. 2006, 46(2): 206~209
    103陈学东,鲍秀兰,何学明.纳米级超精密气浮工件台振动特性分析.华中科技大学学报. 2007, 35(11): 5~8
    104王贵林,李圣怡,粟时平.基于超精密应用的高刚度高阻尼空气静压导轨研究.航空精密制造技术. 2001, 37(6): 1~5
    105杨开明,叶佩青,游华云,等.直线电机精密工作台扰动观测器设计.机械科学与技术. 2005, 24(12): 1430~1432
    106贾松涛,朱煜,杨开明,等.精密工作台扰动观测器的设计.微细加工技术. 2007, (4): 39~42
    107 M. T. White, M. Tomizuka, C. Smith. Improved Track Following in Magnetic Disk Drives Using a Disturbance Observer. IEEE/ ASME Transactions on Mechatronics. 2000, 5(1): 3~11
    108 Bong Keun Kim, Wan Kyun Chung. Advanced Design of Disturbance Observer for High Performance. Process of the American Control Conference. 2002, 3: 2112~2117
    109 K. Yamada, S. Komada, M. Ishida, et al. Analysis and Classical Control Design of Servo System Using High Order Disturbance Observer. Proceeding of International Conference of Industrial Electronics, Control, and Instrumentation. 1997, 1: 4~9
    110 H. Shinno, H. Hashizume. Nanometer Positioning of a Linear Motor-driven Ultraprecision Aerostatic Table System with Electrorheological Fluid Dampers. Annals of the CIRP. 1999, 48 (1): 289~292
    111陈亚英,朱煜,段广洪.基于电流变阻尼超精密气浮工作台研究.润滑与密封. 2007, 32(2): 7~12
    112陈亚英,朱煜.基于电流变效应的超精密工件台研究与展望.半导体技术. 2005, 30(3): 11~17
    113陈振辉.具有磁流变阻尼的直线进给系统动力学特性研究.广东工业大学. 2008, 5: 23~55
    114吴球红.双边永磁直流直线电机及其磁流变阻尼技术研究.广东工业大学. 2008, 5: 13~33
    115李俊昌.激光的衍射及热作用计算.北京:科学出版社. 2003: 220~222
    116 Milan Sonka, Vaclav Hlavac, Roger Boyle. Image Processing, Analysis, and Machine Vision. POSTS & TELECOM PRESS. 2003, 9: 12~14
    117 F. H. Dill, A. R. Neureuther, J. A. Tuttle, et al. Modeling Projection Printing of Positive Photoresist. IEEE Trans. Electron Devices. 1975, ED-22(7): 456~463
    118罗军辉,冯平,等. MATLAB 7.0在图像处理中的应用.机械工业出版社. 2007: 250~253
    119 J. Y. Yen, C. S. Lin, C. H. Li, et al. Servo Controller Design for an Optical Disk Drive Using Fuzzy Control Algorithm. IEEE International Conference on Fuzzy Systems, San Diego. 1992: 989~997
    120李运堂.面向芯片封装的高加速度高精度气浮定位平台的研究.上海交通大学. 2007, 4: 89~90
    121陈伯时.电力拖动自动控制系统—运动控制系统.北京:机械工业出版社. 2003, 8: 30~80
    122刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社. 2004, 9: 47~48
    123李庆祥.精密测控与系统.清华大学出版社. 2005: 270~270
    124 http://irtfweb. ifa. hawaii. edu /~tcs3 /tcs3 /vendor_info /DeltaTau /ref / PMACTUNINGPRO. Pdf
    125常雪峰,陈幼平,艾武,等.音圈直线电动机设计、控制及应用综述.微电机. 2008, 41(11): 66~69
    126洪盈传,张建寰.测量光路中调焦音圈电机特性的仿真分析.机械工程师. 2009, (11): 63~65
    127曹家勇,朱煜,尹文生.具有方形线圈的平动音圈电动机的设计.电机与控制应用. 2009, 36(6): 1~4
    128杨帆,杨海宽,陈志华,等.音圈式快速伺服刀架的分析与设计.国防科技大学学报. 2009, 31(4): 42~47
    129黄声华,陶醒世,傅光洁.音圈电机的数学模型及仿真.华中理工大学学报. 1996, 24(增刊): 68~71
    130周云.粘滞阻尼减震结构设计.武汉:武汉理工大学出版社. 2006, 11: 94~95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700