高精度电子组装设备中智能材料驱动器的建模与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密电子组装生产线是电子信息制造业的关键工序,新型电子元器件朝微纳米级的高密度多引脚封装的方向不断发展,国内基于视觉的优化控制等重要共性理论问题和实现技术的研究还尚处于起步阶段。基于智能材料的驱动器以其高精度等优良特性得到广泛应用,同时,如何设计控制策略来提高基于智能材料的微纳级驱动器的定位精度也逐步得到了重视。因此,如何利用智能驱动器来提高定位精度成为了精密电子组装技术的探索问题之一。
     表面贴装技术生产线的核心思想是采用智能视觉检测和定位算法、高精度运动/力控制算法以及工业机器人技术达到快速准确的组装生产目的。随着下一代元器件向微纳封装方向发展,传统的模板匹配进行检测和运动减速来保证终端组装头精度方法已无法适应高精高速度要求。于是,新型智能材料传感器、驱动器的优良特性——精度高、反应速度快、应力大的优势得到了得到了世界各国学者的广泛重视,逐渐将其应用在电子组装设备上的高精度定位方面。随着对定位精度要求的不断提高,特别是纳米级加工定位的应用中,其回滞特性存在已经严重限制了系统性能的提高,如何描述智能材料驱动器中的回滞特性,并在此基础上通过控制策略来有效抑制回滞的影响成为了目前精密控制领域的主要目标。
     本文的主要内容是:
     1、表面贴装设备控制系统的重要部分是驱动及伺服定位系统。随着电子芯片引脚间距的细小化,对定位精度的要求越来越精确。需要建立相应的微位移智能材料传感器的回滞等特性的动力学模型进行协调与精确控制来实现高精度定位的目标。
     2、重点分析了智能材料驱动器,包括压电陶瓷驱动器、磁致伸缩制动器和形状记忆合金等在内的工作原理及输入输出之间的回滞特性。由于智能材料的多样性,使得基于智能材料驱动器的输入输出特性中的回滞呈现多样性,除了多值性以外还存在次滞环、饱和特性、非对称特性等,这使得如何精确描述回滞特性成为了研究此类基于智能材料驱动器的装备系统控制的首要任务。
     3、分析了目前用于表征回滞的各种模型,主要分成两类,一类是基于算子型的回滞模型,主要有Preisach模型、Prandtl-Ishlinskii模型和KP模型。另一类是基于微分方程型的回滞模型,其中重点分析了Backlash-like模型和Duhem模型。
     4、针对智能材料驱动器中存在的回滞多样性,以形状记忆合金驱动器为研究对象,针对其存在的饱和回滞特性,采用广义Prandtl-Ishlinskii模型来表征这一类回滞非线性,并在此基础上提出了一种无需构造逆回滞的鲁棒自适应控制方法。
     5、针对智能材料驱动器中的饱和特性,主要采用Duhem模型来表征未知回滞非线性。结合回滞模型,提出了一类无需构造逆回滞的鲁棒控制策略。在保证系统全局稳定的基础上,所提出的方法实现了对回滞的有效削弱并保证了理想的跟踪精度。
     6、将智能材料驱动器运用到定位控制的伺服系统中,实现了智能材料驱动器在电子组装系列设备的试验平台构建。
     本课题在国家自然科学基金重点基金项目(60835001)“面向精密电子组装生产线的关键视觉检测与优化控制问题”、广东省教育部产学研结合项目(2009A090100027)“高端全自动表面贴装成套装备研发及产业化”和华南理工大学中央高校基本科研业务费专项资金(2009ZZ0005)“基于智能驱动器的高精密仪器系统控制研究”的支持下完成。
Precision electronic assembly is one of the key procedures in the electronic information manufacture. The development of the novel electronic components has been developed to the multiple-pin direction. The research of the theory and technique for the optimization control based on vision is still in the primary stage. The smart materials based actuators have been applied widely because of their excellent properties, such as high precision. Also, how to design the corresponding control approaches to improve the positioning precision of the nano-smart material based actuators has attracted more attention during these years. Therefore, the improvement of the positioning precision of the precision electronic assembly by using smart-material based actuators has been one of the key issues in this field.
     The idea of the surface mounting technology is to use smart vision detection, positioning algorithms, high precision control algorithms and industrial robot technique achieving fast and precise assembly. With the nano assembly development of the next generation component, the classical template matching for detection and motion deceleration to ensure the terminal mounting head cannot match the high speed and high precision requirements. Therefore, novel smart-materials based sensors and actuators have been paid attention because of their excellent characteristics, such as high precision, fast response speed and large stress, and have been adopted in the high precision of the electronic assembly. With the improvement of the positioning precision, especially the nano-stage positioning application, the hysteresis existing in these actuators limits the improvement of the system performance. How to describe the hysteresis characteristics in the smart materials based actuators and design the related controller mitigating the effects caused by the hysteresis effectively become one of the main tasks of the precision control field.
     The contents of this dissertation include
     1. The main portion of the surface mounting technology control system is the servo-controlled positioning system. With the fineness of the lead pin pitch in the IC chip, the positioning precision needs to be more accurate than before. In order to achieve nano positioning precision, it is necessary to construct the related hysteresis model describing the hysteresis properties in the smart materials-based actuators for concerted and precise control.
     2. The working principle and the related hysteresis characteristics of these smart material based actuators, such as piezoelectric actuators, magnetostrictive actuators and shape memory alloy actuators are analyzed. Due to the multiform of the smart materials, the hysteresis existing in these smart materials actuators have some special properties, for example, except the multi-values, minor loop, saturation property and asymmetric property etc. existing in these smart materials actuators. Addressing this issue, describing the hysteresis accurately becomes one of the main tasks for the smart materials actuators based assembly control.
     3. The hysteresis models utilized to describe hysteresis characteristics are analyzed. Considering the modeling principle, these models can be roughly classified as operator-based hysteresis model, such Preisach model, Prandtl-Ishlinskii model and KP model, and differential equation-based hysteresis models, such as Backlash-like model and Duhem model.
     4. Focusing on the saturated hysteresis in the smart materials actuators, a generalized Prandtl-Ishlinskii model is adopted to represent the hysteresis characteristics in the shape memory alloy actuators. Based on the generalized Prandtl-Ishlinskii model, a robust adaptive control approach without construction of the hysteresis inverse is proposed.
     5. Still focusing on the saturated hysteresis in the smart materials actuators, Duhem model is adopted to describe the saturated hysteresis characteristics in the shape memory alloy actuators. By exploring the property of Duhem hysteresis model, another robust control approach without construction the hysteresis inverse is proposed. The proposed method mitigates the effects caused by the hysteresis effectively and ensures the tracking precision.
     6. These smart materials based actuators are adopted in the positioning control of servo system experiment stage as the primary application of the smart materials based actuators in the electronic assembly devices.
     The dissertation is supported by the National Natural Science Foundation of China (No. 60835001, The research on the key vision detection and optimal control oriented to the assembly line), Project of Product-Education-Research Association of Guangdong Province and Ministry of Education(2009A090100027)“Research and industrialization of hight-level full-automatic surface mounting assembly”and by the Fundamental Research Funds for the Central Universities, SCUT under Grant 2009ZZ0005.
引文
[1] Adly A.A., Abd-El-Hafiz S.K.. Implementation of magnetostriction Preisach-type models using orthogonally coupled hysteresis operators[J]. Physica B, 2008, 403: 425-427
    [2] Adly A.A., Abd-El-Hafiz S.K.. Efficient modeling of vector hysteresis using fuzzy inference systems[J]. Physica B, 2008, 403: 3812-3818
    [3] Adly A.A., Abd-El-Hazif S.K.. Using neural networks in the identification of Preisach-type hysteresis models[J]. IEEE Transactions on Magnetics, 1998, 34(4):629-638
    [4] Arockiarajan, B., Delibas, A.. Menzel. Studies on rate-dependent switching effects of piezoelectric materials using a finite element model[J]. Computational Materials Science, 2006, 37: 306-317
    [5] Andrei P., Oniciuc L., Stancu A.. Identification techniques for phenomenological models of hysteresis based on the conjugate gradient method[J]. Journal of Magnetism and Magnetic Materials, 2007, 316:330-333
    [6] Aphale S.S., Devasia S., Moheimani S.O.R.. Achieving high-bandwidth nanopositioning in presence of plant uncertainties[A]. Proceedings of the 2008 IEEE/ASME ICAIM[C]. Xi’an, China, 2008: 943-948
    [7] Bagagiolo F.. Dynamic programming for some optimal control problems with hysteresis[J]. Nonlinear Differential Equations and Applications, 2002, 9:149-174
    [8] Ball B.L., Smith R.C.. A stress-dependent hysteresis model for PZT-based transducers[R]. Chicago, USA: Statistical and Applied Mathematical Sciences Institute, 2004
    [9] Banks H. T., Smith R. C.. Hysteresis modeling in smart material systems[J]. Journal of Applied Mechanics and Engineering, 2000, 5:31-45
    [10] Bashash S.B., Jalili N.. Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems[J]. IEEE Trans. Control System Technology, 2007, 15(5): 867-878
    [11] Bergqvist A., Engdahl G.. A stress-dependent magnetic Preisach hysteresis model[J]. IEEE Trans. Magn.,1991, 27(6): 4796-4798
    [12] Belbas S.A., Mayergoyz I.D.. Dynamic programming for system with hysteresis[J]. Physica B, 2001, 306: 200-205
    [13] Benabou, J.V. Leite, Clenet S.. Minor loops modeling with a modified Jiles-Atherton model and comparison with the Preisach model[J]. Journal of Magnetism and Magnetic Materials, 2008, 320:1034-1038
    [14] Bertotti G.. Dynamic generalization of the scalar Preisach model of hysteresis[J]. IEEE Trans. on Magnetics, 1992, 28: 2599-2601
    [15] Bottauscio M., Chiampi A. Lovisolo.. Dynamic modeling and experimental analysis of Terfenol-D rods for magnetostrictive actuators[J]. Journal of Applied Physics,2008, 103: 07F121-07F123
    [16] Brokate M., Sprekels J.. Hysteresis and phase trasitions, [B] Springer, 1996.
    [17] Brown W. F.. Micromagnetics[M]. New York: John Wiley&Sons, 1963:236-245
    [18] Butler J. L.. Application manual for the design of Etrema Terfenol-D magnetostrictive transducers[S]. Etrema Products Inc. Ames, IA,1988
    [19] Calkins F. T., Dapino M. J., Flatau A. B.. Effect of prestress on the dynamic performance of a GMM transducer[J]. Smart Structures and Materials, 1997, 3041:293-304
    [20] Cas J., Klobucar R., Safaric R.. Neural networks based control of micro-manipulator[A] AMC’08, 10th IEEE International Workshop on Advanced Motion Control, 2008: 444-449
    [21] Cavallo D., Davino G., Maria D.. Hysteresis compensation of smart actuators under variable stress conditions[J]. Physica B, 2008, 403: 261-265
    [22] Chawastek K., Szczyglowski J.. Identification of a hysteresis model parameters with genetic algorithms[J]. Mathematics and Computers in Simulation, 2006, 71: 206-211
    [23] Chua L.O., Bass S.C.. A generalized hysteresis model[J]. IEEE. Trans. Circuit Theory, 1972, 19(1): 36-48
    [24] Christ D., Reese S.. Finite-element modeling of shape memory alloys-a comparison between small-strain and large-strain formulations[J]. Materials Science and Engineering, 2008, 481-482:343-346
    [25] Clark A.E. Magnetostrictive rate earth-Fe2 compounds[J]. Ferromagnetic Material, 1980:531-538
    [26] Cruz-Hernandez J.M., Hayward V.. Phase control approach to hysteresis reduction[J]. IEEE Transactions on Control Systems Technology, 2001, 9(1):17–26
    [27] Dapino M.J., Smith R.C., Flatau A.B.. Structural magnetic strain model formagnetostrictive transducers[J]. IEEE Trans. Magn., 2000, 36(3):545-556
    [28] Dang X., Tan Y.. RBF neural networks hysteresis modelling for piezoceramic actuator using hybrid model[J]. Mechanical Systems and Signal Processing, 2007, 21: 430-440
    [29] Davino D., Giustiniani A., Visone C.. Fast inverse Preisach models in algorithm for static and quasistatic magnetic-field computations[J]. IEEE Trans. Magn., 2008, 44(6): 862-865
    [30] Du J., Feng Y., Su C.-Y. On the adaptive control of systems preceded by saturated hysteresis[C].The 4th IEEE Conference on Industrial Electronics and Application, Xi’an China. 2009
    [31] Du J., Feng Y., Su C.-Y. On the robust control of systems preceded by coleman-hodgdon hysteresis[C]. The 7th International Conference on Control and Automation, Christchurch, New Zealand. 2009
    [32] Eleuteri M.. Well-posedness results for a class of partial differential equations with hysteresis arising in electromagnetism[J]. Nonlinear Analysis: Real World Applications, 2007, 8:1494-1511
    [33] Ge P., Jouaneh M.. Modeling hysteresis in piezoceramic actuators[J]. Precision Engineering, 1995, 17(3): 211–221
    [34] Ge P., Jouaneh M.. Tracking control of a piezocermic actuator[J]. IEEE Transactions of Control System Technology, 1996, 4(3):209-216
    [35] Ge P., Jouaneh M.. Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators[J]. Precision Eng, 1997, 20 (2) :99-111
    [36] Hilgert T., Vandevelde L., Melkebeek J.. Neural-network-based model for dynamic hysteresis in the magnetostriction of electrical steel under sinusoidal induction[J]. IEEE Trans. Magn., 2007,43(8): 3462-3466
    [37] Hu H., Zhang H., Mrad R.B.. Preisach Based Dynamic Hysteresis Model[A]. Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation[C]. Chengdu, China: 2004: 825-830
    [38] Huang P.K., Shieh P.H., Lin F.J.. Sliding-mode control for a two-dimensional piezo-positioning stage[J]. IET Control Theory Appl., 2007, 1(4): 1104-1113
    [39] Hughes D., Wen J.T.. Preisach modeling of piezoceramic and shape memory alloy hysteresis[J]. Smart Materials and Structures, 1997, 6: 287-300
    [40] Hwang C.L., Jan C., Chen Y.H.. Piezomechanics using intelligent variable-structurecontrol[J]. IEEE Trans. Industrial Electronics, 2001, 48(1): 47-59
    [41] Ikhouane F., Rodellar J.. A linear controller for hysteretic systems[J]. IEEE Trans. Automatic Control, 2006, 51(2): 340-344
    [42] Iyer R.V.. Recursive Estimation of the Preisach Density function for a Smart Actuator[J]. Smart Structures and Materials, 2004, 5383: 202-210
    [43] Janaideh M.A., Su C.-Y., Rakheja S.. Development of the rate dependent Prandtl-Ishlinskii model for smart actuators[J]. Smart Materials and Structures, 2008, 17(3):156-161
    [44] Jason Z.. Six degree-of freedom active vibration control using the stewart platform[J]. IEEE-C.S.T., 1994, 2(1): 45-53
    [45] Jendritza D., Schmidt-Mende P.. Technischer Einsatz neuer Aktoren. Kontakt & Studium, 1995, 484:232-238
    [46] Jiles D.C., Atherton D.L., Ferromagnetic hysteresis[J], IEEE Trans. Magn., 1983, 19(5):2183-2185
    [47] Jiang C., Deng M., Inoue A.. Operator based robust control for nonlinear systems with hysteresis[A]. SICE Annual Conference 2007[C]. Japan: Kagawa University, 2007: 2292-2295
    [48] Kloucek P., Reynolds D.R.. On the modeling and computations of nonlinear thermodynamics in SMA wires[J]. Computer Methods Appls Mech. Engrg., 2006, 196:180-191
    [49] Kha N. B., Ahn K.K.. Position control of shape memory alloy actuators by using self tuning fuzzy PID controller[J]. IEEE ICIEA, 2006
    [50] Krasnoskl’skii M. A., Pokrovskii A. V.. Systems with hysteresis[M]. Moscow, 1983
    [51] Krejci P., Kuhnen K.. Error estimates for the discrete inversion of hysteresis and creep operators[J]. Mathematics and Computers in Simulation, 2003, 61: 537-548
    [52] Krivosik P., Appino C., Sasso C.P.. Modeling of interactions in amorphous and nanocrystalline alloys with induced anisotropy[J]. Journal of Magnetism and Magnetic Materials, 2002, 242-245: 1093-1096
    [53] Kvarnsj L., Berqvist A. Application of a stress-dependent magnetic Preisach model on a simulation model for Terfenol-D[J]. IEEE Trans. Magn., 1992, 28(5): 2623-2625
    [54] Kuhen K.. Modeling Identification and compensation of complex hysteretic nonlinearities a modified Prandtl-Ishlinskii approach[J]. European Journal of Control, 2003, 9(4):407-418
    [55] Kuczmann M., Lvanyi A.. A new neural-network–based scalar hysteresis model[J].IEEE Transactions on Magnetics, 2002, 38(21):857-860
    [56] Kyprianou, Worden K., Panet M., Identification of hysteresis systems using the differential evolution algorithm[J]. Journal of Sound and Vibration, 2001, 248(7):289-314
    [57] Leang K.K., Devasia S.. Feedback-linearized inverse feedforward for creep, hysteresis and vibration compensation in AFM piezoactuators[J]. IEEE Trans. Control System Technology, 2007, 15(5): 927-935
    [58] Liaw H.C., Shirinzadeh B., Smith J.. Enhanced sliding mode motion tracking control of piezoelectric actuators[J]. Sensors and Actuators, 2007, 138: 194-202
    [59] Luterotti F., Schimperna G., Stepfanelli U.. A generalized phase relaxation model with hysteresis[J]. Nonlinear Analysis, 2003, 55: 381-398
    [60] Majima S., Kodama K., Hasegawa T.. Modeling of shape memory actuator and tracking control system with the model[J]. IEEE Transactions on Control Systems Technology, 2001, 9( 1):54-59
    [61] Mao J., Ding H., Ma Y.. Fuzzy dynamic model of a giant magnetostrictive actuator[J]. Material Science Forum, 2007, 546-549: 2183-2188
    [62] Mao J., Li C., Xu H.. On control of six freedom magnetostrictive smart structure[J]. Materials Science Forum, 2005, 475-479:2111-2114
    [63] Massad J.E., Smith R.C.. A homogenized free energy model for hysteresis in thin-film shape memory alloys[J], Thin Solid Films, 2005, 489: 266-290
    [64] Maygergoyz I.D.. Mathematical models of hysteresis[M]. Springer-Verlag, New York, 1991
    [65] Mayergoyz I.. Mathematical models of hysteresis and their Applications[M]. Elsevier, 2003
    [66] Mertmann M., Adaptive Werkstoffe[M]. Umdruck zur Vorlesung, Bochum University, 2000
    [67] Mittal S., Meng C.-H.. Hysteresis compensation in electromagnetic actuators through Preisach model inverse[J]. IEEE/ASME Trans. Mechatron, 2000, 5: 394-409
    [68] Natale C., Velardi F., Visone C.. Identification and compensation of Preisach hysteresis models for magnetostrictive actuators[J]. Physica B, 2001, 306: 161-165
    [69] Nealis J.M., Smith R.C.. Model-based robust control design for magnetostrictive transducers operating in hysteretic and nonlinear regimes[J], IEEE Trans. Control System Technology, 2007, 15(1): 22-39
    [70] Oates W.S., Smith R.C.. Nonlinear optimal control of plate structures usingmagnetostrictive actuators[J]. Proc. of SPIE, 2005, 5757:281-291
    [71] Oh J., Bernstein D.S.. Semilinear Duhem model for rate-independent and rate-dependent hysteresis[J]. IEEE Trans. Automatic Control, 2005, 50(5):631-645
    [72] Oh J., Bernstein D.S.. Piecewise linear identification for the rate-independent and rate-dependent Duhem hysteresis model[J]. IEEE Trans. Automation Control, 2007, 52(3):576-582
    [73] Park Y.W., Seok Y.T., Park H.J.. Hysteresis modeling based on saturation operator without constraints[J]. Journal of Magnetism and Magnetic Materials, 2007, 310: 2647-2649
    [74] Park H. W., Yang H. S., Park Y. P.. Position and vibration control of a flexible robot manipulator using hybrid controller[J]. Robotics and Autonomous Systems. 1999, 28(1): 31-41
    [75] Panusittikorn W., Ro P.I.. Modeling and control of a magnetostrictive tool servo system[J]. Journal of Dynamic Systems, Measurement and Control, 2008, 130:30-31
    [76] Qu L., Chapman P.L.. Extraction of dynamic, low-order models for magnetic devices based on finite element analysis with hysteresis[A]. IEEE Power Electronics Specialists Conference, 2007:2082-2088
    [77] Rahmanl S.M.M., Ahn K.K., Yoon J.. Experimental study of the tracking control of a SMA actuated manipulator[A]. ICSMA, Korea, 2008: 152-156
    [78] Robert B. Gorbet, David W. L. Wang. A dissipativity approach to stability of a shape memory alloy position control system[J]. IEEE Trans. On Control Systems Technology, 1999, 6(4):128-134
    [79] Rattikorn Y., Supattra W.. Stress-dependent scaling behavior of dynamic hysteresis in bulk soft ferroelectric ceramic[J]. Applied Physics Letters, 2006, 89(24):42901.1-242901.3
    [80] Sari Z., Ivanyi A.. Investigation of the stability of an ODE-based hysteresis model[J]. Physica B, 2008, 403: 274-277
    [81] Shameli E., Alasty A., Salaarieh H.. Stability Analysis and Nonlinear Control of a Miniature Shape Memory Alloy Actuator for Precise Applications[J]. Mechatronics, 2005, 15(4):471-486
    [82] Shigeru Futami, Furutani A., Yoshida S.. Nanometer positioning and its micro -dynamics [J]. Nanotechnology, 1990, 1: 31-37
    [83] Sipeky A. Ivanyi. Preisach-type stress-dependent magnetic vector hysteresis model[J]. Physica B, 2008, 403:491-495
    [84] Sixdenier F., Scorretti R., Marion R.. Quasistatic hysteresis modeling with feed-forward neural networks: Influence of the last but one extreme values[J]. Journal of Magnetism and Magnetic Materials, 2008, 320:e992-e996
    [85] Smith R.C., Dapino M.J., Seelecke S.. Free energy model for hysteresis in magnetostrictive transducers[J]. Journal of Applied Physics, 2003, 93(1):458-466
    [86] Song Z., Mao J., Li C.. Magnetostrictive material actuator based active vibration control-a heuristic iterative learning control method[J]. Materials Science Forum, 2005, 475-479(3): 2103-2106
    [87] Su C. Y., Stepanenko Y., Svoboda J.. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis[J]. IEEE Trans. Automat. Contr., 2000, 45(12): 2427-2432
    [88] Su C.-Y., Wang Q., Chen X.. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis[J]. IEEE Trans. on Automatic Control, 2005, 15(2):2069-2074
    [89] Suzuki T., Matsumoto E.. Comparison of Jiles–Atherton and Preisach models extended to stress dependence in magnetoelastic behaviors of a ferromagnetic material[J]. Journal of Materials Processing Technology, 2005, 161: 141-145
    [90] Tan X.B., Baras J.S.. Modeling and control of hysteresis in magnetostrictive actuators[J]. Automatica, 2004, 40:1469-1480
    [91] Tan X.B., Baras J.S.. Optimal control of hysteresis in smart actuators: a viscosity solutions approach[R]. Technical Research Report, 2002
    [92] Tang H.S., Xue S.T., Sata T.. Online weighted LS-SVM for hysteretic structural system identification[J]. Engineering Structures, 2006, 28: 1728-1735
    [93] Tannous C., Gieraltowski J.. A Stoner–Wohlfarth model redux dynamic and statistical properties[J]. Physica B, 2008, 403: 3563-3570
    [94] Tao Gang, Petar V Kokotovic. Adptive control of plants with unknown hysterese[J]. IEEE Trans. on Automatic Control, 1995, 40(2):200-213
    [95] Venkataraman R.. Modeling and adaptive control of magnetostrictive actuators[D]. 1999
    [96] Wang X., Ye M.. Hysteresis and nonlinearity compensation of relative humidity sensor using support vector machines[J]. Sensors and Applications B, 2008, 129:274-284
    [97] Wang E.R., Ma X.Q., Rakheja S.. Modelling the hysteretic characteristics of a magnetorheological fluid damper[J]. Proceedings of the Institution of MechanicalEngineers, Part D: Journal of Automobile Engineering, 2003, 217(7): 537-550
    [98] Wang Y. F., Methods for Modeling and Control for Systems with Shape Memory Alloys Actuators. PhD thesis, Concordia University, 2007
    [99] Webb G., Kurdila A., Lagoudas D.. Adaptive hysteresis model for model reference control with actuator hysteresis[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):459-465
    [100] Welp E.G., Langbein S.. Formged chtnisaktor[R]. eine kiirze Einfiihrung, LMK Bochum University, 2005
    [101] Xia P.Q.. An inverse model of MR damper using neural network and system identification[J]. Journal of Sound and Vibration, 2005, 266:1009-1023
    [102] Yu Y., Xiao, Z. Naganathan N. G.. Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system[J]. Mechanism and Machine Theory, 2002, 37(1):75-89
    [103] Yung Tien Liu, Toshiro Higuchi, Rong-Fong Fung. A novel precision positioning table utilizing impact force of spring- mounted piezoelectric actuator- partⅡ: the oretical analysis[J]. Precision Engineering.2003, 27 (1):22-31
    [104] Zhao G.P., Lim H.S., Feng Y.P.. A hybrid model to calculate the magnetization of nanostructured permanent magnetic materials[J]. Computational Materials Science, 2004, 30:308-313
    [105] Zhen Z., Mao J.. Modeling, Rate-dependent hysteresis for magnetostrictive actuator[J]. Materials Science Forum, 2007, 546-549(1-4):2251-2256
    [106] Zheng J., Cao S., Wang H.. Modeling of magneto mechanical effect behaviors in a giant magnetostrictive device under compressive stress[J]. Sensors and Actuators, 2008, 143:204-214
    [107] Zhong J., Yao B.. Adaptive robust precision motion control of a piezoelectric positioning stage[J]. IEEE Trans. Control System Technology, 2008, 16(5):1039-1046
    [108]敖银辉,陈新,温兆麟.平面并联机构的动力学建模及控制[J].机械设计与制造. 2005, 8(8):9-11
    [109]曹坚.基于压电陶瓷的二维微动工作台有限元分析[J].机床与液压, 2003, 12:154-158
    [110]程志国,孙小文等.全视觉贴片机的控制系统设计[J].计算机测量与控制, 2005, 13(7):665-667
    [111]丁胜华.超磁致伸缩致动器参数设计及其特性研究[D].硕士学位论文,山东科技大学, 2006
    [112]冯晓梅.面向IC封装的两自由度高速高精度定位系统研究[D].博士学位论文,天津大学, 2005
    [113]冯颖.回滞非线性系统的鲁棒自适应控制[D].博士学位论文,华南理工大学, 2006
    [114]郭东明,杨兴等.超磁致伸缩执行器在机电工程中的应用研究现状[J].中国机械工程, 2001, 12(6):724-727
    [115]胡跃明,杜娟等.基于视觉的高速高精度贴片机系统的程序实现[J].计算机集成制造系统, 2003, 9(9): 760-764
    [116]贾宏光,吴一辉.压电驱动微位移工作台动态特性分析[J].光学机密工程. 2000, 5(8): 440-443
    [117]贾振元,杨兴等.超磁致伸缩执行器及其在流体控制元件中的应用[J].机床与液压, 2000(2): 3-4
    [118]节德刚.宏/微驱动高速高精度定位系统的研究[D].博士学位论文,哈尔滨工业大学, 2006
    [119]荆小平,形状记忆合金驱动六自由度机械手设计[D].学士学位论文,辽宁工程技术大学, 2001
    [120]梁红.用逆转补偿算法实现对形状记忆合金驱动器的控制[D].硕士学位论文,武汉理工大学, 2005
    [121]彭占勇.影响表面组装产品质量的因素及其控制方法[J].电子工艺技术, 2000, 21(2):27-29
    [122]孙宝玉.压电驱动超精密定位工作台的研究[J].机械设计与研究, 2001, (8):160-163
    [123]孙红飙,银万根,荆秀莲.电子工艺技术[J]. SMD与贴片机. 1999, 20, (2):55-57
    [124]宛德福,马兴隆.磁性物理学[M],电子工业出版社, 1999:87-90
    [125]王家海,宣力伟.形状记忆合金在驱动器上的应用研究[J].机电产品开发与创新.2006.7, 19(4):65-67
    [126]王建林.压电陶瓷用于纳米定位系统的研究[J].航空精密制造技术, 1997, 10:89-93
    [127]王龙妹. 21世纪战略性功能材料一超磁致伸缩合金[J],新材料产业, 2002, 1: 23-26
    [128]王敏.基于压电陶瓷驱动器的微动平台控制技术[J].装备制造技术. 2008, 11:25-27
    [129]吴博达,鄂世举等.压电驱动与控制技术的发展与应用[J].机械工程学报.2003, 39(10):79-85
    [130]吴兆华,周德俭.表面组装技术基础[M].第一版,国防工业出版社, 2002:1-5
    [131]熊辉,表面安装技术及其国内外发展概况[J].微电子学. 1994, 242, (6):31-34
    [132]徐荣华. SMT装备自动定位系统研究及应用开发[D].硕士学位论文,广东工业大学, 2003
    [133]杨大智.智能材料与智能系统[M],天津大学出版社, 2002:284-350
    [134]杨帆. SMT贴片机的运动控制研究[D].硕士学位论文,西南交通大学, 2006
    [135]杨杰,吴月华.形状记忆合金及其应用[M].合肥,中国科学技术大学出版社, 1993
    [136]杨凯,辜承林,史铁林.用于柔性机械手的形状记忆合金驱动器滑模控制研究[J].中国机械工程. 2004, 15(20): 1794-1797
    [137]杨凯,辜承林,严新荣.基于内嵌式SMA电机的柔性机械手研制[J].中国电机工程学报. 2002, 22(12): 74-79
    [138]杨凯,贺晋华,辜承林.基于内嵌式SMA电机的多手指驱动控制系统[J].华中科技大学学报(自然科学版). 2007, 35(6): 64-68
    [139]杨兴.磁场与位移感知型超磁致伸缩微位移执行器及相关技术研究[D].博士学位论文,大连理工大学, 2001
    [140]于江, SMA驱动的微型平面关节机器人的研究[D].硕士学位论文,华南理工大学, 1996
    [141]袁惠群,孙华刚.超磁致伸缩材料的制备技术研究进展[J].材料与冶金学报, 2003, 6:115-119
    [142]袁鹏.高速高精度多功能贴片机及产业化关键技术研究[D].博士学位论文,华南理工大学, 2005
    [143]袁鹏,胡跃明等.基于视觉的高速高精度贴片机运动控制系统的设计与实现[J].计算机集成制造系统, 2004, 10(12): 187-191
    [144]袁月峰.形状记忆合金驱动器设计及控制研究[D].硕士学位论文,辽宁工程技术大学, 2003
    [145]泽冈昭.电子材料[M].森北出版株式会社. 1999
    [146]赵兴玉,冯晓梅.面向MENS制造的高速精密定位平台的动力学仿真和结构设计[J].机械工程学报, 2006, 8(42):114-119
    [147]张大卫,杜伟涛.面向芯片封装的高速精密定位平台控制系统设计[J].天津大学学报, 2006, 9(39): 1060-1065
    [148]张达科.回滞非线性系统的鲁棒控制[D].博士学位论文,华南理工大学, 2004
    [149]张松. SMA微型机器人与多环境智能机器人的系统设计与仿真研究[D].中国科技术大学硕士学位论文, 1998
    [150]张亚琛.精密电子组装设备动力学建模和力/位置控制问题研究[D].博士学位论文,华南理工大学, 2009
    [151]郑伟智,辛洪兵.压电驱动器在精密机械中的应用[J].机械工程师. 2002, 3:53-55
    [152]周德俭. SMT组装质量检测与控制[M].北京:国防工业出版社, 2007
    [153]朱子键等.智能材料在微机械中的应用及发展[J].航空精密制造技术, 2003, 39 (3) :4-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700