微藻培养过程的营养优化与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微藻利用光和CO_2合成蛋白质、糖类、脂类以及色素等大分子物质并放出O2,在人类食品、保健、医药、环保和生物炼制领域具有广阔的应用前景。本文针对目前微藻培养中存在的生产成本高、产率低的问题,主要从营养盐方面入手,通过分批培养研究了主要营养盐对螺旋藻、二形栅藻生长和产物积累的影响,以及培养中pH和无机碳源变化、氮源和磷源消耗、微藻生长三者之间的内在联系。在建立微藻生长与营养盐消耗相关模型的基础上,构建了三种微藻培养营养盐流加策略并进行比较评价,最终用于螺旋藻培养的营养盐优化和二形栅藻培养的油脂积累调控,就微藻培养中与营养盐有关的操作及成本进行了优化与控制。本论文的主要结果如下:
     (1)采用NaHCO_3作为碳源,后期培养液pH值过高(>11.0)会抑制螺旋藻生长,而流加CO_2作为碳源能够控制培养液pH值在适合螺旋藻生长的范围(8.0~10.0);充足的碳源、氮源、磷源有利于螺旋藻生长,促进螺旋藻蛋白质及叶绿素的积累,而碳源过量或氮源、磷源限制会影响螺旋藻生长,但有利于螺旋藻总糖的积累;尿素、NH_4NO_3、NH_4Cl和NH_4HCO_3能够替代NaNO_3作为螺旋藻培养的氮源,但会出现高浓度抑制螺旋藻生长的现象,其抑制作用由大到小的顺序依次为:NH_4HCO_3> NH_4Cl>NH_4NO_3>尿素。
     (2)在微藻培养中,当培养液营养盐浓度较低时,营养盐的比消耗速率由微藻比生长速率和细胞内相对应的营养元素份额共同决定;当培养液营养盐充足时,藻细胞内碳、氮、磷元素份额较为稳定,营养盐的比消耗速率主要由微藻比生长速率决定。此时维持微藻培养液pH值稳定的CO_2补加量、氮源消耗量和磷源消耗量都与微藻生物量增量存在较好的线性相关性,可以采用以下三种营养盐反馈流加策略来维持微藻培养液营养盐浓度稳定,分别为pH和硝酸根电极联用的反馈流加策略、基于pH的反馈流加策略和基于吸光值的反馈流加策略。
     (3)理论探讨了基于吸光值和基于pH值反馈流加营养盐,影响流加过程中营养盐浓度的一些可能因素,结果表明:采用基于吸光值的反馈流加策略,培养液中营养盐浓度的波动与吸光值步长、营养盐利用率和藻细胞内营养元素份额有关;采用基于pH的反馈流加策略,培养液中营养盐浓度的波动与培养液pH值、pH步长及培养液中游离CO_2浓度有关。通过螺旋藻分批补料培养对以上三种营养盐流加策略进行实验验证发现: pH和硝酸根电极联用的反馈流加策略,由于硝酸根电极会发生电位漂移,培养液中氮源、磷源浓度波动较大,不适合营养盐的长期在线监控;基于吸光值的反馈流加策略有利于培养液中氮源、磷源浓度控制;而基于pH的反馈流加策略有利于培养液中碳源浓度和pH值的控制。将基于pH和基于吸光值的反馈流加策略联用,能够更加准确地控制微藻培液中碳源、氮源、磷源的浓度,适用于营养盐的长期在线监控。
     (4)采用上述流加策略对螺旋藻培养的营养盐进行优化,基于pH反馈流加CO_2作为碳源,螺旋藻的最大生物量浓度可达3.30g/L,比NaHCO_3作为碳源的螺旋藻分批培养提高了92.30%;基于吸光值反馈流加NH_4HCO_3作为氮源,将培养液中NH3-N浓度控制在1mmol/L时,螺旋藻生长不受到氮源限制或抑制,与同样培养条件下恒速、变速及基于pH反馈流加NH_4HCO_3的培养相比,能够得到最大的生物量(2.98g/L)、氮源得率系数(7.32g/g)、蛋白质含量(64.11%)和叶绿素含量(13.40mg/g)。
     (5)将营养盐流加策略应用于螺旋藻大规模生产,与传统以NaHCO_3作为碳源、NaNO_3作为氮源、K2HPO4作为磷源、采收后根据经验补料的培养方式相比,采用CO_2作为碳源、NaNO_3和NH_4HCO_3作为混合氮源、H3PO4作为磷源、培养中采用基于吸光值或基于pH反馈流加营养盐,能够长期将培养液中碳源、氮源、磷源浓度控制在螺旋藻生长适合的范围,降低螺旋藻培养的营养盐成本约70%,同时单位面积产量提高20%以上。
     (6)二形栅藻分批培养结果显示:二形栅藻最适的培养pH值为7.5;与采用NaNO_3和尿素作为氮源相比,采用NH_4HCO_3作为氮源时,二形栅藻生长较快,油脂产率较高;高碳、低氮和低磷条件能够促进二形栅藻油脂积累,但氮源限制对二形栅藻油脂积累的促进作用大于磷源限制。基于以上结果,在二形栅藻分批补料培养中,通过pH反馈控制CO_2的流加将培养液pH值控制在7.5±0.3,基于吸光值反馈控制NH_4HCO_3和K2HPO4的流加,在氮磷源流加阶段,二形栅藻快速生长,氮磷源反馈流加停止后,培养液中的氮源和磷源能够迅速耗尽,促进二形栅藻油脂快速积累,其油脂产率与分批培养、氮源和磷源流加速率分别为0.8mmol/(L·d)和9.6μmol/(L·d)的恒速补料培养以及氮源和磷源流加速率分别为0.4mmol/(L·d)和4.8μmol/(L·d)的恒速补料培养相比,分别提高58.2%、53.3%和37.1%。
Microalgae are capable of utilizing sunlight and carbon dioxide to synthesize organicsubstrates such as protein, carbohydrate and lipid, and oxygen is produced at the same time.Microalgae are widely used in food, health care, medicine, environment and bio-energy fields.Considering the problem of high production cost and low productivity in microalgaecultivations, the nutrient salts were chosen to be the main investigating objects. The influenceof the main nutrient on Spirulina platensis and Scenedesmus dimorphus growth andproduction were studied. The relationships among the changes of pH and inorganic carbonsource, the consumption of nitrogen and phosphorus sources and the biomass accumulationwere learned in this study. Based on the relationship between the microalgae growth andnutrient consumption, three kinds of nutrient feeding strategies were proposed and compared.Furthermore, the nutrient feeding strategies were applied for nutrient optimization inSpirulina platensis cultivation and regulation of lipid accumulation in Scenedesmusdimorphus cultivation. As a result, the operating and production cost related to nutrient inmicroalgae cultivations were optimized and controlled by using these nutrient feedingstrategies. Main results were as follows:
     (1) In Spirulina platensis cultivation, the pH value of culture medium exceeded11.0atthe late growth phase using NaHCO_3as carbon source, which would lead to growth inhibition.Feeding CO_2as carbon source could maintain the pH value of the culture medium at thesuitable level for Spirulina platensis growth (8.0~10.0). It was found that sufficient carbon,nitrogen and phosphorus sources were benefit for Spirulina platensis growth and high proteinand chlorophyll content could be obtained. But with excess carbon source, nitrogen-limitationor phosphorus-limitation, Spirulina platensis growth could be affected and the accumulationof carbohydrate was promoted. Urea, NH_4NO_3, NH_4Cl and NH_4HCO_3could instead ofNaNO_3as nitrogen source for Spirulina platensis cultivation, but the growth inhibition wouldtake place when the concentration of ammonium was at a relatively high level. The order ofthe inhibitory effect of these nitrogen sources was NH_4HCO_3> NH_4Cl>NH_4NO_3>urea.
     (2) When the nutrient concentration was relatively low in the culture medium, thespecific consumption rate of nutrient was not only depended on the specific growth rate ofmicroalgae, but also on the nutrient cell quota of microalgae. When the nutrient was relativelysufficient in the culture medium, the cell quota of carbon, nitrogen and phosphorus in themicroalgae cells were relatively stable, and the specific consumption rate of nutrient wasmainly depended on the specific growth rate of microalgae. In the latter situation, the amount of CO_2addition to keep the pH value of culture medium stable, the consumption of nitrogensource and the consumption of phosphorus source were linearly correlated to theaccumulation of biomass. Thus three different nutrient feeding strategies were proposed fornutrient concentrations control in microalgae cultivations. They were the pH and nitrateelectrodes based feedback feeding method, the pH-based feedback feeding method and theabsorbance-based feedback feeding method.
     (3) Some probable factors affecting the change of nutrients concentration when using theabsorbance-based feedback feeding method and the pH-based feeding method wereinvestigated. The results implied that the fluctuation range of the nutrient concentrations inthe culture medium depended on the absorbance-step, utilization of nutrient and nutrient cellquota using the absorbance-based feedback feeding method. And the fluctuation range ofnutrient concentrations in the culture medium depended on the pH-step, pH value of culturemedium and free CO_2concentration in the culture medium using the pH-based feedingmethod. The proposed nutrient feeding strategies were applied in the Spirulina platensisfed-batch cultivations. It was found that when the pH and nitrate electrodes based feedbackfeeding method was used, the nitrogen and phosphorus concentrations were fluctuant in arelatively wide range due to the potential drift of the nitrate electrode. It implied this feedingmethod was not fit for long-time nutrient monitoring and controlling on-line. Theabsorbance-based feedback feeding method was benefit for the nitrogen and phosphorusconcentration control, while the pH-based feedback feeding method was benefit for the pHand carbon concentration control. Combining the pH-based feedback feeding method with theOD-based feedback feeding method, the carbon, nitrogen and phosphorus concentrationswould be accurately controlled during the microalgae cultivations,which implied they werefit for long-time nutrient control on-line.
     (4) The nutrient in the Spirulina platensis cultivation was optimized using the feedingstrategies above. Meanwhile, feeding CO_2as the carbon source using the pH-based feedbackfeeding method, the maximum biomass concentration of3.30g/L could be obtained, whichwas92.30%higher than that of using NaHCO_3as the carbon source. Feeding NH_4HCO_3asthe nitrogen source by the absorbance-based feedback feeding method to maintain theammonium concentration in the culture medium at1mmol/L, Spirulina paltensis growthwould not be affected by nitrogen source inhibition or limitation. As a result, the maximumbiomass concentration (2.98g/L), nitrogen-to-cell conversion factor (7.32g/g), and contentsof protein (64.11%) and chlorophyll (13.40mg/g) obtained by using absorbance-basedfeedback feeding method were higher than those of using the constant, variable and pH-based feedback feeding methods.
     (5) The nutrient optimization and feeding strategies proposed in the thesis were appliedin large-scale cultivations of Spirulina platensis in outdoor open raceway pond. In thetraditional semi-continuous cultivations, the carbon, nitrogen and phosphate sources weresodium bicarbonate, sodium nitrate and dipotassium hydrogen phosphate, respectively andnutrient feeding was based on experience after harvest. When the carbon, nitrogen andphosphate sources were substituted with the carbon dioxide, sodium nitrate and ammoniumcarbonate, and phosphate, respectively, and the feeding method was substituted withabsorbance-based or pH-based feedback feeding method in the outdoor large-scalecultivations, the carbon, nitrogen and phosphorus source concentrations in the culture mediumcould be maintained in the optimum range for Spirulina platensis growth. Meanwhile, thecost of culture medium decreased by about70%and the productivity per area of Spirulinaplatensis improved by more than20%.
     (6) The results of batch cultivations of Scenedesmus dimorphus showed that theoptimum pH for Scenedesmus dimorphus was7.5. Compared with the situation of usingNaNO_3and urea as the nitrogen source, a faster growth and higher lipid productivity could beobtained using NH_4HCO_3as the nitrogen source. In carbon-sufficient but nitrogen-orphosphorus-limited cultures, the lipid production of Scenedesmus dimorphus could beincreased. Furthermore, the promoting effect of nitrogen limitation on lipid accumulation wasmore than that of phosphorus limitation. Based on the batch cultivation results, CO_2wasadded using the pH-based feedback feeding method and NH_4HCO_3and K2HPO4were addedusing the absorbance-based feedback feeding method in the fed-batch cultivation ofScenedesmus dimorphus. The pH value of the culture medium could be maintained at7.5±0.3.And Scenedesmus dimorphus grew well in the nitrogen and phosphorus sources feeding stage.After the feeding end of nitrogen and phosphorus sources, nitrogen and phosphorus sourcesexhaustion quickly occurred and the accumulation of lipid was promoted at the same time.Compared with the batch cultivations, the constant feeding cultivations with nitrogen feedingrate of0.8mmol/(L·d) and phosphorus feeding rate of9.6μmol/(L·d), and the constantfeeding cultivation with nitrogen feeding rate of0.4mmol/(L·d) and phosphorus feeding rateof4.8μmol/(L·d), the lipid productivity in the fed-batch cultivations using the proposedfeeding method increased by58.2%,53.3%and37.1%, respectively.
引文
[1] Banerjee A., Sharma R., Chisti Y., et al. Botryococcus braunii: A renewable source ofhydrocarbons and other chemicals [J]. Critical Reviews in Biotechnology,2002,22(3):245-279.
    [2]陈峰,姜悦.微藻生物技术[M].北京:中国工业出版社,1999:103-132.
    [3] Chisti Y. Biodiesel from microalgae [J]. Biotechnology Advance,2007,25(3):294-306.
    [4] Zhang W. Microalgal bioenergy and biofuel: solar energy utilization and sustainablebiomass feedstock [R]. The International Conference on Biorefinery. Beijing: BeijingUniversity of Chemical Technology,2007.
    [5]程双奇.螺旋藻的营养评价[J].营养学报,1990,12(4):415-417.
    [6]张忠义.螺旋藻的生物学评价[J].食品科技,1999,5:52-53.
    [7] Spolaore P., Joannis-Cassan C., Duran E., et al. Commercial applications of microalgae[J]. Journal of Bioscience and Bioengineering,2006,101(2):87-96.
    [8] Mallick N. Biotechnological potential of immobilized algae for wastewater N, P andmetal removal: A review [J]. BioMetals,2002,15(4):377-390.
    [9] Chinnasamy S., Bhatnagar A., Hunt R.W., et al. Microalgae cultivation in a wastewaterdominated by carpet mill effluents for biofuel applications [J]. BioresourceTechnology,2010,101(9):3097-3105.
    [10] Berberoglu H., Gomez P.S., Pilon L. Radiation characteristics of Botryococcus braunii,Chlorococcum littorale, and Chlorella sp. Used for CO2fixation and biofuelproduction [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2009,110(17):1879-1893.
    [11] Schenk P.M., Thomas-Hall S.R., Stephens. E., et al. Second Generation Biofuels:High-efficiency microalgae for biodiesel production [J]. Bioenergy Research,2008,1(1):20-43.
    [12]韩志国,李爱芬,龙敏南,等.微藻光合作用制氢[J].生态科学,2003,22(2):104-108.
    [13]管英富,邓麦村,金美芳,等.微藻光生物水解制氢技术[J].中国生物工程杂志,2003,23(4):8-13.
    [15]顾天青,张慧苗.利用工业废水、废气(CO2)和余热培养的螺旋藻生物学特性研究[J].植物学通报,1992,9(2):47-52.
    [16] Sukenik A., Tchernov D., Kaplan A., et al. Uptake, efflux, and photosyntheticutilization of inorganic carbon by the marine eustigmatophyte Nannochloropsis sp.[J].Journal of Applied Phycology,1997,33(6):969-974.
    [17] Gao K., Mckinley K.R. Use of microalgae for marine biomass production and CO2remediation: a review [J]. Journal of Applied Phycology,1994,6(1):45-60.
    [18] Larsson C., Axelsson L. Bicarbonate uptake and utilization in marine microalgae [J].European Journal of Phycology,1999,34(1):79-86.
    [19]张永奎,温皓程,王立柱,等.不同氮源、无机碳源对小球藻生长及油脂积累的影响[R].江苏常州:全国生物化工技术发展探讨会,2010.
    [20] Garcia-Fernandez J.M., Diez J. Adaptive mechanisms of nitrogen and carbonassimilatory pathways in the marine caynobacteria Prochlorococcus [J]. Research inMicrobiology,2004,155:795-802.
    [21] Belkin S., Boussiba S. Resistance of Spirulina platensis to ammonia at high pH values[J]. Plant Cell Physiology,1991,32:953-958.
    [22]潘晓华,石庆华,郭进耀,等.无机磷对植物叶片光合作用的影响及其机理的研究进展[J].植物营养与肥料学报,1997,3(3):201-208.
    [23]庞勇,李斌,吕颂辉.不同磷源对海洋卡盾藻生长和碱性磷酸酶活性的影响[J].安徽农业科技,2010,38(17):9146-9148.
    [24] Kulaev I., Vagabov V., Kulakovskaya T. New aspects of inorganic polyphophatemetabolism and function [J]. Journal of Bioengineering,1999,88(2):111-129.
    [25]杨柳燕,王勤,史小丽,等.铜绿微囊藻代谢过程研究[J].农业环境科学学报,2005,24(4):686-689.
    [26] Powell N., Shilton A., Chisti Y. et al. Towards a luxury uptake process via microalgae–Defining the polyphosphate dynamics [J]. Water Research,2009,43:4207-4213.
    [27]钱善勤,孔繁翔,史小丽,等.不同形态磷酸盐对铜绿微囊藻和蛋白核小球藻生长的影响[J].湖泊科学,2008,20(6):796-801.
    [28] Bental M., Oren Shamir M., Avron M., et al.31P and13C-NMR studies of thephosphorus and carbon metabolites in the halotolerant alga, Dunaliella salina [J].1988,Plant Physiology,87(2):320-324.
    [29] Chu W.L., Phang S.M., Goh S.K. Influence of carbon source on growth, biochemicalcomposition and pigmentation of Ankistrodesmus convolutus [J]. Journal of AppliedPhycology,1995,7:59-64.
    [30] Berman T., Chava S. Algal growth on organic compounds as nitrogen sources [J].Journal of Plankton Research,1999,21(8):1423-1437.
    [31] Monod, J. Researches sur la croissance des cultures bacteriennes [M], Pairs:Hermann&Gic,1941:211.
    [32] Davidson K., Wood G., John E.H., et al. An investigation of non-steady-state algalgrowth. Ⅰ. An experimental model ecosystem [J]. Journal of Plankton Research,1999,21(5):811-837.
    [33] Droop M.R. Vitamin B12and marine ecologyⅤContinuous culture as an approach tonutritional kinetics [J]. Helgolander wiss Meeresunters,1970,20:629-636.
    [34] Kaplan D., Richmond A.E., Dubinsky Z., et al. Algal nutrition [M]. In CRC Handbookof Microalgal Mass Culture, Richmond, A. E., Ed. Boca Raton(FL): CRC Press,1986:147-198.
    [35]刘志媛.铁对几种不同代谢类型微藻的生长和油脂积累的影响[D].青岛:中国科学院海洋研究所,2008.
    [36]李涛.营养对雨生红球藻Haematococcus pluvialis CG-11生长的影响及培养基优化研究[D].广州:暨南大学,2009.
    [37] Tang D.H., Han W., Li P.L., et al. CO2biofixation and fatty acid composition ofScenedesmyus obliquus and Chlorella pyrenoidosa in response to different CO2levels[J]. Bioresource Technology,2011,102:3071-3076.
    [38] Chen F., John M.R. Effect of C/N ratio and aeration on the fatty acid composition ofheterotrophic Chlorella sorokiniana [J]. Journal of Applied Phycology,1991,3:203-209.
    [39]骆育敏,齐雨藻,洪英,等.利用废水培养螺旋藻(Spirulina platensis)的实验[J].暨南大学学报,1997,1(18):104-109.
    [40] Chaudhury B.K., Bhattaehayrya D.K. Effect of nitrogen source on γ-linolenic acidaccumulation in Spirulina platensis [J]. JAOCS,1999,76(1):153-156.
    [41]尤珊,郑必胜,郭祀远.氮源对螺旋藻生长及胞外多糖的影响[J].食品科学,2004,25(4):32-35.
    [42] Lin Q., Lin J. Effects of nitrogen source and concentration on biomass and oilproduction of a Scenedesmus rubescens like microalga [J]. Bioresource Technology,2011,102:1615-1621.
    [43] Shifrin N.S., Chisholm S.W. Phytoplankton lipids: interspecific differences and effectsof nitrate, silicate and light-dark cycles [J]. Journal of Phycology,1981,17(4):374-384.
    [44]江怀真,张维,刘天中,等.氮、磷浓度对小球藻生长及油脂积累的影响[J].食品工业科技,2011,32(6):204-207.
    [45] Kang Y., Liang J., Gao Y., et al. Influence of the concentration ratio of nitrogen tophosphorus on the growth and interspecies competition of two red tide algae [J]. ActaOceanologica Sinica,2007,26(5):107-115.
    [46]王雨,林茂,卢昌义,等.营养盐亏缺与恢复对威氏海链藻(Thalassiosiraweissflogii)生长和营养组成的影响[J].海洋通报,2009,28(4):47-53.
    [47] Yashi M.K., Lew K., Johnson A. et al. The effect of nutrient availability andtemperature on chain length of the diatom, Skeletonema costatum [J]. Journal ofPlankton Research,28(9):831-840.
    [48] Chen Y.C. The effect of shifts in medium types on the growth and morphology ofSpirulina platensis [J]. Journal of Marine Science and Technology,2011,19(5):565-570.
    [49] Bonnin G. BECCMA’s Spirulina production engineering handbook: a comprehensiveguide for the realization and operation of small and large-scale Spirulina factories [M].Nantes France: BECCMA,1992:140-159.
    [50] Doucha J., Lívansky K. Productivity, CO2/O2exchange and hydraulics in outdoor openhigh density microalgae (Chlorella sp.) photobioreactors operated in a Middle andSouthern European climate [J]. Journal of Applied Phycology,2006,18:811-826.
    [51] Borowitzka M.A. Commercial production of microalgae: ponds, tanks, tubes andfermenters [J]. Journal of Biotechnology,1999,70:318-321.
    [52] Tapie P., Bernerd A. Microalgal production: technical and economic evaluations [J].Biotechnology and Bioengineering,1988,32:873-885.
    [53] Radmann E.M., Reinehr C.O., Costa J.A.V. Optimization of the repeated batchcultivation of microalga Spirulina platensis in open raceway ponds [J]. Aquaculture,2007,265:118-126.
    [54] Cook P.M. Large-scale culture of Chlorella [M]. In: The culture of Algae, Ohio:Antioch Press,1950:53-77.
    [55]刘娟妮,胡萍,姚领,等.微藻培养中光生物反应器的研究进展[J].食品科学,2006,17(12):772-777.
    [56] Pirt S.J., LeeY.K., Walach M.R., et al. A tubular photobioreactor for photosyntheticproduction of biomass from CO2: design and performance [J]. Journal of ChemicalTechnology and Biotechnology,1983,33:35-58.
    [57] Torzillo G., Carlozzi P., Pushparaj B., et al. A two-plane tubular photo-bioreactor foroutdoor culture of Spirulina [J]. Biotechnology and Bioengineering,1993,42:891-898.
    [58] Lee Y.K., Ding S.Y., Low C.S., et al. Design and performance of an α-type tubularphotobioreactor for mass cultivation of microalgae [J]. Journal of Applied Phycology,1995,7(1):47-51.
    [59] Miyamoto K., Wable O., Benemann J.R. Vertical tubular reactor for microalgaecultivation [J]. Biotechnology Letter,1988,10(10):702-708.
    [60] Travieso L., Hall D.O., Rao K.K., et al. A helical tubular photobioreactor producingSpirulina in a semicontinuous mode [J]. International Biodeterioration andBiodegradation,2001,47:151-155.
    [61]陈必链,江贤章,王娟,等.光生物反应器中螺旋藻培养条件的优化[J].植物资源与环境学,2005,4(2):19-22.
    [62] Richmond A. Efficient utilization of high irradiance for production of photoautotrophiccell mass: a survey [J]. Journal of Applied Phycology,1996,8:381-387.
    [63]张栩,戢涌骋,周百发.气升式藻类光生物反应用研究[J].海洋科学,2000,24(5):14-17.
    [64] Fernando M.J., Felix E.C. A laboratory-scale system for mass culture of freshwatermicroalgae in polyethylene bags [J]. Journal of Applied Phycology,1994,6(4):423-425.
    [65] Celekli A., Donmez G. Effect of pH, light intensity, salt and nitrogen concentrations ongrowth and beta-carotene accumulation by a new isolate of Dunaliella sp [J]. WorldJournal of Microbiology and Biotechnology,2006,22(2):183-189.
    [66] Brown M.R., Dunstan G.A., Norwood S.J., et al. Effects of harvest stage and light onthe biochemical composition of the diatom Thalassiosira pseudonana1[J]. Journal ofPhycology,1996,32(1):64-73.
    [67] Chen G.Q., Chen F. Growing phototrophic cells without light [J]. BiotechnologyLetters,2006,8(9):607-616.
    [68] Borowitzka M.A., Huisman J.M., Osborn A. Culture of the astaxanthin-producinggreen alga Haematococcus pluvialis1.effects of nutrient on growth and cell type [J].Journal of Applied Phycology,1991,3(4):295-304.
    [69]康燕玉,谢文玲,高亚辉,等.不同浓度NaCl和光照强度对杜氏藻体内β-胡萝卜素含量的影响[J].植物生理学通讯,2006,42(2):315-318.
    [70]黄冠华,陈峰,魏东.两步培养法提高蛋白核小球藻的油脂含量[J].华南理工大学学报:自然科学版,2008,36(12):97-101.
    [71] Huntley M.E., Redalje D.G. CO2mitigation and renewable oil from photosyntheticmicrobes: a new appraisal [J]. Mitigation and Adaptation Strategies for Global Change,2007,12(4):573-608.
    [72]王长海,孙颖颖.流加培养对球等鞭金藻生长和生化成分的影响[J].天津大学学报,2008,41(2):142-146.
    [73] Hsieh C.H., Wu W.T. Cultivation of microalgae for oil production with a cultivationstrategy of urea limitation [J]. Bioresource Technology,2009,99(3):106-108.
    [74] Kim S.G., Park C.S., Park Y.H, et al. Effect of CO2concentration on growth andphotosynthesis of Spirulina platensis [J]. Study in Surface Science and Catalysis,2004,153:295-298.
    [75] Carvalho J.C.M., Francisco F.R., Almeida K.A., et al. Cultivation of Arthrospira(Spirulina) platensis (canophyceae) by fed-batch addition of ammonium chloride atexponentially increasing feeding rates [J]. Journal of Phycology,2004,40(3):589-597.
    [76]王军,杨素玲,丛威,等.产烃葡萄藻在气升式光生物反应器中的分批补料培养[J].过程工程学报,2003,3(4):366-370.
    [77] Jin H.F., Lim B.R., Lee K. Influence of nitrate feeding on carbon dioxide fixation bymicroalgae [J]. Journal of Environmental Science and Health (Part A),2006,41(12):2813-2824.
    [78] Brauer H. Biotechnology volume2: Fundamentals of biochemical engineering [M].Weinheim: VCH Verlagsgesellschaft mbH,1985:725-889.
    [79]蒋礼玲,张亚杰,李潇萍,等.微藻培养模式研究进展[J].可再生资源,2010,28(1):56-62.
    [80]张勇.基于pH的反馈补料方法及应用[D].北京:中国科学院过程工程研究所,2011.
    [81] Chen W., Graham C., Ciccarelli R.B. Automated fed-batch fermentation withfeed-back controls based on dissolved oxygen (DO) and pH for production of DNAvaccines [J]. Journal of Industrial Microbiology and Bitechnology,1997,18(1):43-48.
    [82] Xiong Z.Q., Guo M.J., Guo Y.X., et al. RQ feedback control for simultaneousimprovement of GSH yield and GSH content in Saccharomyces cerevisiae T65[J].Enzyme and Microbial Technology,2010,46(7):598-602.
    [83] Chiu S.Y., Kao C.Y., Tsai M.T., et al. Lipid accumulation and CO2utilization ofNannochloropsis oculata in response to CO2aeration [J]. Bioresource Technology,2009,100(2):833-838.
    [84] Garcia-Malea M.C., Acien F.G., Fernandez J.M., et al. Continuous production of greencells of Haematococcus pluvialis: modeling of the irradiance effect [J]. Enzyme andMicrobial Technology,2006,38(7):981-989.
    [85] Marsot P., Pelletier E., Stlouis R. Effects of triphenyltin chloride on growth of themarine microalga pavlova-lutheri in continuous-culture [J]. Bulletin of EnvironmentalContamination and Toxicology,1995,54(3):389-395.
    [86]周亚莉.高温和太阳紫外辐射对螺旋藻和节旋藻生长和生理影响的研究[D],青岛:中国海洋大学,2007.
    [87] Babcock J.R.W., Malda J., Radway J.C. Hydrodynamics and mass transfer in a tubularairlift photobioreactor [J]. Journal of Applied Phycology,2002,14:169-184.
    [88]李元广,沈国敏,王永红.微藻大规模自养和异养培养过程特点分析及国内外研究概况[R].青岛:中国第五届海洋湖沼药物学术开发研讨会,1998.
    [89] Vonshak A., Abeliovich A., Boussiba S., et al. Production of Spirulina biomass: effectsof environmental factors and population density [J]. Biomass,1982,2:175–185.
    [90] Macaloney G., Draper I., Preston J., et al. At-line control and fault analysis in anindustrial high cell density Escherichia Coil fermentation, using NIR spectroscopy [J].Transactions of the Institution of Chemical Engineers,1996,74C:212-220.
    [91] Skibsted E., Lindemann C., Roca C., et al. On-line bioprocess monitoring with amulti-wavelength fluorescence sensor using multivariate calibration [J]. Journal ofBiotechnology,2001,88:47-57.
    [92] Navratil M., Norberf A., Lembren L., et al. On-line multi-analyzer monitoring ofbiomass, glucose and acetate for growth rate control of a Vibrio cholerae fed-batchcultivation [J]. Journal of Biotechnology,2005,115:67-79.
    [93] Sandnes J.M., Ringstad T., Wenner D., et al. Real-time monitoring and automaticdensity control of large-scale microalgal cultures using near infrared (NIR) opticaldensity sensors [J]. Journal of Biotechnology,2006,122:209-215.
    [94]梁英,冯力霞,尹翠玲,等.叶绿素荧光技术在微藻环境胁迫研究中的应用现状及前景[J].海洋科学,2007,31(1):71-76.
    [95] Cornet J.F., Dussap C.G., Gros J.B. Kinetics and energetics of photosyntheticmicro-organisms in photobioreactors: application to Spirulina growth [J]. Advances inBiochemical Engineering/Biotechnology,1998,59:155-224.
    [96] Li J., Xu S.N., Su W.W. Online estimation of stirred-tank microalgal photobioreactorcultures based on dissolved oxygen measurement [J]. Biotechmical EngineeringJournal,2003,14:51-56.
    [97] Cogne G., Lasseur Ch., Cornet J.F., et al. Growth monitoring of a photosyntheticmicro-organism (Spirulina platensis) by pressure measurement [J]. BiotechnologyLetters,2001,23:1309-1314.
    [98] Pelizer L.H., Carvalho J.C.M., Sato S., et al. Spirulina platensis growth estimation bypH determination at different cultivations conditions [J]. Electronic Journal ofBiotechnology,2002,5(3):251-257.
    [1] Badger M.R., Priee G.D. The role of carbonic anhydrase in photosynthesis [J]. AnnualReview of Plant Physiology and Plant Molecular Biology,1994,45:369-392.
    [2] RaWqul I.M., Jalal K.C.A., Alam M.Z. Environmental factors for optimization ofSpirulina biomass in laboratory culture [J]. Biotechnology,2005,4,19-22.
    [3] Gosselin M., Ldfendre L., Therriault J.C., et al. Light and nutrient limitation of sea-icemicroalgae (Hudson bay, Canadian arctic)[J]. Journal of Phycology,1990.26(2):220-232.
    [4] Lang D.S., Brown E.J. Phosphorus limited growth of a green alga and blue green alga[J]. Applied and Environmental microbiology,1981,42(6):1002-1009.
    [5] Droop M.R. The nutrient status of algal cell in continuous culture [J]. Journal of MarineBiological Association of the United Kingdom,1974,54:825-855.
    [6] Zarrouk C. Contribution a leitude dune cyanophyceie: Influence de divers facteursphysiques et chimiques sur la croissance et la photosynthese de Spirulina maxima [D].Paris: University de Paris,1966.
    [7] Leduy A., Therien N. An improved method for optical density measurement of thesemimicroscopic blue green alga Spirulina maxima [J]. Biotechnology andBioengineering,1977,19(8):1219-1224.
    [8] Fresenius W., Ouentin K.E. Water analysis [M]. Heidelberg: Springer,1988:247-251.
    [9] Lowry O.H., Rosebrough N.J., Farr A.L., et al. Protein measurement with the Folinphenol reagent [J]. Journal of Biological Chemistry,1951,193:265-275.
    [10] Dubois M., Gilles K.A., Hamilton J.K., et al. Colorimetric method for determination ofsugars and related substances [J]. Analytical Chemistry,1956,28,350-356.
    [11] Piorreck M., Baasch K., Pohl P. Biomass production, total protein, chlorophylls, lipidsand fatty acids of fresh water green and blue-green algae under different nitrogenregimes [J]. Phytochemistry,1984,23(2):207-216.
    [12] Bennett A., Bogorad L. Complementary chromatic adaptation in a filamentousblue-green alga [J]. Journal of Cell Biology,1973,58:419-435.
    [13] Delucia E., Sasek T.W., Strain B.R. Photosynthetic inhibition after long term exposureto elevated levels of atmospheric carbon dioxide [J]. Photosynthesis Research,1985,7:175-184.
    [14] Paul M.J., Foyer C.H. Sink regulation of photosynthesis [J]. Journal of ExperimentalBotany,2001,52:1383-1400.
    [15] Bowes G. Facing the inevitable: plants and increasing atmospheric CO2[J]. AnnualReview of Plant Physiology and Plant Molecular Biology,44:309-332.
    [16] Richmond A., Grobbelaar J.U. Factors affecting the output rate of Spirulina platensiswith reference to mass cultivation [J]. Biomass,1986,10(4):253-264.
    [17] Taraldsvik M., Myklestad S.M. The effect of pH on growth rate, biochemicalcomposition and extracellular carbohydrate production of marine diatom Skeletonemacostatum [J]. European Journal of Phycology,2000,35:189-194.
    [18] Kaplan D., Richmond A.E., Dubinsky Z., et al. Algal nutrition [M]. In CRC Handbookof Microalgal Mass Culture, Richmond, A. E., Ed. Boca Raton(FL): CRC Press,1986:147-198.
    [19] Aizawa K., Miyaehi S. Carbonic anhydrase and CO2concentrating mechanisms inmicroalgae and cyanobacteria [J]. FEMS Microbiology Letters,1986,39:215-233.
    [20]李夜光,胡鸿钧,龚小敏.螺旋藻培养液pH变化机理和碳源利用率的研究[J].生物工程学报,1996, S1:242-248.
    [21]李夜光,胡鸿钧.螺旋藻培养液吸收CO2特性的研究[J].武汉植物学研究,1996,14(3):253-260.
    [22] Nakano H., Makino A., Mac T. The effect of elevated partial pressure of CO2on therelation between photosynthesis capacity and N-content in rice leaves [J]. PlantPhysiology,1997,115:191-198.
    [23] Rodrigues M.S., Ferreira L.S., Converti A., et al. Fed-batch cultivation of Arthrospira(Spirulina) platensis: Potassium nitrate and ammonium chloride as simultaneousnitrogen sources [J]. Bioresource Technology,2010,101:4491-4498.
    [24] Belkin S., Boussiba S. Resistance of Spirulina platensis to ammonia at high pH values[J]. Plant Cell Physiology,1991,32:953-958.
    [25] Carvalho J.C.M., Francisco F.R., Almeida K.A., et al. Cultivation of Arthrospira(Spirulina) platensis (Cyanophyceae) by fed-batch addition of ammonium chloride atexponentially increasing feeding rates [J]. Journal of Phycology,2004,40(3):589-597.
    [26] Park J., Jin H.F., Lim B.R., et al. Ammonia removal from anaerobic digestion effluentof livestock waste using green alga Scenedesmus sp.[J]. Bioresource Technology,2010,101:8649-8657.
    [27] Tam N.F.Y., Wong Y.S. Effect of ammonia concentration on growth of Chlorellavulgaris and nitrogen removal from media [J]. Bioresource Technology,1996,57:45-50.
    [28] Soletto D., Binaghi L., Lodi A., et al. Batch and fed-batch cultivations of Spirulinaplatensis using ammonium sulphate and urea as nitrogen sources [J]. Aquaculture,2005,243(1-4):217-224.
    [29] Safa H.A., Cynthia B.S. Physiological responses of Salvinia minima to differentphosphorus and nitrogen concentrations [J]. American Fern Journal,2008,98(2):71-82.
    [30]尤珊,郑必胜,郭祀远.氮源对螺旋藻生长及胞外多糖的影响[J].食品科学,2004,25(4):32-35.
    [31] Uslu L., Isik O., Koc K., et al. The effects of nitrogen deficiencies on the lipid andprotein contents of Spirulina platensis [J]. Africa Journal of Biotechnology,2011,10:386-389.
    [32] Young E.B., Beardall J. Rapid ammonium-and nitrate-induced perturbations to chl afluorescence in nitrogen-stressed Dunaliella tertiolecta (chllorophyta)[J]. Journal ofPhycoloy,2003a,39:332-342.
    [33] Dragone G., Fernandes B.D., Abreu A.P., et al. Nutrient limitation as a strategy forincreasing starch accumulation in microalgae [J]. Applied Energy,2011,88:3331-3335.
    [34] Lin Q., Lin J. Effects of nitrogen source and concentration on biomass and oilproduction of a Scenedesmus rubescens like microalga [J]. Bioresource Technology,2011,102:1615-1621.
    [35] Feuillade J., Feuillade M., Jolivet E. Photosynthetic metabolism in the cyanophytaOscillatoria rebesens D.C.Ⅱ. Carbon metabolism under nitrogen starvation [J].Archives of Microbiology,1982,131:107-111.
    [36] Xiong W., Liu L., Wu C., et al.13C-Tracer and gas chromatography-mass spectrometryanalyses reveal metabolic flux distribution in the oleaginous microalga Chlorellaprotothecoides [J]. Plant Physiology,2010,154:1001-1011.
    [37] Xu Z.G., Zou D.H., Gao K.S. Effect of elevated CO2and phosphorus supply on growth,photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis(Rhodophyta)[J]. Botanica Marina,2010,53:123-129.
    [38] Park M.R., Baek S.H., Reyes B.G., et al. Transcriptome profiling characterizesphosphate deficiency effects on carbohydrate metabolism in rice leaves [J]. Journal ofPlant Physiology,2012,169(2):193-205.
    [1] Kim S.G., Park C.S., Park Y.H, et al. Effect of CO2concentration on growth andphotosynthesis of Spirulina platensis [J]. Study in Surface Science and Catalysis,2004,153:295-298.
    [2] Soletto D., Binaghi L., Ferrari L., et al. Effects of carbon dioxide feeding rate and lightintensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helicalphotobioreactor [J]. Biochemical Engineering Journal,2008,39(2):369-375.
    [3] Doucha J., Lívansky K. Productivity, CO2/O2exchange and hydraulics in outdoor openhigh density microalgae (Chlorella sp.) photobioreactors operated in a Middle andSouthern European climate [J]. Journal of Applied Phycology,2006,18:811-826.
    [4] Soletto D., Binaghi L., Lodi A., et al. Batch and fed-batch cultivations of Spirulinaplatensis using ammonium sulphate and urea as nitrogen sources [J]. Aquaculture,2005,243(1-4):217-224.
    [5] Ferreira L.S., Rodrigues M.S. A new approach to ammonium sulphate feeding forfed-batch Arthrospira(Spirulina) platensis cultivation in tubular photobioreactor [J].Biotechnology Progress,2010,26(5):1271-1277.
    [6] Carvalho J.C.M., Francisco F.R., Almeida K.A., et al. Cultivation of Arthrospira(Spirulina) platensis (canophyceae) by fed-batch addition of ammonium chloride atexponentially increasing feeding rates [J]. Journal of Phycology,2004,40(3):589-597.
    [7] Cornet J.F., Dussap C.G., Gros J.B. Kinetics and energetics of photosyntheticmicro-organisms in photobioreactors: application to Spirulina growth [J]. Advances inBiochemical Engineering/Biotechnology,1998,59:155-224.
    [8]丛威,苏贞峰,康瑞娟,等.用于大规模培养微藻的补碳装置及其使用方法和用途
    [P].中国:CN200510126465.2,2007.06.20.
    [9] Delucia E., Sasek T.W., Strain B.R. Photosynthetic inhibition after long term exposureto elevated levels of atmospheric carbon dioxide [J]. Photosynthesis Research,1985,7:175-184.
    [10] Silva A.F., Lourenco S.O., Chaloub R.M. Effect of nitrogen starvation on thephotosynthetic physiology of a tropical marine microalga Rhodomonas sp.(Cryptophyceae)[J]. Aquatic Botany,2009,91(4):291-297.
    [11] Stal. L. Cyanobacterial Mats and Stromatolites. In: Whitton A.B., Malcolm P.K, editors.The Ecology of Cyanobacteira [M]. London: Academic Publishers,2002:95-108.
    [12] Jin H.F., Lim B.R., Lee K. Influence of nitrate feeding on carbon dioxide fixation bymicroalgae [J]. Journal of Environmental Science and Health (Part A),2006,41(12):2813-2824.
    [13] Jorgensen S.E. Application of ecological modeling in Environmental Management, Part A
    [M]. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company,1983:438.
    [14] Droop M.R. Vitamin B12and marine ecology Ⅴ Continuous culture as an approach tonutritional kinetics [J]. Helgolander wiss Meeresunters,1970,20:629-636.
    [15] Droop M.R. The nutrient status of algal cell in continuous culture [J]. Journal of MarineBiological Association of the United Kingdom,1974,54:825-855.
    [16] Junker B.H., Reddy J., Gbewoyo K., et al. On-line and in-situ monitoring technology forcell density measurement in microbial and animal cell cultures [J]. BioprocessEngineering,1994,10:195-207.
    [17] Soletto D., Binaghi L., Lodi A., et al. Batch and fed-batch cultivations of Spirulinaplatensis using ammonium sulphate and urea as nitrogen sources [J]. Aquaculture,2005,243(1-4):217-224.
    [18] Belkin S., Boussiba S. Resistance of Spirulina platensis to ammonia at high pH values[J]. Plant and Cell Physiology,1991,32:953-958.
    [19] Sanchez-Luna L.D., Converti A., Tonini G.C., et al. Continuous and pulse feeding ofurea as a nitrogen source in fed-batch cultivation of Spirulina platensis [J]. AquaculturalEngineering,2004,31:237-245.
    [20] Danesi E.D.G., Rangel-Yagui C.O., Carvalho J.C.M., et al. An investigation of theeffect of replacing nitrate by urea in the growth and production of chlorophyll bySpirulina platensis [J]. Biomass and Bioenergy.2002,23:261-269.
    [21] Matsudo M.C., Bezerra R.P., Sato S., et al. Repeated fed-batch cultivation ofArthrospira (Spirulina) platensis using urea as nitrogen source [J]. BiochemicalEngineering Journal,2009,43:52-57.
    [22] Rangel-Yagui C.O., Danesi E.D.G., Carvalho J.C.M., et al. Chlorophyll production fromSpirulina platensis: cultivation with urea addition by fed-batch process [J]. BioresourceTechnology,2004,92:122-141.
    [23] Henrikson R. Earth food Spirulina [M]. California: Ronore Enterprises Inc,1989:150-180.
    [24] Richmond A. Spirulina [M]. In: Borowitzka M.A., Borowitzka L.J., editors. MicroalgalBiotechnology. Cambridge: Cambridge University Press,1988:85-119.
    [25] Dillon J.C., Phuc A.P., Dubacq J.P. Nutritional value of the alga Spirulina [J]. WorldReview of Nutrition and Dietetics,1995,77:32-46.
    [26]余锦兰,夏建荣,邹永东.小新月菱藻碳酸酐酶活性和光合作用对高盐度胁迫的影响[J].水产科学,2011,35(4):516-522.
    [1] Belay A. Mass culture of Spirulina (Arthrospira) outdoors–The Earthrise FarmsExperience [M]. In: Vonshak A.(ed.), Spirulina platensis (Arthrospira): Physiology,Cell-Biology and Biotechnology. London: Taylor and Francis,1997:131-158.
    [2]丛威,苏贞峰,康瑞娟,等.用于大规模培养微藻的补碳装置及其使用方法和用途
    [P].中国:CN200510126465.2,2007.06.20.
    [3]苏贞峰.微藻规模培养补碳与混合强化研究[D].北京:中国科学院过程工程研究所,2009.
    [4]国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社,1989:280-285.
    [5] Cornet J.F., Dussap C.G., Gros J.B. Kinetics and energetics of photosyntheticmicro-organisms in photobioreactors: application to Spirulina growth [J]. Advances inBiochemical Engineering/Biotechnology,1998,59:155-224.
    [6] Lívansky K., Doucha J. Additional CO2saturation of thin-layer outdoor microalgalcultures: CO2mass transfer and absorption efficiency [J]. Algological Studies,1999,87:145-154.
    [7] Ryu H.J., Oh K.K., Kim Y.S. Optimization of the influential factors for theimprovement of CO2utilization efficiency and CO2mass transfer rate [J]. Journal ofIndustrial Engineering Chemistry,2009,15(4):471-475.
    [8] Richmond A., Becker E. Technological aspects of mass cultivation, a general outline
    [M]. In: Richmond A.(ed), Handbook of microalgal mass culture. Florida: CRC PressInc,1986:245-253.
    [9] Doucha J., Lívansky K. Productivity, CO2/O2exchange and hydraulics in outdoor openhigh density microalgae (Chlorella sp.) photobioreactors operated in a Middle andSouthern European climate[J]. Journal of Applied Phycology,2006,18:811-826.
    [10] Soletto D., Binaghi L., Ferrari L.et al. Effects of carbon dioxide feeding rate and lightintensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helicalphotobioreactor [J]. Biochemical Engineering Journal,2008,39(2):369-375.
    [11] Rodrigues M.S., Ferreira L.S., Converti A., et al. Fed-batch cultivation of Arthrospira(Spirulina) platensis: Potassium nitrate and ammonium chloride as simultaneousnitrogen sources [J]. Bioresource Technology,2010,101:4491-4498.
    [12] Chiu S.Y., Kao C.Y., Tsai M.T., et al. Lipid accumulation and CO2utilization ofNannochloropsis oculata in response to CO2aeration [J]. Bioresource Technology,2009,100(2):833-838.
    [1] Ohmori M., Ohmori K., Strotmann H. Ihibition of nitrate uptake by ammonia inblue-green alga, Anabaena cylindrical [J]. Archives of Microbiology.1977,114:225-229.
    [2] Filali-Mouhim R., Cornet J.F., Fontaine T., et al. Production isolation and preliminarycharacterization of the exopolysaccharide of the cyanobacterium Spirulina platensis [J].Biotechnology Letters,1993,15:567-572.
    [3] Khotimchenko S.V., Yakovleva I.M. Lipid composition of the red alga Tichocarpuscrinitus exposed to different levels of photon irradiance [J]. Phytochemistry,2005,66:73-79.
    [4] Otero A., Garcia D., Morales E.D., et al. Manipulation of the biochemical compositionof eicosapentaenoic acid-rich microalga Isochrysis galbana in semicontinuous cultures[J]. Biotechnology and Applied Biochemistry,1997,26:171-177.
    [5] Takagi M., Karseno Y.T. Effect of salt concentration on intracellular accumulation oflipids and triacylglyceride in marine microalgae Dunaliella cells [J]. Journal ofBioscience and Bioengineering,2006,101:223-226.
    [6] Yeesang C., Cherisilp B. Effect of nitrogen, salt and iron content in the growth mediumand light intensity on lipid production by microalgae isolated from freshwater source inThailand [J]. Bioresource Technology,2011,102:3034-3040.
    [7] Hsieh C.H., Wu W.T. Cultivation of microalgae for oil production with a cultivationstrategy of urea limitation [J]. Bioresource Technology,2009,99(3):106-108.
    [8] Jiang L.L., Luo S.J., Fan X.L., et al. Biomass and lipid production of marine microalgaeusing municipal wastewater and high concentration of CO2[J]. Applied Energy,2011,88:3336-3341.
    [9] Li X., Hu H., Gan K., et al. Effect of different nitrogen and phosphorus concentrationson the growth, nutrient uptake, and lipid accumulation of a freshwater microalgaeScenedesmus sp.[J]. Bioresource Technology,2010,101:5494-5500.
    [10] Chen M., Tang H., Ma H., et al. Effect of nutrient on growth and lipid accumulation inthe green algae Dunaliella tertiolecta. Bioresource Technology,2011,102:1649-1655.
    [11] Feng D., Chen Z., Xue S, et al. Increased lipid production of the marine oleaginousmicroalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement [J].Bioresource Technology,2011,102:6710-6716.
    [12]江怀真.培养条件对海水小球藻生长及油脂积累的影响[D].青岛:中国海洋大学,2010.
    [13] Rodolfi L., Chini Zittelli G., Bassi N., et al. Microalgae for oil: strain selection,induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor[J]. Biotechnology and Bioengineering,2009,102(1):100112.
    [14] Tang D.H., Han W., Li P.L., et al. CO2bioxfixation and fatty acid composition ofScenedesmyus obliquus and Chlorella pyrenoidosa in response to different CO2levels[J]. Bioresource Technology,2011,102:3071-3076.
    [15] Stanier R.Y., Kunisawa R., Mandel M., et al. Purification and properties of unicellularblue-green algae (Order Chroococcales)[J]. Bacteriology Reviews,1971,35:171-205.
    [16] Ogren W.L., Salvucci M.E., Portis A.R. The regulation of Rubisco activity [J].Philosophical Transactions of the Royal Society B,1988,313:337-346.
    [17] Xu N., Zhang X., Fan X., et al. Effects of nitrogen source and concentration on growthrate and fatty acid composition of Ellipsoidion sp.(Eustigmatophyta)[J]. Journal ofApplied Phycology,2001,13:463-469.
    [18] Li Y., Horsman M., Wang B., et al. Effects of nitrogen sources on cell growth and lipidaccumulation of green alga Neochloris oleoabundans [J]. Applied Microbiology andBiotechnology,2008,81:629-636.
    [19] Redfield A.C. The biological control of chemical factors in the environment [J].American Scientist,1958,46:205-221.
    [20] Zhang E.D., Wang B., Wang Q.H., et al. Ammonia-nitrogen and orthophosphateremoval by immobilized Scenedesmus sp. isolated from municipal wastewater forpotential use in tertiary treatment [J]. Bioresource Technology,2008,99(9):3787-3793.
    [21] Martínez M.E., Sánchez S., Jiménez J.M., et al. Nitrogen and phosphorus removal fromurban wastewater by the microalga Scenedesmus obliquus [J]. Bioresource Technology,2000,73(3):263-272.
    [22]陈锦清,郎春秀,胡张华,等.反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究[J].农业生物技术学报,1997,7(4):316-320.
    [23]刘波,孙艳,刘永红,等.产油微生物油脂生物合成与代谢调控研究进展[J].微生物学报.2005,45(1):153-156.
    [24] Beardall J., Berman T., Heraud P., et al. A comparison of methods for detection ofphosphate limitation in microalgae [J]. Aquatic Science,2001,63(1):107-121.
    [25]姚茹,程丽华,徐新华,等.微藻的高油脂化技术研究进展[J].化学进展.2010,22(6):1221-1232.
    [26] Mandal S., Mallick N. Microalga Scenedesmus obliquus as a potential source forbiodiesel production [J]. Applied Microbiology and Biotechnology.2009,84:281-291.
    [27] Gouveia L., Oliveira A.C. Microalgae as a raw material for biofuels production [J].Journal of Industry Microbiology and Biotechnology,2009,36:269-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700