水轮机叶片热模压成形及其数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水轮机叶片是水力发电设备中的关键部件,叶片热模压成形工艺是叶片制造的先进技术。同叶片的“铸造-铲磨”方法和数控加工方法相比,叶片热模压成形具有很多优势:叶型准确、叶片内部质量好、机械性能高、生产周期短。本文的主要研究内容和结果如下:
     详细的介绍了叶片热模压成形工艺以及成形过程中的关键技术:叶片热塑状态的展开和压力中心及压力吨位估算。综合几何展开法和有限元展开法获得了叶片板坯;利用基于有限元的节点力法求解了动态压力中心,同时实时追踪行程载荷曲线,很好的估算压力吨位;
     建立了符合实际的叶片热模压成形的有限元力学模型,应用DEFORM有限元分析软件对哈电机的某水轮机叶片进行了三维的数值模拟分析。获得了叶片热模压成形过程中的金属流动情况、等效应力、等效应变、速度场和温度场的分布情况以及叶片模压的贴模状况和行程-载荷曲线,并分析了不同上模下压速度时的应力、应变、温度变化情况对叶片热模压成形的影响,揭示了叶片热模压的成形规律;
     以叶片热模压成形的最大载荷为目标,以成形的工艺参数-上模下压速度、摩擦系数和成形温度为设计变量,借助于虚拟正交试验和最小二乘的非线性回归拟合,建立了目标与设计变量之间的相关关系-非线性回归模型。基于该回归模型,在对虚拟正交试验进行直观分析的基础上,对叶片热模压成形的工艺参数-上模下压速度进行了优化设计,得到了最佳上模下压速度22.3mm/s。
Hydro-turbine blade is a key component of waterpower equipment. The hydro-turbine blade hot die forming technology is an advanced manufacturing method. The blade which is manufactured by hot die forming has many advantages compared with the“Casting-Shovel milling”blade and the CNC blade. It is in good shape, high quality, high mechanical performance and short production cycle. A brief introduction to the studying content and its results are as follows:
     The hot die forming of hydro-turbine blade and its key technical problems are introduced in detail. The key technical problems include the unbending of blade in hot plasticity status and the pressure center. A blade billet is obtained by using integrated geometry unbending method and finite element method unbending. The dynamic pressure center is also solved by using node-load method based on FEM. Meantime; the forming load is gained through the real-time tracking of Stroke-Load curve.
     A 3-D thermal-mechanical coupling FEM simulation model corresponding to the reality is set up for the hot die forming of the hydro-turbine blade. The 3-D FEA software DEFORM is used for numerical simulation of the blade hot die forming and the results have been obtained for deformed mesh, effective stress field, effective strain field, temperature field, velocity field, the status of contact area and stroke load curve at the end of hot die forming. Besides, the influence of effective stress, effective strain, and temperature under different velocity on the blade hot die forming process is obtained. The results reveal the laws of blade hot die forming.
     The maximum forming load is chosen as the optimal objective and the forming technology parameters are chosen as the design variables. By dint of Orthogonal experiment design and least square for nonlinear regression fit method, the multivariant nonlinear regression model between the objective function and the three design variables is established. Based on the above the model and direct-vision analysis of dummy Orthogonal experiment design results, the blade hot die forming technology parameters-velocity of top die is optimized. The optimal technology parameters-velocity of top die, which is 22.3mm /s, is obtained.
引文
[1] 贺元. 水轮机叶片制造技术[J]. 东方电气评论,2004,18(4):210-214.
    [2] 王地召,王贞凯. 水轮机转轮叶片模压成型技术[J]. 东方电气评论,2006,20(1):42-46.
    [3] 朱邦材. 水轮机叶片成型工艺对精度的影响[J]. 大电机技术,1999,(2):52-56.
    [4] WALTHER Howald. 世界最高速级水轮发电机[J]. 国外大电机,1995,5:1-5.
    [5] 科学研究报告. 《水轮机叶片热模压压力中心及压力吨位估算方法的研究》[R]. 1998.
    [6] 科学研究报告. 《叶片热塑性状态时的展开方法研究》[R]. 1998.
    [7] 张向阳,库仁智,姜世昌. 两江/满台城电站水轮机转轮叶片二次热弯成型工艺研究[J].大电 机技术,1997,5:45-50.
    [8] 赖喜德. 大型水轮机叶片制造技术的新进展[J]. 西华大学学报·自然科学版, 2006,25(2): 72-77.
    [9] Mark Shahaf,Michel Bercovier. Interactive simulation of a forging process for blades [J]. In: J.F.T. and I. Pittman eds. Num.Meth.Ind.Form.Proc.,Swansea, UK, Pineridge Press, 1982, 343-349.
    [10] N.Rebelo,H.Rydstad,G.Schroder. Simulation of material flow in closed-die forging by model techniques and rigid-plastic FEM [J]. in: J.F.T. and I. Pittman eds. Num.Meth.Ind.Form.Proc., Swansea, UK, Pineridge Press, 1982, 237-246.
    [11] N.L.Dung,O.Mahrenholtz. Progress in the analysis of unsteady metal-forming processes using the FEM [J]. in: J.F.T. and I. Pittman eds. Num.Meth.Ind.Form.Proc.,Swansea, UK, Pineridge Press, 1982, 187-196.
    [12] B.S.Kang,N.S.Kim,Kobayashi. Computer aided perform design in forging of an airfoil section blade [J]. Int.J.Mach.Tools Manufact.,1990,30 (1) :43-52.
    [13] B.Soltani,K.Mattiasson,A.Samuelsson. Implicit and dynamic explicit solutions of blade forging using the finite element method [J]. J.Mater.Process.Technol.,1994,45:69-74.
    [14] M.Akiyasu,H.Shigeo,T.Kazuhito,et al. Near net shape forging of titanium alloy turbine blade[J].ISTJ International, 1991, 31(8):827-833.
    [15] 佐藤安彦,山本和人,木原茂文. Journal of JSIP, 1996, 37(425):659-662.
    [16] H.Ou,R.Balendra. Die-elasticity for precision forging of aerofoil sections using finite element simulation [J]. J.Mater.Process.Technol.,1998, 76:56-61.
    [17] H.Ou,C.G. Armstrong. Evaluating the effect of press and die elasticity in forging of aerofoil sections using finite element simulation [J]. Finite Element in Analysis and Design,2006,42: 856-867.
    [18] H.Ou,J.Lan,C.G. Armstrong,et al. An FE simulation and optimization approach for the forging of aero engine components [J]. Journal of Materials Processing Technology,2004,151: 208-216.
    [19] H.Ou,C.G. Armstrong,M.A.Price. Die shape optimization in forging of aerofoil sections [J]. Journal of Materials Processing Technology. 2003,132:21-27.
    [20] J.W.Brooks,T.A.Dean,Z.M.Hu,et al. Three-dimensional finite element modeling of a titanium aluminide aerofoil forging [J]. Journal of Materials Processing Technology,1998,80-81: 149-155.
    [21] P.F.Bariani,S.Bruschi,T.Dal Negro. Integrating physical and numerical simulation techniques to design the hot forgingprocess of stainless steel turbine blades [J]. International Journal of Machine Tools&Manufacture. 2004,44:945-951.
    [22] Young-Sang Na,Jong-Taek Yeom,Nho-Kwang Park,et al. Simulation of microstructures for alloy 718 blade forging using 3D FEM simulator [J]. Journal of Materials Processing Technology,2003,141:337-342.
    [23] 连建民. 叶片精锻过程刚粘塑性有限元模拟. 航空部第 621 研究所 ,1986,1.
    [24] 朱谨. 叶片精锻工艺及模具设计的 CAD 过程. 西北工业大学硕士学位论文,1985.
    [25] Wang Zhen,Xue Kemin,Liu Yingwei. Backward UBET simulation of the forging of a blade [J]. Journal of Materials Processing Technology. 1997, 65:18-21.
    [26] 赵国群. 锻造过程的正反向数值模拟.上海交通大学博士学位论文,1991.
    [27] 米小珍, 郑大梁,侯英玮. 涡轮叶片锻造成形过程的计算机模拟[J]. 大连铁道学院学报,1998,19(4):83-86.
    [28] 赫树本,崔树森. 复杂形体钛合金叶片等温热校形工艺研究[J]. 材料工程,1996,(4):40-42.
    [29] Zhan Mei,Liu Yuli,Yang He. A 3D rigid-viscoplastic FEM simulation of compressor blade isothermal forging [J].Journal of Materials Processing Technology,2001,117:56-61.
    [30] Yang He,Zhan Mei,Liu Yuli. A 3D rigid–viscoplastic FEM simulation of the isothermal precision forging of a blade with a damper platform [J]. Journal of Materials Processing Technology,2002,122:45-50.
    [31] Liu Yuli,Yang He,Zhan Mei,et al. A study of influence of friction conditions on the forging process of a blade with a tenon [J]. Journal of Materials Processing Technology,2002,123: 42-46.
    [32] Zhan Mei,Yang He,Liu Yuli. Deformation characteristic of the precision forging of a blade with a damper platform using 3D FEM analysis [J]. Journal of Materials Processing Technology, 2004,150:290-299.
    [33] Zhan Mei,Liu Yuli,Yang He. Influence of the shape and position of the perform in the precision forging of a compressor blade [J]. Journal of Materials Processing Technology,2002,120: 80-83.
    [34] Liu Yuli,Du Kun,Zhan Mei,et al. Physical modeling of blade forging [J]. Journal of Materials Processing Technology,2000,99:141-144.
    [35] Zhan Mei,Liu Yuli,Yang He. Physical modeling of the forging of a blade with a z-damper platform using plasticine [J]. Journal of Materials Processing Technology,2001,117:62-65.
    [36] 蔡旺, 刘郁丽, 杨合等. 叶片精锻三维刚粘塑性热力耦合有限元模拟系统[J].上海交通大 学学报,2005, 39(1):1-5.
    [37] 刘郁丽. 叶片精锻成形规律的三维有限元分析. 西北工业大学博士学位论文,2001.
    [38] 蔡旺. 叶片精锻过程三维热力耦合有限元模拟. 西北工业大学硕士学位论文,2002.
    [39] 刘钢,姚熊亮,陈宇等.大弯扭叶片热模压成形有限元模拟及其预制坯的优化设计[J].材料 科学与工艺,2002, 10(1):37-40.
    [40] 陈宇, 刘钢, 陈建明等.水轮机叶片模压成型工艺的热力耦合有限元模拟[J].材料科学与工艺.2000,8(1):101-103.
    [41] 陈昭运,薛伟. 一种新的模压叶片展开方法[J]. 大电机技术,2000(4):46-49.
    [42] 马一太,邢英丽. 我国水力发电的现状和前景[J]. 能源工程. 2003(4):1-4.
    [43] 陈宗器. 水电资源的现状与未来[J]. 华通技术,2006(2):21-34.
    [1] 王勖成. 有限单元法[M]. 北京:清华大学出版社,2002.
    [2] Kobayashi S, Oh S I, Altan T. Metal Forming and the Finite-element Method. Oxford:Oxford University Press, 1989.
    [3] 吕丽萍 主编. 有限元法及其在锻压工程中的应用[M]. 西北工业大学出版社,1989.
    [4] 陈如欣,胡忠民 编著. 塑性有限元法及其在金属成形中的应用[M]. 重庆大学出版社,1989.
    [5] 俞汉清,陈金德 编. 金属塑性成形原理[M]. 北京:机械工业出版社,1999.
    [6] 李尚健 主编. 金属塑性成形过程模拟[M]. 北京:机械工业出版社,1999.
    [7] 孔祥谦,王传福. 有限元法在传热学中的应用[M].北京:科学出版社,1981.
    [8] 彭颖红. 金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999.
    [9] 赵国群. 金属体积塑性成形过程数值模拟技术与仿真系统-Ⅰ[J]. 金属成形工艺,2003,21 (4):1-5.
    [10] 赵国群. 金属体积塑性成形过程数值模拟技术与仿真系统-Ⅱ[J]. 金属成形工艺,2003,21 (5): 5-8.
    [11] 林新波. DEFORM-2D 和 DEFORM-3D CAE 软件在模拟金属塑性变形过程中的应用[J]. 模具技术,2000,3:75-80.
    [12] 周飞,彭颖红,阮雪榆. DEFORMTM有限元分析系统及其在塑性加工中的应用[J]. 模具技术,1997,4:20-27.
    [13] G.Li,J.T.Jinn,W.T.Wu. et al. Recent development and applications of three-dimensional finite element modeling in bulk forming processes [J]. Journal of Materials Processing Technology, 2001,113:40-45.
    [14] S.I.Oh,,W.T.Wu, K.Arimoto. Recent developments in process simulation for bulk forming processes [J]. Journal of Materials Processing Technology,2001,111:2-9.
    [15] DEFORM-3D User’s Manual Version 6.1. Scientific Forming Technology Corporation.
    [1] 科学研究报告. 《叶片热塑性状态时的展开方法研究》[R]. 1998.
    [2] 科学研究报告. 《水轮机叶片热模压压力中心及压力吨位估算方法的研究》[R]. 1998.
    [3] 刘光宁,张富钦,吴新润. 国内外水轮机研制技术的新发展[J].动力工程,1997,17(5):60-71.
    [4] 贺元. 水轮机叶片制造技术[J]. 东方电气评论,2004,18(4):210-214.
    [5] 王地召,王贞凯. 水轮机转轮叶片模压成型技术[J]. 东方电气评论,2006,20(1):42-46.
    [6] 张向阳,库仁智,姜世昌. 两江/满台城电站水轮机转轮叶片二次热弯成型工艺研究[J].大电 机技术,1997,5:45-50.
    [7] 陈宇, 刘钢, 陈建明等. 水轮机叶片模压成型工艺的热力耦合有限元模拟[J]. 材料科学与 工艺,2000, 8(1):101-103.
    [8] 陈昭运,薛伟. 一种新的模压叶片展开方法[J].大电机技术,2000(4):46-49.
    [9] 刘钢,姚熊亮,陈宇等. 大弯扭叶片热模压成形有限元模拟及其预制坯的优化设计[J]. 材料 科学与工艺,2002, 10(1):37-40.
    [10] 刘德民, 刘小兵, 李娟. 基于UG 软件平台的混流式水轮机叶片的三维几何建模[J].水力发电,2007,33(7):56-59.
    [11] 潘海鸿,申毅莉,段素强等. 基于UG的轴流式水轮机叶片数字建模[J].水利电力机械,2007,29(4):17-20.
    [12] 席平. 三维曲面的几何展开[J]. 计算机学报,1997, 20(4):315-322.
    [13] 张公升. 扭曲变截面风机叶片的形成分析及展开[J]. 山东工业大学学报,2000,30(1):59-64.
    [14] 李文彦. 离心通风机单板叶片的展开计算[J]. 风机技术,2000,2:26-27.
    [15] 刘日良,苑国强. 轴流式三元叶片的计算机辅助成型研究[J]. 风机技术,2000,2:35-37.
    [16] 毛昕. 不可展曲面三角线法近似展开的误差分析[J]. 风机技术,1999 (1):23-26.
    [17] 王巍雄,李嵩,朱之墀. 不可展曲面的极值展开法及其在轴流通风机叶片中的应用[J].风机 技术,2004 (4):18-22.
    [18] K Lange. Handbook of Metal Forming. McGraw-Hill, New York, 1985.
    [19] Zone-Ching Lin,Ching-Hua Deng. Analysis of a torque equilibrium model and the optimal strip working sequence for a shearing-cut and bending progressive die[J].Journal of Materials Processing Technology, 2001,115:302-312.
    [20] 曹晓卿. 冲模压力中心计算的简化方法[J].太原理工大学学报,2000,31(4):467-469.
    [21] 杨丰,李云.用Pro/E快速确定冲裁压力中心的方法[J]. 锻压技术,2005,6:66-68.
    [22] 汤廷孝,贾志欣. 三维CAD环境下压力中心的快速求解[J].中国机械工程,2006,17:302-305.
    [23] 宋爱平,倪中华,张军等. 曲面板件三维模型表面数据的提取与平置处理[J].锻压技术, 2007,32(1):113-116.
    [24] DEFORM-3D User’s Manual Version 6.1. Scientific Forming Technology Corporation.
    [25] 朱邦材. 水轮机叶片成型工艺对精度的影响[J]. 大电机技术,1999,(2):52-56.
    [1] J. H. Kim,S. I. Oh,S. Kobayashi. Analysis of stretching of sheet metals with hemispherical punch [J]. Int.J. M TRD, 1978, 18:209.
    [2] S.I. Oh,S .Kobayashi. Finite element analysis of plane strain sheet bending [J]. Int.J.Mech.Sci, 1980, 22:58
    [3] G.J.Li,S.Kobayashi. Rigid-plastic finite element analysis of plane strain rolling [J]. Trans.ASME, J.Eng.Ind. 1982,104.
    [4] S.I.Oh,J.J.Pak,S.Kobayashi,et al. Application of FEM modeling to simulate metal flow in forging a titanium alloy engine disk [J]. Trans.ASME.J.Eng.Ind.1983, 105-251.
    [5] J.X.Sun,S.Kobayashi. Analysis of block compression with simplified three-dimensional element [J]. Adv.Tech.Plasticity-Proc.1st ICTP.TOKYO, 1984, 2:1027-1034.
    [6] G.Li,J.T.Jinn,W.T.Wu,et al. Recent development and applications of three-dimensional finite element modeling in bulk forming processes [J]. Journal of Materials Processing Technology 2001,113: 40-45.
    [7] S.I.Oh,W.T.Wu,K.Arimoto. Recent developments in process simulation for bulk forming processes [J]. Journal of Materials Processing Technology, 2001, 111: 2–9.
    [8] K.Shi,D.B.Shan,W.C.Xu,et al. Near net shape forming process of a titanium alloy impeller [J]. Journal of Materials Processing Technology, xxx (2007), 1-4.
    [9] 张向阳,库仁智,姜世昌. 两江/满台城电站水轮机转轮叶片二次热弯成型工艺研究[J]. 大 电机技术,1997,5:45-50.
    [1] L.Fourment,J.L.Chenot. Optimal design for non-steady-state metal forming processes [J]. Int.J.Numer.Meth Eng., 1996, 39:33-50.
    [2] 赵国群,王广春,贾玉玺等. 材料塑性成形过程最优化设计-有限元灵敏度分析方法[J].塑 性工程学报,1999,6(2):1-7.
    [3] 赵国群,王广春,贾玉玺等. 材料塑性成形过程最优化设计-灵敏度分析方法在模具设计 中的应用[J].塑性工程学报,1999,6(3):1-6.
    [4] Zhao Guoqun,Ed Wright,R.V.Grandhi,et al.Forging perform design with shape complexity control in simulating backward deformation [J]. Int.J.Mach.Tools Manufact., 1995, 36(9): 1225-1239.
    [5] D.Vieilledent, L.Fouement. Shape Optimization of Axisymmetric Perform Tools in Forming Using a Direct Differentiation Method [J]. Int.J.Numer.Meth Eng., 2001, 52:1301-1321.
    [6] M.S.Joun, S.M.Hwang. Die shape optimal design in three-dimensional shape metal extrusion by the finite element method [J]. Int.J.Numer.Meth Eng., 1998, 41:311-335.
    [7] Z.Y.Zhao, R.V.Grandhi. Sensitivity analysis and shape optimization for perform design in thermo-mechanical couple analysis [J]. Int.J.Numer.Meth Eng., 1999, 45:1349-1373.
    [8] Z.Y.Zhao, R.V.Grandhi. Microstructure optimization in design of forging processes [J]. Int.J.Machine Tools&Manufact., 2000, 40:691-711.
    [9] H.Ou, C.G.Armstrong. Die shape optimization in forging of aerofoil sections [J]. Journal of Materials Processing Technology, 2003, 132:21-27.
    [10] Kusiak. A technique of tool-shape optimization in large scale problems of metal forming [J]. Journal of Material Processing Technology, 1996, 57(1-2):79-84.
    [11] S.Roy, S.Ghoshi,R.Shivpuri. A New Approach to Optimal Design of Multi-Stage Metal Forming Process with Micro Genetic Algorithms [J]. Int.J.Mach.Tools Manufact., 1997, 37:29-44.
    [12] J.S.Chung,S.M.Hwang. Application of a Genetic Algorithm to Process Optimal Design inNon-Isothermal Metal Forming [J]. Journal of Material Processing Technology, 1998, 80-81: 136-143.
    [13] Picart P,Ghousti O,Gelin.J.C. Optimization of metal forming process parameters with damage minimization [J]. Journal of Material Processing Technology, 1998, 80-81:597-601.
    [14] 罗仁平. 锻造过程预成形计算机辅助优化设计研究.上海交通大学博士学位论文,1999.
    [15] 罗仁平,姚华,彭颖红等. 预锻模形状设计优化的新方法-微观遗传算法[J].中国机械工 程,2001,12(2):202-204.
    [16] 陈学文,王进,陈军等. 热锻成形过程数值模拟与多目标设计优化技术研究[J].塑性工程 学报,2005,12 (4):80-84.
    [17] 赵新海,赵国群,王广春等. 锻造预成形多目标优化设计的研究[J]. 机械工程学报,2002 , 38 (4):61-65.
    [18] 赵新海,赵国群,王广春等. 基于变形均匀性的锻造模具形状优化设计方法[J]. 机械工程 学报,2000 ,36 (10):64-67.
    [19] 赵新海,陈国军,李剑峰等. 基于有限元的锻件变形力优化设计[J].中国机械工程,2006 (17):122-124.
    [20] 陈晓艳,郭宝峰,金淼等. 管筒形零件机械扩径工艺过程的成形参数优化[J].塑性工程学报, 2003,13(6):24-28.
    [21] 孙靖民. 机械优化设计[M]. 北京:机械工业出版社.1990.
    [22] 刘惟信. 机械最优化设计[M]. 清华大学出版社.1994.
    [23] 吴贵生. 试验设计与数据处理[M]. 北京:冶金工业出版社.1997.
    [24] 苏金民,张莲花,刘波等编. MATLAB 工具箱应用[M]. 北京:电子工业出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700