板管连接方管节点滞回性能的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,方形管由于其优良的经济性能和结构性能,被越来越多地用于桁架结构的弦杆和框架柱中,用于替代传统的H型钢和工字型钢构件。这样,传统的较方便的由节点板连接支杆件的节点,则须将节点板沿着弦杆轴向方向焊接到方形管上。目前这种纵向板管连接方管节点的抗震性能国内外还没有相关研究,尤其对于有弦杆轴向力的情况、支杆与弦杆夹角为非90度的Y型连接的情况和节点受弯的情况。
     本文采用大型有限元软件ANSYS对纵向板管节点承受轴向往复荷载作用下的滞回性能进行了相关理论研究。通过分析节点的滞回曲线、骨架曲线、滞回环面积曲线和能量耗散系数曲线,研究了纵向板管节点的抗震耗能性能。对比分析了T型节点和Y型节点的抗震耗能性能,为此种连接的抗震设计提供了理论依据。
     由于纵向板管节点的刚度很小,在轴向力作用下,板管连接处容易产生过大的变形,承载力较低。为了减小纵向板管连接的变形,采用一种贯穿的纵向板管连接以提高节点的刚度。由于贯穿的板管节点同时与弦杆上下两个表面连接,节点的刚度提高约为原来的两倍,因而节点连接处的变形减小,承载力则会相应的增大。本文将进行此种“改进”形式的板管连接节点的滞回性能分析,并与相应的普通连接节点比较,以研究贯穿板管连接节点的抗震性能。
     最后,探究了纵向板管节点受弯时,其耗能性能随各几何参数的变化规律,明确了节点受弯时的抗震耗能能力,并对相应的K型板管节点进行了初步分析。
In recent years, the Square Hollow Structure Sections(SHS), with its high economical and structural efficiency, is more and more widely implemented into truss and frame structures as chords and columns, replacing the traditional H-sections and I-sections.This replacement requires a change to traditional jointing method,which means the gusset plate has to be welded to the face of SHS in a direction parallel to the chord instead of welded to the H-sections or I-sections. At present, researches on the seismic behavior of this longitudinal plate-to-SHS connections are rare, and few articles are found either in China or abroad. What's more, this need of further researches is even more urgent considering the following three unstudied conditions in this type of joint:1) chord subject to axial compression; 2) Y-shaped joint where the brace plate and the chord are not perpendicular to each other; 3) a joint under bending moment.
     Hysteretic behavior of the longitudinal plate-to-SHS connections under axial circle loads was studied by finite element analysis software ANSYS in this paper. Analysis of the hysteretic curves, skeleton curves, the area of hysteretic loop curves and the energy dissipation factor curves were carried out to clarify the seismic energy dissipation ability of the plate-to-SHS connections. Comparison between the T-joint and the Y-joint is also done, making a firm basis of theoretical evidence for the design of this type of joint.
     A longitudinal branch plate-to-SHS connection tends to cause excessive distortion of the SHS connecting face. Such a connection therefore results in a relatively low design resistance usually controlled by deformation limit state. A”through”branch plate connection that extends through both walls of the SHS member can be used to increase the connections rigidity as two times of a standard longitudinal plate connection to reduce the deformation and increase the design resistance of the connection. In this paper, analysis on the hysteretic behavior of this type of improved plate-to-SHS connection is made and comparison with the traditional longitudinal branch plate-to-SHS connection is performed to demonstrate the hysteretic behavior of the through branch plate connection.
     At last, the variation regularity of the seismic performance with parameters of the longitudinal plate-to-SHS joints under bending was studied to clarify the seismic energy dissipation ability of the connections. Primary analysis of K-type plate-to- SHS joints is done also.
引文
1轻型钢结构设计手册(第二版).中国建筑工业出版社. 2006,6
    2 J.A.Packer,J.E.Henderson,J.J.Cao.空心管结构连接设计指南.中国科学出版社,1997:75~80 5~8
    3 Nikola Kosteski.Branch Plate-To-Rectangular Hollow Structural Section Connections, Ph.D.thesis, the University of Toronto, 2001,Canada
    4 Sherman.D.R, Design with structural tubing. Engineering Journal, AISC.1996, 33(3)
    5 Jubb,J.E.M, Redwood.R.G. Design of joints to box sections. Conference on Industrial Building and the Structural Engineer, Institution of Structural Engineers, 1966,U.K
    6 Cao J J, Packer JA, Yang GJ. Yield Line Analysis of RHS Connections with Axial Loads. Journal of Constructional Steel Research 1998;48(1):1-25.
    7 Davies.G, Packer.J.A.Predicting the strength of branch palte-RHS connections for punching shear. Canadian Journal of Civil Engineering,1982,9:458-467
    8 Wardenier.J.Hollow section joints.Delft University Press,Delft,The Netherlands, 1982
    9武振宇,张耀春.?直接焊接钢管节点静力工作性能的研究现状.哈尔滨建筑大学学报,Vo1.29 .N0.6,Dec.1996
    10 Kurobane Y, Makino Y, Ochi K. Ultimate Resistance of Unstiffened Tubular Joints. Journal of Structural Engineering, ASCE 1984;110(2):385-400
    11 Zhao XL, Hancock GJ. T-joints in Rectangular Hollow Sections Subject to Combined Actions. Journal of Structural Engineering, ASCE.1991;117(8):2258-77
    12 Cao J J, Packer J A, Kosteski. N.Design Guidelines for Longitudinal Plate to HSS Connections, Journal of Structural Engineering 1998;124(7):784-91
    13 Xiao Ling Zhao.Deformation Limit and Ultimate Strength of Welded T-joints in Cold-formed RHS Sections.J.Constr.Steel Res.2000,127(10):1173~1182
    14 Woo-Bum Kim. Ultimate Strength of Tube-Gusset Plate Connections Considering Eccentricity. Engineering structures 2001(23) 1418-1426
    15 F.Qin,T.C.Fung,C.K.Soh. Hysteretic Behavior of Completely Overlap Tubular Joints. Journal of Constructional Steel Research. 2001,57(10):811-829
    16 N.Kosteski,J.A.Packer,R.S.Puthli.A Finite Element Method Based Yield Load Determination Procedure for Hollow Structural Section Connections. J.Constr. Steel Res.2003;59(4):453-471
    17 N.Kosteski, Packer JA. Welded Tee-to-HSS Connections. Journal of Structural Engineering 2003;129(2):151-159.
    18 N.Kosteski, J.A.Paker. Longitudinal Plate and Through Plate-to-Hollow Structural Sections Welded Connections. ASCE, Journal of Structural Engineering2003; 129(4): 478-486
    19 L.Gardner, D.A.Nethercot. Numerical Modeling of Stainless Steel Structural Components-A Consistent Approach. Journal of Structural Engineeting, 2004, 130(10)
    20 T.W.Ling.X.L.Zhao,R.Al-Mahaidi,J.A.Packer. Investigation of Shear Lag Failure in Gusset-plate Welded Structural Steel Hollow Section Connections. J.Constr. Steel Res.2007;63(3):293-304
    21 T.W.Ling. X.L.Zhao, R.Al-Mahaidi, J.A.Packer. Investigation of Block Shear Tear-out Failure in Gusset-plate Welded Connections in Structures Steel Hollow Sections and Very High Strength Tubes. J.Constr.Steel Res.2007;29(4):469-482
    22 Kyu-Woong Bae,Keum-Sung Park,Young-Hwan Choi. Structural Resistance of Longitudinal Double Plates-to-RHS Connections. J.Constr.Steel Res. 2009; 65(4): 940-947
    23张志良,沈祖炎,陈学潮.方管节点极限承载力的非线性有限元分析.土木工程学报,1990,23(1):12-22
    24沈祖炎,张志良.焊接方管节点极限承载力计算.同济大学学报.1990,18(3): 273-279
    25武振宇,张耀春.曲壳有限元法中曲面交线处位移连续性问题的坐标转换法.哈尔滨建筑大学学报.1997,30(5):20-23
    26武振宇,谭慧光.不等宽T型方钢管弦杆表面塑性铰线分析模型的研究.工程力学增刊.1998: 336-340
    27武振宇,张耀春.直接焊接T型钢管节点性能的试验研究.钢结构. 1994,14(2):36-39
    28武振宇,张耀春,谭慧光.不等宽T型方管节点性能的有限元分析.工程力学增刊. 1999:154-158
    29陈以一,王伟,赵宪忠.圆钢管相贯节点抗弯刚度和承载力试验.建筑结构学报,2001,22(6):25-30
    30武胜.?不等宽K型方管间隙节点性能的参数分析.工业建筑增刊,2002:560-565
    31武振宇,张耀春.弯矩作用下不等宽T型方管节点的塑性铰线分析.建筑结构学报,2003,24(4):65-69
    32武振宇,张耀春.压弯组合时等宽T型方管节点承载力就算.低温建筑技术. 2003,(5):36-37
    33武胜,武振宇.弦杆轴力作用下K型间隙方管节点静力性能的研究.钢结构. 2003,18(2):38-42
    34陈以一,沈祖炎,翟红,陈扬骥,陈荣毅,杨叔庸,龚模松.圆钢管相贯节点滞回特性的实验研究.建筑结构学报.2003,24(6):57-62
    35王伟,陈以一.圆钢管相贯节点局部刚度的参数公式.同济大学学报,2003,31(5):515-519
    36赵阳,王武斌,邢丽,傅学怡,顾磊,董石麟.国家游泳中心方钢管受弯连接节点加强试验研究.建筑结构学报. 2005,26(6):45-63
    37张扬.直接焊接KT型搭接方钢管节点静力性能的研究.哈尔滨工业大学工学硕士学位论文. 2006
    38王渊阳. K型间隙方钢管桁架静力工作性能的试验研究.哈尔滨工业大学工学硕士学位论文. 2007
    39陈鹏.轴向力作用下T型方管节点滞回性能的试验研究.哈尔滨工业大学,工学硕士学位论文,2007
    40 Wei Wang,Yi-Yi Chen.Hysteretic Behavior of Tubular Joints under Cyclic Loading. J.Constr.Steel Res. 2007; 63:1384-1395
    41 Y.Yin,Q.H.Han.Experimental Study on Hysteretic Behavior of Tubular N-joints. J.Constr.Steel Res. 2009; 65:326-334
    42 Packer J A. Moment connections between rectangular hollow sections[J]. J. of Constructional Steel Research, 1993,25(1):63-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700