移动传感器网络节点部署及自定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于机器人成本的降低和性能的提高,使用移动机器人作为传感器网络的节点已经可行,这种移动传感器网络形式具有无线分布式传感器网络所有的功能,而且节点具有可移动性,扩大了传感器网络的覆盖范围,提高了传感器网络的感知能力,它可以广泛应用于外星球探索、军事侦察、灾难搜救等领域。多移动机器人具有并行处理、容错、柔性和信息冗余的优点,使用多机器人的协作功能扩展了单个机器人的能力。
     本文在国家863计划资助项目“分布式多机器人合作与竞争机制及其应用技术”和国家自然科学基金资助项目“基于不精确地图的移动机器人室内导航技术”的资助下,以拓展移动机器人应用领域为目的,以理论研究和仿真实验为手段对移动传感器网络需要的关键技术进行了研究,提出了移动传感器网络节点在覆盖、部署、自定位以及目标跟踪方面的一些新算法。
     首先介绍了多机器人系统的特点和国内外多机器人系统研究方面的现状,并简要介绍了多机器人协作的概念、分类、需要解决的关键问题等,进而引出由多机器人系统组成的移动传感器网络概念、体系结构、拓扑结构的种类和系统评价标准,并介绍了移动传感器网络的应用领域,研究现状,以及需要解决的关键问题。
     由于移动传感器网络是由移动机器人构成,具有移动的特性,可以扩大感知区域的覆盖范围。本文对移动传感器网络中机器人节点常使用的动态覆盖算法进行了介绍,由于通常的动态完全覆盖算法主要使用在规则的感知区域,针对移动传感器网络实际应用中的感知区域的不规则性的限制,提出了一种基于覆盖误差控制节点移动的算法,这种算法基于对覆盖误差梯度的计算,控制每个移动机器人节点移动速度和移动方向,同时还考虑了多节点移动的避碰问题。本文不仅在理论上进行了控制规则的分析,同时用仿真的方式进行了算法验证,此算法可以在灾难救援等实际应用中使用。
     节点部署是移动传感器网络研究领域另一个重要课题,本文介绍了几种经常用于移动传感器网络节点部署的算法,同时提出了基于虚拟力的传感器网络节点部署算法,这种算法不仅使用传感器范围内的节点之间的距离信息,而且还考虑了节点间进行通讯获得的邻居节点间的位置信息,通过这种分布式控制节点移动方式,达到在待感知区域均匀部署节点的目的,并最大化覆盖待感知区域。这种控制算法不需预知环境地图信息,具有分布式控制效果,且具有自适应性,可以应用于军事侦察领域。
     由于感知对象的信息和其物理位置信息密不可分,所以节点自定位是传感器网络应用中传感器节点必须具备的功能,本文介绍了基于测距和基于非测距的节点自定位算法,并根据蒙特卡罗法,提出了一种基于混合跳跃蒙特卡罗法HMCL的节点自定位算法,此算法可以根据锚节点数量的多少,自行选择适合的定位策略,计算自己的位置坐标,通过与其它近似算法的比较,此算法具有自适应性和较高的准确性。
     由多机器人组成的移动传感器网络的一个最广泛应用领域就是对动态目标的观测及跟踪。本文基于人工势场法,提出了基于局部机器人及目标密度的多目标跟踪算法LRTDA,根据机器人节点密度和目标密度,进行虚拟力控制参数的调整,达到分布式跟踪多个移动目标的目的,提高了对移动目标的观测率和传感器网络的覆盖率,仿真实验表明了这种算法的有效性和可行性。此算法可以应用于战场侦察和灾难救援等领域。
As the cost reduced and the performance improved, using autonomous mobile robots as nodes of sensor network has become feasible. This kind of mobile sensor network has all functions that wireless distributed sensor network has. Its mobility increases the coverage range and upgrades the sensing ability of sensor network. Mobile sensor network can be extensively used in planetary exploration, military reconnaissance and disaster rescue. Multi-robots have such advantages as parallelism, flexibility, fault tolerance and data redundancy. Multi-robot coordination can extend the capability of the single robot.
     Supported by the national high-tech research and development plan of China,“Collaboration and Competition Mechanism for Distributed Multi-robots and its Application Techniques”and the NSF project,“Indoor Navigation Techniques of Mobile Robot based on Imprecise Map”, this dissertation aims to exploiting on the application domains of the mobile robotics and systemically studies several key technologies existing in mobile sensor network by theroretical and simulated way. Several novel algorithms are proposed for mobile sensor nodes including coverage, deployment, self-localization and multi-target tracking.
     The features and present research for multi-robot system are introduced firstly. The concept, classification and existing problems for multi-robot coordination are briefly presented. The concepts, system architecture, species of topology structure and evaluation criterions of system for mobile sensor network composed of multi-robot are elicited. And the application domains, present research state and key problems required to resolve are introduced.
     Mobile sensor networks are constructed by mobile robots. The robots have the mobility to increase the coverage for sensed region. Several common dynamic coverage algorithms are introduced firstly. These algorithms are used in regulation regions. An algorithm based on coverage error is proposed to control the motion of mobile nodes to overcome the limitations of abnormity for sensed regions. This algorithm is based on the computation for the grads of coverage error to control the speed and direction for robots and the avoid collision between nodes are considered at the same time. The control rules are analysed by theoretically and verified by the simulations. The algorithm can be used in disaster rescue.
     Nodes deployment is an importmant subject for mobile sensor network domain. This paper introduces several common deployment algorithms for mobile sensor networks. And the mobile sensor nodes deployment is proposed based on local virtual force. The algorithm utilizes not only the distance informations among nodes but also the position informations through communication between nodes. This distributed control way for nodes moving to achieve the goal of nodes uniformly deployment and maximal coverage in the sensed area. This algorithm need not know the map information of environment previously. It can be used for battle field due to the distributed control effectness and self-adaptability.
     Sensor nodes are required to have the function of self-localization because the sensed targets usually associate with geographical information in sensor network. Self-localization algorithms based on range and range-free are introduced firstly. This paper presents a hybrid hops Monte Carlo self-localization algorithm (HMCL) based on Monte Carlo Localization. The algorithm may select proper localization strategy to compute the coordinates of nodes according to the numbers of anchor nodes in sensor network. The algorithm is self-adaptable and higher accuracy compared with other similar algorithms.
     The most extensive application domain is to observe and track dynamic targets by mobile sensor network composed of multi-robot. The Local Robot Target Density Alogrithm (LRTDA) is proposed based on the Artificial Potential Fields. Based on the local density of robots and targets, the control parameter of virtual force is adjusted for achieving to track multi-target. The algorithm improves the observation for multi-target and coverage for sensor network. Simulation shows the validity and feasibility for this algorithm. This algorithm can be used for these domains, such as reconnaissance in battle field and rescue in disaster area.
引文
1李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展.软件学报. 2003, 14(10):1717~1727
    2 Rezgui A, Eltoweissy M. Service-oriented sensor-actuator networks: Promises, challenges, and the road ahead. Computer Communications. 2007, 30: 2627~2648
    3蔡自兴.机器人学.北京:清华大学出版社. 2000:1~2
    4 Poduri S, Sukhatme GS. Constrained coverage for mobile sensor networks. Proc. of the 2004 IEEE Int’l Conf. on Robotics & Automation. New York: IEEE Press. 2004:165~171
    5 K. H. Low, W. K. Leow, J. Anq, et al. Autonomic Mobile Sensor Network with Self-coordinated Task Allocation and Execution. IEEE Tran on SMC Part C. 2006, 36(3): 315~327
    6谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社. 2005:1~2
    7谭民,范永,徐国华.机器人群体协作与控制研究.机器人. 2001, 23(2):178~182
    8李实,徐旭明,叶榛等.国际机器人足球比赛及其相关技术.机器人. 2000, 22(5):420~426
    9王越超,谈大龙.协作机器人学的研究现状与发展.机器人. 1998, 20(1):69-75
    10黄闪,蔡鹤皋,谈大龙.面向装配作业的多机器人合作协调系统.机器人. 1999, 21(1):50~56
    11 H. Asama, A. Matsumoto, Y. Ishida. Design of an Autonomous and Distributed Robot System: ACTRESS. Proc IEEE Int Workshop on IROS, Tsukuba, Japan, 1989: 283~290
    12 T. Fukuda, S. Nakagawa. A Dynamically Reconfigurable Robotic System. Proceedings of International Conference on Industrial Electronics, Control, and Instrumentation, Cambridge, MA, 1987: 588~595
    13 Y. Maeda, K Haruka, I. Hidemitsu, et al. An Easily Reconfigurable Robotic Assembly System. Proceedings of IEEE International Conference Robot Automation, Taiwan, 2003: 2586~2591
    14 K. Jin, P. Liang, G. Beni. Stability of Synchronized Distributed Control of Discrete Swarm Structure. Proceedings of IEEE International Conference Robot Automation, San Diego, CA, 1994: 1033~1038
    15 R. Alami, S. Fleury, M. Herrb, et al. Multi-robot Cooperation in the MARTHA Project. IEEE Rob Autom Mag. 1998, 5(1): 36~47
    16蒋新松.机器人学导论.辽宁科学技术出版社. 1994:512~516
    17 Werger B. , Mataric M. J. Robotic "food" chains: Externalization of state and program for minimal-agent foraging. Fourth International Conference on Simulation of Adaptive Behavior: From Animals to Animats. 1996(4):626~633
    18 C. R. Kube, E. Bonabeau. Cooperative transport by ants and robots. Robot and Autonomous Systems. 2000, 30(1): 85~101
    19 M. J. Mataric′. Issues and approaches in the design of collective autonomous agents. Robot and Autonomous Systems. 1995, 16(2-4): 321~331
    20 L. H. Suh, H. J. Yeo, J. H. Kim. Design of a Supervisory Control System for Multiple Robotics Systems. IEEE Int Conf Intell Rob Syst, Osaka, Japan, 1996:332~339
    21 V. Jose, M. Chris. Distributed Multirobot Exploration Maintaining a Mobile Network. Proc IEEE Int CIS, Varna, Bulgaria, 2004: 113~118
    22 M. Dias, A. Stentz. A Free Market Architecture for Distributed Control of a Multirobot System. The 6th International Conference on Intelligent Autonomous Systems (IAS-6), Venice, Italy, 2000:115~122
    23 R. Zlot, A. Stentz. Market-based Multirobot Coordination for Complex Tasks. International Journal of Robotics Research. 2006, 25(1): 73~101
    24 E. Woo, B. A. MacDonald, F. Trepanier. Distributed Mobile Robot Application Infrastructure. IEEE Int Conf Intell Rob Syst, Las Vegas, United States, 2003: 1475~1480
    25 R. R. Cazangi, Z. Von, J. Fermando, et al. Autonomous Navigation SystemApplied to Collective Robotics with Ant-inspired Communication. Proc GECCO,Washington, USA, 2005: 121~128
    26 S. M. Das, Y. C. Hu, C. S. G. Lee, et al. Supporting Many-to-one Communication in Mobile Multi-robot Ad Hoc Sensing Networks. Proc IEEE ICRA, New Orleans, USA, 2004: 659~664
    27 C. Jones, M. J. Mataric. Automatic Synthesis of Communication-based Coordinated Multi-robot systems. IEEE Int Conf Intell Rob Syst, Sendai, Japan, 2004: 381~387
    28曹志强,张斌,王硕等.未知环境中多移动机器人协作围捕的研究.自动化学报. 2003, 29(4): 536~543
    29 Zh. Cao, M. Tan, Lei Li, et al. Cooperative Hunting by Distributed Mobile Robots Based on Local Interaction. IEEE Transactions on Robotics. 2006, 22(2):403~407
    30 O. Azouaoui, A. Cherifi, R. Bensalem, et al. Reinforcement Learning-based Group Navigation Approach for Multiple Autonomous Robotic Systems. Advanced Robotics. 2006, 20(5): 519~542
    31 E. A. Al-Gallaf. Multi-fingered Robot Hand Optimal Task Force Distribution: Neural Inverse Kinematics Approach. Robot and Autonomous Systems. 2006, 54(1): 34~51
    32马祖长,孙怡宁,梅涛.无线传感器网络综述.通信学报. 2004, 25(4): 114~124
    33 W. Heinzelman, A. Chandrakasan, H. Balakrishnan. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications. 2002, 1(4): 660~670
    34 I Akyildiz, W Su, Y Sankarasubramaniam, et al. Wireless Sensor Networks: A Survey, Computer Networks. 2002: 38(4):393~422
    35 M. Tubaishat, S. Madria. Sensor Networks: an Overview. IEEE Potentials. 2003, 22 (2):20~23
    36崔莉,鞠海玲,苗勇等.无线传感器网络研究进展.计算机研究与发展. 2005, 42(1): 163~174
    37 S. Tilak, N.B. Abu-ghazaleh, W. Heinzelman. A taxonomy of Wireless Micro-Sensor Network Models. ACM SIGMOBILE Mobile Computing and Communications Review. 2002, (6)2:28~36
    38 K. Sohrabi, J. Gao, V. Ailawadhi, et al. Protocols for Self-Organization of A Wireless Sensor Network. IEEE Personal Communication. 2000, 7(5): 16~27
    39 Hong W, Madden S. Tiny Schema: Creating Attributes and Commands in TinyOS [DB/OL]. http://www.telegraph.cs.berkeley.edu/tinydb/
    40 Tang L., Wang K-C., Huang Y. Channel Characterization and Link QualityAssessment of IEEE 802.15.4 Compliant Radio for Factory Environments. IEEE Trans. on Industrial Informatics. 2007, 3(2):99~110
    41任丰原,黄海宁,林闯.无线传感器网络.软件学报. 2003, 14(7):1282~1291
    42 K. Sundaresan, V. Anantharaman, H.-Y. Hsieh. ATP: A Reliable Transport Protocol for Ad-hoc Networks. IEEE Transactions on Mobile Computing. 2005 4(6): 588~603
    43 J. N. Al-Karaki, A. E. Kamal. Routing techniques in wireless sensor networks: a survey. IEEE Wireless Communications. 2004, 11(6): 6~28
    44 P. Gupta, P. R.Kumar. The capacity of wireless networks. IEEE Trans. Inform. Theory. 2000, 46: 388~404
    45 Lal D., Manjeshwar A., Herrmann F. Measurement and characterization of link quality metrics in energy constrained wireless sensor networks. Proc. Globecom. 2003:446~452
    46 L. van Hoesel, T. Nieberg, J.Wu, et al. Prolonging the lifetime of wireless sensor networks by cross-layer interaction. IEEE Wireless Communications. 2004, 11(6): 78~86
    47 Xiang-Yang Li, Peng-Jun Wan, Ophir Frieder. Coverage in Wireless Ad Hoc Sensor Networks. IEEE Transactions on Computers. 2003, 52(6): 753~763
    48 Cayirci E., Coplu T., Emiroglu O. Power aware many to many routing in wireless sensor and actuator networks. Proc. of the Second European Workshop on Wireless Sensor Networks. 2005:236~245
    49 W. Ye, J. Heidemann, D. Estrin. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM TRANS. 2004, 12(3): 493 ~506
    50 Zhao, J., Govindan, R. Understanding packet delivery performance in dense wireless sensor networks. Proc. 1st ACM Conf. Embedded Network Sensor Systems. 2003:1~13
    51 Chee-Yee Chong, Srikanta P. Kumar. Sensor networks: Evolution, opportunities, and challenges. Proc. of the IEEE. 2003, 91(8): 1247~1256
    52孙雨耕,张静,孙永进等.无线自组传感器网络.传感技术学报. 2004, 17(2): 331-335
    53 A. Kolling, S. Carpin. Multirobot Cooperation for Surveillance of Multiple Moving Targets- A New Behavioral Approach. Proceedings of IEEE ICRA,Orlando, Florida, USA, 2006: 1311~1316
    54 Hespanha, J.P., Naghshtabrizi, P., Xu, Y. A Survey of Recent Results in Networked Control Systems. Proceedings of the IEEE. 2007, 95(1): 138~162
    55王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法.软件学报. 2005, 16(5):857-868
    56 D. Niculescu, B. Nath. DV based positioning in ad hoc networks. Journal of Telecommunication Systems. 2003, 22 (1-4): 267~280
    57 N. Bulusu, J. Heidemann, D. Estrin. GPS-less Low Cost Outdoor Localization for Very Small Devices. IEEE Personal Communications Magazine. 2000, 7(5): 28~34
    58 Tian He, Chengdu Huang, B. Blum, et al. Range-free Localization Schemes for Large Scale Sensor Networks. San Diego, California, USA, 2003:81~95
    59 Dragos Niculescu, Badri Nath. DV Based Positioning in Ad hoc Networks. Journal of Telecommunication Systems. 2003, 22 (1-4):267~280
    60 Aline Baggio, Koen Langendoen. Monte Carlo localization for mobile wireless sensor networks. Ad Hoc Networks. 2008, 6(5): 718~733
    61吕科,张军,王钢等.基于序列Monte Carlo技术的动态节点定位.北京航空航天大学学报. 2007, 33(8): 886-889
    62 G Wang, G Cao, T La Porta. Movement-Assisted Sensor Deployment. Proc. of
    23rd Conf. of the IEEE Computer and Communications Society (INFOCOM). 2004:2469~2479
    63 A Howard, M J Mataric, G S Sukhatme. Mobile Sensor Network Deployment Using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem. Proc. of the 6th Int’l Symposium on Distributed Autonomous Robotics Systems (DARS), Fukuoka, Japan, 2002:299~308
    64 N Heo, P Varshney. An intelligent deployment and clustering algorithm for a distributed mobile sensor network. Proc. of IEEE Int’l Conf. on Systems, Man and Cybernetics. 2003:4576~4581
    65 A Howard, M J Mataric′, G S Sukhatme. An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots. 2002, 13(2): 113~126
    66 Guiling Wang, Guohong Cao, Tom La Porta, et al. Sensor Relocation in Mobile Sensor Networks. Proc. of 24th Conf. of the IEEE Computer andCommunications Society (INFOCOM). 2005:2302~2312
    67 Guiling Wang, Guohong Cao, Tom La Porta. A bidding protocol for deploying mobile sensors. Proc. of 11th IEEE Int’l Conf. on Network Protocols (ICNP), Atlanta, Georgia, 2003:315~324
    68 Guiling Wang, Guohong Cao, Tom La Porta. Proxy-Based Sensor Deployment for Mobile Sensor Networks. Proc. of 1st IEEE Int’l Conf. on Mobile Ad-hoc and Sensor Systems (MASS), Fort Lauderdale, Florida, USA, 2004: 493~502
    69 Xiaojiang Du, Fending Lin. Improving Sensor Network Performance by Deploying Mobile Sensors. Proc. of 24th IEEE Int’l Performance, Computing, and Communications Conf. (IPCCC), Phoenix, AZ, 2005: 67~71
    70蔺智挺,屈玉贵,翟羽佳等.一种高效覆盖的节点放置算法.中国科学技术大学学报. 2005, 35(3): 411~416
    71李德识,李薇.无线传感器网络中覆盖问题的研究.微电子学与计算机. 2005, 22(9): 150~152
    72 Oh S., Schenato L., Chen P. Tracking and coordination of multiple agents using sensor networks: system design, algorithms and experiments. Proceedings of the IEEE. 2007, 95(1):234~254
    73 M. Flint, M. Polycarpou, E. F. Gaucherand. Cooperative Control for Multiple Autonomous UAV's Searching for Targets. Proc. of IEEE CDC, Las Vegas, USA, 2002: 2823~2828
    74 D. J. Pack, B. E. Mullins. Towards Finding a Universal Search Algorithm for Swarm Robots. Proc. of IEEE Inter. Conf. on IROS, Las Vegas, USA, 2003: 1945~1950
    75 C. K. Cheng, G. Leng. Cooperative Search Algorithm for Distributed Autonomous Robots. Proc. of IEEE Inter. Conf. on IROS, Sendai, Japan, 2004:394~399
    76 M. M. Polycarpou, Y. Yang, K. M. Passino. A Cooperative Search Framework for Distributed Agents. Proc. of IEEE International Symposium on Intelligent Control, Mexico City, Mexico, 2001: 1~6
    77 T. Furukawa, F. Bourgault, B. Lavis, et al. Recursive Bayesian Search-and-Tracking Using Coordinated UAVs for Lost Targets. Proc. of IEEE ICRA, Orlando, Florida, 2006: 2521~2526
    78 Douglas W Gage.Command control for many-robot systems.UnmannedSystems. 1992,10(4):28~34
    79 J. Colegrave and A. Branch. A Case Study of Autonomous Household Vacuum Cleaner, in: AIAA/NASA CIRFFSS (1994)
    80 Y. Zhang, M. Schervish and H.Choset. Probabilistic Hierarchical Spatial Model for Mine Location and Its Application in Robotic Landmine Search. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2002, 1(9): 681~689
    81 T. Balch and R.C. Arkin. Communication in Reactive Multiagent Robotic Systems. Autonomation and Robots. 1994, 1(1): 27~52
    82 D. MacKenzie and T. Balch, Making a Clean Sweep: Behavior Based Vacuuming. AAAI Fall Symposium, Instationating Real-World Agents. 1993:93~98
    83 T. Balch, The Case for Randomized Search. in: Workshop on Sensors and Motion, IEEE International Conference on Robotics and Automation, San Francisco, CA . 2000, 5
    84 D. Gage. Randomized Search Strategies with Imperfect Sensors. Proceedings of SPIE Mobile Robots VIII. Boston, MA. 1993, (9): 270~279
    85 R. Carvalho, H. A. Vidal, P. Vieira, and M. I. Ribeiro. Complete Coverage Path Planning and Guidance for Cleaning Robots. Proceedings of the IEEE International Symposium on Industrial Electronics. Guimaraes, Portugal:1997: 677~682
    86 A. Elfes. Sonar-based Real-world Mapping and Navigation. IEEE Journal of Robotics and Automation. 1987, 3(6): 249~265
    87 H. Moravec and A. Elfes. High resolution maps for wide angles sonar. IEEE International Conference on Robotics and Automation. 1985:116~121
    88 Y. Gabriely and E. Rimon. Spiral-STC: An On-Line Coverage Algorithm of Grid Environments by a Mobile Robot. Proceedings of IEEE International Conference on Robotics and Automation. 2002, 1(5): 954~960
    89 H. Choset, E. Acar, A. Rizzi and J. Luntz. Exact Cellular Decompositions in Terms of Critical Points of Morse Functions. IEEE International Conference on Robotics and Automation. San Francisco, CA. 2000, 3(4): 2270~2277
    90 H. Choset and P. Pignon. Coverage Path Planning: The Boustrophedon Decomposition. Proceedings of the International Conference on Field andService Robotics. Canberra, Australia. 1997:667~682
    91 E.Acar and H. Choset. Critical Point Sensing in Unknown Environments. IEEE International Conference on Robotics and Automation. San Francisco, CA. 2000, 4(4):3803~3810
    92 Meguerdichian S, Koushanfar F, Potkonjak M, et al. Coverage Problems in Wireless Ad-hoc Sensor Networks. Proc. of 20th Conf. of the IEEE Computer and Communications Society (INFOCOM). 2001, (3):1380~1387
    93 Ghosh A. Estimating coverage holes and enhancing coverage in mixed sensor networks. Proc. of the 29th Annual IEEE Int’l Conf. on Local Computer Networks. New York: IEEE Press. 2004:68~76
    94 Kar K, Banerjee S. Node placement for connected coverage in sensor networks. Proc. of the Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. Sophia-Antipolis: IEEE Press. 2003:50~52
    95 Huang CF, Tseng YC. A survey of solutions to the coverage problems in wireless sensor networks. Journal of Internet Technology. 2005, 6(1):1~8
    96 Lin FYS, Chiu PL. A near-optimal sensor placement algorithm to achieve complete coverage/discrimination in sensor networks. IEEE Communications Letters. 2005, 9(1):43~45
    97 Chakrabarty K, Lyengar SS, Qi H, et al. Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans. on Computers. 2002, 51(12):1448~1453
    98 Megerian S, Koushanfar F, Potkonjak M, et al. Worst and best-case coverage in sensor networks. IEEE Trans. on Mobile Computing. 2005, 4(1):84~92
    99 Huang CF, Tseng YC, Lo LC. The coverage problem in three-dimensional wireless sensor networks. Proc. of the GLOBECOM. Dallas: IEEE Press. 2004: 3182~3186
    100 Cortes J, Martinez S, Karatas T, et al. Coverage control for mobile sensing networks. IEEE Trans. on Robotics and Automation. 2004, 20(2):243~255
    101 Ye F, Zhong G, Cheng J, et al. PEAS: A robust energy conserving protocol for long-lived sensor networks. Proc. of the Int’l Conf. on Distributed Computing Systems (ICDCS). Providence: IEEE Press. 2003:28~37
    102 Wang X, Xing G, Zhang Y, et al. Integrated coverage and connectivity configuration in wireless sensor networks. Proc. of the ACM Int’l Conf. onEmbedded Networked Sensor Systems (SenSys). New York: ACM Press. 2003: 28~39
    103 Shakkottai S, Srikant R, Shroff N. Unreliable sensor grids: Coverage, connectivity and diameter. Proc. of the IEEE Infocom. San Francisco: IEEE Press. 2003:1073~1083
    104 Lin FYS, Chiu PL. A near-optimal sensor placement algorithm to achieve complete coverage/discrimination in sensor networks. IEEE Communications Letters. 2005, 9(1):43~45
    105 Megerian S, Koushanfar F, Potkonjak M, et al. Worst and best-case coverage in sensor networks. IEEE Trans. on Mobile Computing. 2005,4(1):84~92
    106 Huang CF, Tseng YC. The coverage problem in a wireless sensor network. Proc. of the ACM Int’l Workshop on Wireless Sensor Networks and Applications (WSNA). New York: ACM Press. 2003:115~121
    107 Huang CF, Tseng YC, Lo LC. The coverage problem in three-dimensional wireless sensor networks. Proc. of the GLOBECOM. Dallas: IEEE Press. 2004: 3182~3186
    108 Gupta H, Das SR, Gu Q. Connected sensor cover: Self-Organization of sensor networks for efficient query execution. Proc. of the ACM Int’l Symp. on Mobile Ad Hoc Networking and Computing (MobiHOC). New York: ACM Press. 2003:189~200
    109 D.E.N. Bulusu, J. Heidenmann. GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine. 2000, 7(5):28~34.
    110 A. Galstyan, B. Krishnamachari, K. Lerman, et al. Distributed online localization in sensor networks using a moving target. Third International Symposium on Information Processing in Sensor Networks (IPSN), Berkeley, California, USA, 2004:61~70
    111 R. Peng, M.L. Sichitiu. Localization of wireless sensor networks with a mobile beacon. First IEEE Conference on Mobile Ad-hoc and Sensor Systems (MASS 2004), Fort Lauderdale, FL, USA, 2004:174~183
    112 K.-F. Ssu, C.-H. Ou, H.C. Jiau. Localization with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology. 2005: 1187~1197
    113 Tian He, Chengdu Huang, Brian M. Blum, et al. Range-free localization schemes in lame scale sensor networks. Proceedings of the 9th Annual International Conference on Mobile Computinn and Networkinn, San Dieno, CA, Cnited States, 2003:81~95
    114 R. Peng, M. Sichitiu. Robust Probabilistic Constraint-based Localization for Wireless Sensor Networks. Proceedings of the Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks(SECON’05), Santa Clara, CA, USA, 2005:541~550
    115 B. Wellenhoff, H. Lichtenegger, J. Collins. Global Positioning System: Theory and Practice. 4th Edition. Springer Verlag. 1997:12~97
    116 A. Savvides, H. Park, M. Srivastava. The Bits and Flops of the n-hop Multilateration Primitive for Node Localization Problems. Proceedings of the First ACM International Workshop on Wireless Sensor Networks and Application, Atlanta, GA, USA, 2002:112~121
    117 D. Niculescu, B. Nath. Ad Hoc Positioning System (APS) Using AoA. Proceedings of the 20st Annual Joint Conference of the IEEE Computer and Communications Societies. Piscataway, USA, 2003:1734~1743
    118 P.N. Pathirana, N. Bulusu, A.V. Savkin, et al. Node localization using mobile robots in delay-tolerant sensor networks. IEEE Transactions on Mobile Computing. 2005,4(3):285~296
    119 L. Hu, D. Evans. Localization for mobile sensor networks. Proceedings of the Tenth International Conference on Mobile Computing and Networking. Philadelphia, Pennsylvania, USA, 2004:45~57
    120石朝侠,王燕清,洪炳镕等.基于蒙特卡罗箱方法的移动感知网节点定位方法.高技术通讯. 2007, 17(8): 809~813
    121 Dil B., Dulman S.O., Havinga P.J.M. Range-Based Localization in Mobile Sensor Networks. Proceedings of Third European Workshop on Wireless Sensor Networks, Zurich, Switzerland, 2006:164~179
    122 D. Niculescu, B. Nath. DV based positioning in ad hoc networks. Telecommunication Systems. 2003, 22 (1–4): 267~280
    123 Boyoon Jung, Gaurav S. Sukhatme. Cooperative Tracking using Mobile Robots and Environment-Embedded, Networked Sensors. 2001 International Symposium on Computational Intelligence in Robotics and Automation, Banff,Alberta, Canada, 2001: 206~211
    124 Spletzer J, Taylor C. Dynamic sensor planning and control for optimally tracking targets. International Journal of Robotics Research. 2003, 22(1): 7~20
    125 Li D, Wong K D, Hu Y H, et al. Detection, classification and tracking of targets in distributed sensor networks. IEEE Signal Processing Magazine. 2002, 19(2): 17~29
    126 Jung B, Sukhatme G S. Cooperative Multi-robot Target Tracking. Proceedings of the 8th International Symposium on Distributed Autonomous Robotic Systems, Minneapolis, Minnesota, USA, 2006: 81~90
    127 Li T H S, Chang S J, Tong W. Fuzzy Target Tracking Control of Autonomous Mobile Robots by Using Infrared Sensors. IEEE Transactions on fuzzy systems. 2004, 12(4): 491~501
    128 Stroupe, A.W. Ravichandran, R. Balch, T. Value-based action selection for exploration and dynamic target observation with robot teams. Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 2004: 4190~4197
    129 Parker L. Cooperative robotics for multi-target observation. Intelligent Automation and Soft Computing. 1999, 5(1): 5~19
    130 Parker L. Distributed algorithms for multi-robot observation of multiple moving targets. Autonomous Robots. 2002, 12(3): 231~255
    131 C.Y. Chong, F. Zhao, S. Mori, et al. Distributed tracking in wireless ad hoc sensor networks. Proc. 6th Int. Conf. Information Fusion. 2003: 431~438
    132 F. Zhao, J. Shin, J. Reich. Information-driven dynamic sensor collaboration for tracking applications. IEEE Signal Processing Mag. 2002,19:61~72
    133 Zou, Y, Chakrabarty K. Sensor Deployment and Target Localization Based on Virtual Forces. Proceedings of 22nd Conference of the IEEE Computer and Communications Society (INFOCOM). 2003:1293~1303
    134 A. Josu, A. Rafacl, F. D. B. Lqor, et al. A New APF Strategy for Path Planning in Environments with Obstacles. Mechanism and Machine Theory. 2005, 40(6):645~658
    135 Y. Keron, J. Borenstein. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. Proceedings of IEEE International Conference on Robot Automation, California, USA, 1991:398~1404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700