陕北浅埋煤层矿区保水开采影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕北榆神府浅埋煤层矿区是我国煤炭工业战略西移的首选基地,是我国目前探明储量最大的煤田。它地理位置优越,地质构造简单,煤质优良,开采容易,已经成为我国主要的特大型优质动力煤和出口煤基地。但是,矿区处于干旱半干旱的毛乌素沙漠与黄土高原接壤地区,水资源贫乏,土地贫瘠,植被稀疏,生态环境脆弱,社会发展水平低。自然状态下环境质量呈下降趋势。煤炭工业的大规模开发更加快了该区环境质量的下降趋势,如何合理有效地开发煤炭资源,保护水资源,促进生态环境的改善,使区域经济可持续发展是该地区煤田开发过程中面临的一个重大课题。可持续发展开发本地区煤田的关键是在保护浅层地下水资源的条件下开发煤炭资源即保水开采。
     本文论述了保水开采的影响因素,认为影响保水开采的主要因素有矿区覆岩的工程地质特征(包括岩性、地层组合关系、基岩风化带特征)、地质构造、开采方法、煤柱的稳定性等。以前的研究者有的主要从采矿方法、有的主要从地质条件或者主要从水文地质角度研究保水开采,本文尝试综合考虑影响保水开采的各种自然和技术因素,尤其是覆岩的工程地质特征、地质构造、开采方法等,具体研究各个影响因素是如何影响导水裂隙带的发育,如何通过控制保水开采的影响因素实现保水开采。综合影响保水开采的各种因素,提出陕北浅埋煤层矿区保水开采的区域划分体系。
     在覆岩工程地质特征对保水开采影响的研究中建立了保水开采的工程地质模型,为相似模拟试验和数值模拟提供模型依据。在地质构造对保水开采的影响研究中,指出覆岩中断层的存在提高了导水裂隙带的发育高度,采用长壁间隔式开采实现保水开采时,覆岩中存在断层时工作面的推进距离要小于无断层时的情况。研究了断层活化突水的力学机理,指出断层倾角决定了断层活化的形式,并推导出断层不同活化形式时的临界采深和长壁间隔式开采工作面临界推进距离的计算公式。以燕伙盘井田为例探讨了断层断距与断层活化的关系。采用相似模拟实验和数值模拟,以大柳塔煤矿为例研究基岩中含有断层工作面不同推进方向时保水开采的工作面合理推进距离,得出基岩厚度分别为15m、30m、42m、54m和60m时采用长壁间隔式采煤保水开采工作面的推进距离,回归出工作面的推进距离与导水裂隙带高度之间的经验公式,而且得出从断层上盘向下盘推进比反向推进时导水裂隙带的发育高度要大的结论。煤柱的稳定性是保水开采实现的一个关键问题,在建立的保水开采的工程地质模型的基础上研究了长壁间隔式开采煤柱的合理宽度,结果表明15m是煤柱的合理宽度。
     在开采方法对保水开采的影响研究中,分析采空区覆岩的移动规律,分别对砂基型和砂土基型矿区提出相应的保水开采方法。在砂基型矿区应用固体力学理论,建立保水开采的关键保护层判据,提出通过选择合理的开采方法(包括长壁间隔式开采、分层开采等)使覆岩中的关键保护层不破断,导水裂隙带不发展到基岩上部的隔水层达到保水开采的目的。在砂土基型矿区采用开采损害学中地表移动变形和采动岩体内部移动变形预计的方法,考虑覆岩中隔水土层的膨胀性计算浅埋煤层砂土基型矿区开采后隔水土层中裂隙的破坏深度,同时借鉴相似模拟实验确定导水裂隙带的发育高度,最后计算采高不同时这两种裂隙之间的隔水保护层厚度,当隔水保护层厚度满足规定要求就可以实现保水开采,从而确定砂土基型矿区保水开采的合理开采方法。以陕北浅埋煤层矿区两个不同覆岩结构煤矿保水开采方法的选择为例验证了研究结果的可行性,同时应用相似模拟试验和数值模拟验证了计算结果。
     最后根据保水开采的需要对矿区的地层结构进行分类。根据采空区上覆岩层不同的岩土体类型及工程地质性质对保水开采影响作用的研究,综合考虑影响保水开采的各种自然和技术因素,对矿区的地层结构根据保水开采大致分类的结果以及保水开采影响因素的研究结果提出陕北浅埋煤层保水开采的区域划分体系,得出不同区域潜水不发生流失、地表不荒漠化的正确采矿方法和合理设计参数及技术措施,为矿区保水开采的宏观决策提供参考。
Yushenfu shallow seam mine area in the north Shaanxi province is the preferred base thatmine industry of our country strategical moves west, and the biggest reserves coalfield knownin our country now. It has predominant geographical location, excellent mine character, easemine condition, so, it has became our country primary export mine base of excellent characterdynamic mine. But, the coalfield locates arid-semiarid area which Maowusu desert and loessaltiplano borders on. In the area, the water resource is lithe, the land is leanness, thevegetation is sparse, the zoology environment is flimsy, the social development level is low.It's environmtntal quality puts up the descendent current in natural state. The exploiture ofminal industry quickens the descendent current of the environmtntal quality. It is a fatalproblem that how to reasonal and effective empolder the coal resource, how to protect waterresource, how to accelerate the mend of zoology environment, how to make the area economycontinuable development. The key that the coalfield empoldered continual is that the coalfieldis empoldered under the condition protecting the ground water.
     The influencing factors of water conservation mining were researched in the paper. Theinfluencing factors of water conservation mining have the geotechnical character ofoverburden strata (including lithology,the combined connection of strata, the weatheringcingulum character of bedrock), geological structure, mine method, the stability of coal pillaretc. Former researcher on water conservation mining from aspects of mining method. geologycondition or hydrogeology,All technical factors of influencing water conservation miningwere researched synthetically in the paper,especially included geotechnical character ofoverburden strata included,geological structure and mine method. All factors that influencingthe development of water fluid crack were researched idiographic. That water conservation mining through controling the influencing factors of water conservation mining wasresearched. Synthesizing all factors effecting water conservation mining, the waterconservation mining area divisiory system in the north Shaanxi province shallow saem minearea was provided.
     The geotechnical model of water conservation mining was established in the research ofthe geotechnical character of bedrock, providing a model gist for similitude simulation testand numercial simulation. In the research of the influence of geologica structure to waterconservation mining, the default in the bedrock hight the height of water conducted fissurezone. When the mine method of water conservation mining is long wall interval mine, theadvancing distance of work face when the bedrock has default is less than the advancingdistance when the bedrock has not default. The mechanics mechanism of the defaultactivation was researched, pointed that the dip angle of the default decide the form of defaultactivation, deducted the calculational formular of critical mine depth and the advancingdistance when the default activates. Taking Yanhuopan mine for example,research therelation between the the default distance and default activates. Taking Daliuta mine forexample, with similitude simulation test and numercial simulation, the work face advancingdistance for protecting water mine were researched when the bedrock have default and thedirection of work face adnancing is different, educed that the distance of work face when thebedrock thinckness are15m,30m,42m,54m and60m, educed the calculational formularbetween the the work face advancing distance and the height of water conducted fissure zone.The stability of coal pillar is a key question achieving water-protecting mine. The paperresearched the reasonable width of the long wall interval mine based the geotechnical modelof water conversation mine.The research results shows:the width of15m is reasonable widthof coal pillar.
     In the research of influence of mining method to water conservation mining, insand-bedrock-coal mine area,throught researching the law of overlaying stratum, applying thetheory of solid mechanics, this paper founded the key protecting stratum criterion, offering aacademic calculational method for the water conservation mine in the coal mine of thediffering structural overiaying statrum, at the same time, validating the feasibility of thecriterion exemplifying the choosing of the method for shallow coal layer, validating thecalculational result applying the similitude simulating experiment and numerical simulation.In sand-soil-bedrock-coal mine area,The breached depth of fracture was calculated in shallowseam covered with rock soil and sand after mine considering the dilatability of clay aquiclude,adopting the estimation method of the ground movement deformation and the movement deformation in the interior of mining rock in Mining Damage, simultaneity ascertaining thethe height of water flowing fractured zone utilizing similitude simulation experiment. Finally,the thickness of aquiclude protection among two fracture was calculated when the minehighness is different. The water conversation mine was achieved if the thickness of aquicludemeet prescribed requirement, so, the reasonable mine method of water conservation mine wasconfirmed in shallow seam mine area covered with rock soil and sand. The method wascorrected, valiating with locate mine practice and similitude simulation experiment.
     Finally,the paper researched the affecting factors including the type of rock and soil, thegeotechnical character of rock and soil, the geological structure,the hydrological conditionsand the method of mine etc. The paper researched function that the different rock and soiltype and it's geotechnical character effect water conservation mine, classified the mine areastratum according the need of water-protecting mine. According the research of function thatthe different rock and soil type and it's geotechnical character effect water conversation mine,providing the area divisiory system in the north Shaanxi province shallow saem mine area,finding the correct mine method, reasonal designed parameter and technical measureprotecting ground water, preventing upper hungriness, providing the reference formacroscopical decision-making of water conversation mine.
引文
[1]西安矿业学院矿山压力研究所.大柳塔煤矿1203工作面矿压观测研究报告.1993
    [2]范立民,寇贵德,蒋泽泉等.浅埋煤层开采过程中地下水流场变化规律.陕西煤炭,2003,(1):26~28
    [3]范立民.陕北地区采煤造成的地下水渗漏及其防治对策分析.矿业安全与环保.2007,34(10):62~64
    [4]杨泽元,王文科,黄金廷.陕北风沙滩地区生态安全地下水位埋深研究.西北农林科技大学学报(自然科学版),2006,(8):73~80
    [5]杨泽元,王文科,王雁林.秃尾河流域表生生态环境评价指标体系研究.水资源保护,2006,22(5):22~27
    [6]侯长庆等.矿床“三下一上”开采.北京:煤炭工业出版社,2003,130
    [7]钱鸣高.对中国煤炭工业发展的思考.中国煤炭,2005,(23)6:11~14
    [8]杨文钦,李秀晗,胡东祥.济宁二号矿三下煤层冒裂带高度试验研究.山东煤炭科技,2001(3):29~30
    [9]程金泉.导水裂隙带发育高度研究.煤炭科技,2002,3(3):5~6
    [10]易德礼,檀双英,吴俊松.祁东煤矿3224工作面开采“两带”高度特征研究.江苏煤炭,2004(3):37~39
    [11]彭苏萍,孟召平,李玉林.断层对顶板稳定性影响相似模拟试验研究.煤田地质与勘探,200112(3):1~4
    [12]翟新献.放顶煤工作面顶板岩层移动相似模拟研究.岩石力学与工程学报,2002,21(11):1667~1671
    [13]刘振宇.导水裂隙带高度预测途径探讨.内蒙古煤炭经济,2001(3):72~73
    [14]康永华.采煤方法变革对导水裂缝带发育规律的影响.煤炭学报,1998,23(3):262~266
    [15]于广明.矿山开采沉陷的非线性理论与实践.北京:煤炭工业出版社,1998,3
    [16] Thomasjl, Andersonrl. Water-energy conflict s in Montana’s Yellowstone river basin,Southeastern Montana. Journal of the American Water Resources Association,1976,12(4):829~842
    [17] Plotkinse, Goldh, Whiteil. Water and energy in the western coal lands. Journal of theAmerican Water Resources Association,1979,15(1):94~107
    [18] Lovedaype, Atkinsas, Azizni. The problem of Australian underground coal miningoperations in water catchment areas. International Journal of Mine Water,1983,2(3):12~15
    [19] Singhern, Jakemanm. Strata monitoring investigations around longwall panels beneaththe cataract reservoir. Mine Water and the Environment,2001,20:55~64
    [20] Zipper C, Balfour W,Roth R,et al. Domestic water supply impacts by underground coalmining inVirginia,USA, Environmental Geology,1997,29(1~2):84~93
    [21] Sidle R C, Kamil I,Sharma A,et al. Stream response to subsidence from undergroundcoal mining in central Utah, Environmental Geology,2000,39(3~4):279~291
    [22] Booth C, J, Bertsch L P. Groundwater geochemistry in shallow aquifers above longwallmines in Illinois,USA [J].Hydrogeology Journal,1999,7(6):561~575
    [23] Booth C, J. Groundwater as an environmental constraint of longwall coal mining,Environmental Geology,2006,49(6):796~803
    [24]武强,李铎.“煤—水”双资源矿井建设与开发研究.中国煤炭地质,2009,21(3):31~35
    [25]钱鸣高,许家林,缪协兴.煤矿绿色开采技术.中国矿业大学学报,2003,32(4):343~348
    [26]缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望.采矿与安全工程学报,2009,26(1):1~14
    [27]白海波,茅献彪,姚邦华等.潞安矿区煤水共采技术研究.岩石力学与工程学报,2009,28(2):395~402
    [28]魏秉亮.神府矿区突水溃沙地质灾害研究.中国煤田地质,1996,2(8):28~30
    [29]范立民.保水开采是神府东胜煤田开发可持续发展的关键.地质科技管理,1998,(5):28~29
    [30]王经明.毛乌素沙漠东缘煤炭开采引起土地沙化的机理及其对策.见:中国煤炭学会煤田地质专业委员会编.世纪之交煤矿地质学术论文集.西安:西安地图出版社,1998,376~383
    [31]夏斐.榆神府矿区基岩风化带对提高开采上限的作用.中国煤田地质,1999,11(4):70~71
    [32]李文平等.陕北榆神府矿区保水开采工程地质条件研究.煤炭学报,2000,25(5):449~454
    [33]叶贵钧等.陕北榆神府矿区煤炭资源开发主要水工环境及防治对策.工程地质学报,2000,8(4):447~455
    [34]李文平等.陕北榆神府矿区地质环境现状及采煤效应影响预测,工程地质学报,2000,8(3):324~333
    [35]刘德英.面向旷野的激情.科学中国人特别报道,2006,4
    [36]武强.神府东胜矿区水土环境问题及其调控技术.煤田地质与勘探,2005,33(3):54~57
    [37]刘洋,石平五,张壮路.浅埋煤层矿区“保水开采”条带开采的技术参数分析.煤矿开采,2006,11(6):6~10
    [38]黄庆享,刘腾飞.浅埋煤层开采隔水层位移规律相似模拟研究.煤田地质与勘探,2006,34(5):34~37
    [39]缪协兴,王安,孙亚军等.干旱半干旱矿区水资源保护性采煤基础与应用研究.岩石力学与工程学报,2009,28(2):217~227
    [40]王双明,范立民,黄庆享等.基于生态水位保护的陕北煤炭开采条件分区.矿业安全与环保,2010,37(3):81~83
    [41]王双明,黄庆享,范立民等.生态脆弱矿区含(隔)水层特征及保水开采分区研究,煤炭学报,2010,3(1):7~14
    [42]范立民.“保水采煤(保水开采)”成果获2011年度国家科学技术进步二等奖.陕西煤炭,2012,(1):134
    [43]黄庆享,石平五.印度浅埋煤层支护论证报告.西安:西安矿业学院,1998
    [44] B.霍勃尔瓦依特等.浅部长壁法开采效果的地质技术评价.煤炭科研参考资料,1985,(3)
    [45] L,Holla L, Buizen M. Stata movement due to shallow longwall mining and the effect onground permeability. Aus IMM Bullefin and Proceeding,1990.295(5)
    [46]任德惠.缓斜煤层采场压力分布规律与合理巷道布置.北京:煤炭工业出版社,1982,45~58
    [47]赵宏珠.中国综放长壁技术和装备出口印度应用效果分析.煤矿开采.2000,(1):5~8
    [48]赵宏珠.浅埋采动煤层工作面矿压规律研究.矿山压力与顶板管理.1996,(2):27~32
    [49]赵宏珠.印度综采长壁工作面浅部开采实践.中国煤炭.1998,(12):49~51
    [50]赵宏珠.印度浅埋深难跨顶板煤层地面爆破综采研究.矿山压力与顶板管理,1999(4):54~57
    [51] Singh,Rajendra,Singh,T,N,Bharaf B,Dhar. Coal pillar Loading shallow conditions.International Jounal of Rock Mechanics and Mining and Geomechanics Abstracts1996,33:757~768
    [52] R,P,Singh,R,N,Yadav. Subsidence due to coal mining in India. In:Proceedings of the19955th International Symposium on land Subsidence. IAHS Publication,No.234,1995,22:211~215
    [53] Yajie Wang and John StankusRoof. Control under condition of shallow depth and highhorizontal stress field-A case study. Proceedings of17th International on groundControl in Mining.1998,8:113~118
    [54]侯忠杰,石建新,金立斋.神府浅埋深煤层工作面矿山压力分析陕西煤炭1992,(2):29~32
    [55]侯忠杰,黄庆享.松散层下浅埋薄基岩煤层开采的研究.陕西煤炭技术,1992,(2):34~38
    [56]侯忠杰.厚风积砂下开采顶板岩层控制初探.煤矿开采,1996,21(2):50~53
    [57]侯忠杰.地表厚松散层浅埋煤层组合关键层的稳定性分析.煤炭学报,2000,25(2):127~131
    [58]侯忠杰.组合关键层理论应用研究及参数确定.煤炭学报,2001,26(6):611~615
    [59]侯忠杰.采场关键层、组合关键层断裂岩块最大允许回转角.见:西安科技学院编.西安科技学院科技会议论文集,2001,6:15~19
    [60]侯忠杰.浅埋煤层关键层研究.煤炭学报,1999,24(4):359~363
    [61]侯忠杰.西部浅埋煤层矿压控制实践与研究.见:西安科技学院编.西安科技学院科技会议论文集,2002,9:12~15
    [62]侯忠杰.层状矿床采场垮落带老顶与裂隙带老顶的判别.见:中国岩石力学与工程学会编.中国岩石力学与工程学会第七次学术大会论文集,2002,9:34~36
    [63]侯忠杰.断裂带老顶的判别准则及在浅埋煤层中的应用.煤炭学报,2003,28(1):8~12
    [64]黄庆享,张沛,刘文刚.厚沙土覆盖层从采动破坏形态和机理初步分析.矿山压力与顶板管理,2004,21(专刊):58~60
    [65]李刚,梁冰,李凤仪.大柳塔煤矿12305工作面覆岩活动规律的相似模拟.黑龙江科技学院学报,2005,15(5):295~295
    [66]柴敬.浅埋煤层开采的大比例立体模拟研究.煤炭学报,1998,23(4):391~395
    [67]黄庆享,钱鸣高,石平五.浅埋煤层顶板周期来压结构分析.煤炭学报.1999,24(6):581~585
    [68]张世凯.近水平煤层厚含水砂层薄基岩下开采试验研究.煤炭科学技术,1999,27(8):10~13
    [69]黄庆享,田小明,杨俊哲.浅埋煤层高产工作面矿压分析.矿山压力与顶板管理,1999,(3-4):53~56
    [70]杨伟峰,隋旺华.薄基岩条带开采覆岩与地表移动数值模拟研究.煤田地质与勘探,2004,32(3):18~20
    [71]胡炳南,赵有星,张华兴.厚冲积层与薄基岩条带开采地表移动参数与实践效果.煤矿开采,2006,11(l):56~58
    [72]张嘉凡,石平五.浅埋煤层长壁留煤柱开采方法的有限元分析.岩石力学与工程学报,2004,23(15):2539~2542
    [73]侯忠杰,吕军.浅埋煤层中的关键组探讨.西安科技学院学报,2000,20(1):5~8
    [74]谢洪彬.厚冲积层薄基岩下采煤地表移动变形规律.矿山压力与顶板管理,2001,(1):59~60
    [75]桂和荣,孙家斌,李明好.厚松散层及超薄覆岩条件下放顶煤开采防砂煤柱.煤田地质与勘探,2002,30(2):36~39
    [76]侯忠杰,张杰.厚松散层浅埋煤层覆岩破断判据及跨距计算.辽宁工程技术大学学报2004,23(5):577~580
    [77]侯忠杰,吴文湘,肖民.厚土层薄基岩浅埋煤层“支架—围岩”关系实验研究.湖南科技大学学报,2007,22(1):9~12
    [78] Terzaghi K. Theoretical Soil Mechanics. New York: Wiley,1943
    [79] Biot Mm,A. General theory of three-dimension consolidation. J.Appl.Phys,1941,12;155~164
    [80] Brace W F Walsh J B, Frangos W T. Permeability of Granite under high pressure,J.Geophys. Res.,1978(6):2225~2236
    [81] Patsouls G,gripps J,C. An investigation of the Permeability of Yorkshire chalk underdiffering pore water and confining pressure condition. Energy Source,1982,6(4):321~334
    [82] Gangi A,F. Variation of whole and fractured porous rock permeability with confiningpressure. Int.J.Rockmech. Min. Sci. Geomech. Abstr.,1978,15(5):249~257
    [83] Walsh J,B. Effect of pore pressure and confining pressure on fracture permeability.Int.J.Rock mech. Min.Sci.Geomech.Abstr.1981,18(5):429~435
    [84] Pyrak-Nolte,L, and J.P.Morris. Single fractures under normal stress: The relationbetween fracture specific stiffness and fluid flow,Internation Journal of Rock Mechnicsand Mining Science,2000,37(3):245~262
    [85] Snow D,T. Rock fracture specings,openings and porosities. J Soil Mech found. Div.Proc. ASCE94.1968:73~79
    [86] Noorishad J. Seepage in fractured rock: finite element analysis of rock mass behaviourunder coupled action of body force, flow forces and external loads. PhD Thesis,University of Berkeley,California,USA,1971
    [87] Witherspoon P, A. Investigations at Berkeley on fracture flow in rocks: from the parallelplate model to chaotic systems. In. Dynamics of Fluids in Fractured Rock. FaybishenkoB,Witherspoon P A.Benson S M (eds) American Geophysical Union, Washington,D.C,2000:1~58
    [88] Thallak S, Rothenbury L, Dusseault M, Simulation of multiple hydraulic fractures in adiscrete element system. Rock mechanics as a multidisciplinary science Roegiers (eds)Balkema Rotterdam ISBN906191194X, Proceeding of the32nd U.S.Symposium:1991,271~280
    [89]王媛,徐志英.复杂裂隙岩体渗流与应力弹塑性全耦合分析.岩石力学与工程学报,2000,(3):177~181
    [90]赵阳升.煤体-瓦斯耦合数学模型及数值解法.岩石力学与工程学报,1994,13(3):229~239
    [91]周创兵,熊文林.双场耦合条件下力学岩体的渗透张量.岩石力学与工程学报,1996,15(4):338~344
    [92]柴军瑞仵彦卿.岩体渗流与应力相互作用关系综述.见:中国岩石力学与工程学会编.第六届岩石力学与工程学会论文集.北京:中国电力出版社,2000,366~368
    [93]缪协兴等.采动岩体渗流理论.北京:科学出版社,2004,23~36
    [94]杨天鸿,唐春安,朱万成.岩石破裂过程渗流与应力耦合分析.岩土工程学报,2001,23(4):489~493
    [95] Tang C A,Yang T H,Tham L G,etal,Coupled analysis of flow,stress and damage(FSD)inRock failure Part1:Fundamentals Int J. Rock Mech Min. Sci.2001,39:47~48
    [96]康永华,孔凡铭,张文.试论水体下采煤的综合研究技术体系.煤矿开采,2001(3):9~11
    [97]隋旺华.工程地质模型在防水煤岩柱研究中的应用.中国矿业大学学报,1999,28(9):417~420
    [98]于双忠.煤矿工程地质研究.徐州:中国矿业大学出版社,1991,130~133
    [99]夏斐.榆神府矿区基岩风化带工程地质特征.陕西煤炭技术,1999,4(2):44~46
    [100]范立民,蒋泽泉.榆神矿区保水开采的工程地质背景.煤田地质与勘探,2004,32(5):32~34
    [101]余学义,张恩强.开采损害学.煤炭工业出版社,2004,9
    [102]于双忠,彭向峰,李文平.煤矿工程地质学.北京:煤炭工业出版社,1994.279~282
    [103]许兵.论工程地质模型―涵义、意义、建模与应用.工程地质学报,1999,5(3):199~204
    [104]伍佑伦,许梦国.根据工程岩体分级选择岩体力学参数的探讨.武汉科技大学学报,2002,21(3):22~25
    [105]成枢.岩层与地表移动数值分析新方法.徐州:中国矿业大学出版社,2003,19~25
    [106]谭志祥,周鸣,邓喀中.断层对水体下采煤的影响及其防治.煤炭学报,2000,25(3):256~259
    [107]谭志祥,何国清.断层影响下导水裂缝带的发育规律.煤炭科学技术,1997,25(10):45~47
    [108]谭志祥,周鸣,李志恒.断层对“两带”影响的模拟研究.矿山压力与顶板管理,1999,12(2):74~76
    [109]彭苏萍,孟召平,李玉林.断层对顶板稳定性影响相似模拟试验研究.煤田地质与勘探,2001,23(3):1~4
    [110]于广明,赵建锋,姚鑫等.采动断层(节理)活化的突变问题研究.中国科学基金,2001,(1):51~53
    [111]李治平.工程地质学.北京:人民交通出版社,2002,12~14
    [112]钱鸣高,刘听成.矿山压力与岩层控制.北京:煤炭工业出版社,1991,34~44
    [113]宋振骐.实用矿山压力控制.徐州:中国矿业大学出版社,1988,45~48
    [114]师本强,侯忠杰.榆神府矿区保水开采的实验与数值模拟研究.矿业安全与环保,2005,32(4):11~13
    [115]唐春安,徐曾和,徐小荷.岩石破裂过程分析RFPA2D系统在采场上覆岩层移动规律研究中的应用.辽宁工程技术大学学报,1999,18(5):456~458
    [116]康永华,黄福昌,席京德.综采重复开采的覆岩破坏规律.煤炭科学技,2001,29(1):22~24
    [117]钱鸣高,石平五.矿山压力与岩层控制.徐州:中国矿业大学出版社,2003,11
    [118]王旭春,黄福昌,张怀新. A.H.威尔逊煤柱设计公式探讨及改进.煤炭学报,2002,21(6):606~608
    [119]吴立新,王金庄.煤柱屈服区宽度计算及其影响因素分析,煤炭学报,1995,20(6):625~631
    [120]吴立新,王金庄,郭增长等.煤柱设计与监测基础.徐州:中国矿业大学出版社,2000,12~33
    [121] Sizer E,Gill M. Pillar failer in shallow coal mines-a recent case history, Transaction ofthe institution of mining and metallurgy,1995,Vol.109:147~156
    [122] J.M. Galvin,B.K. Hebblewhite. Australian coal pillar performance,Report,University ofNew South Wales,1996,Vol.121:12~16
    [123] Karl R, Zipf J, Mark C. Design methods to control violent pillar failures inroom-and-pillar mine, Transition of the insition of mining and metallurgy,1997,106(1):124~131
    [124]刘治国.中硬覆岩导水裂缝带发育高度与条带开采尺寸的关系研究:[学位论文].北京:煤炭科学研究总院,2004
    [125]黄庆享,蔚保宁,张文忠.浅埋煤层黏土隔水层下行裂隙弥合研究.采矿与安全工程学报,2010,27(3).35~39
    [126]黄庆享,蔚保宁,胡火明.榆树湾首采面保水开采矿压规律.陕西煤炭,2009,28(1):37~39
    [127]侯忠杰,付二军.长壁间隔式开采方法研究及其应用.西安科技大学学报,2009,29(1):2~6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700