层状岩体边坡工程力学参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体力学参数的合理确定是岩石边坡工程中一项基础的工作。由于岩体具有不均匀性、不连续性和随时间变化的特性,目前在层状岩体边坡工程的岩体力学参数选取方面仍然存在一些问题。本文针对当前岩体力学参数研究的难点进行了研究,并将研究成果应用到实际边坡工程中。
     本文研究工作主要内容如下:
     1.提出了修正的RMR法——GSMR法,并用于边坡岩体力学参数的估算。该方法较全面地考虑了完整岩石强度、结构面产状、结构面间距、结构面粗糙度、地下水条件、岩石质量指标、边坡高度、研究区域地震基本烈度、开挖方法和人工边坡形态等影响岩体力学性质的因素,并提出了连续性权值修正的方程(二次函数关系或半对数关系),对完整岩石强度、岩石质量指标、结构面间距权值进行了连续修正,减少了主观判断带来的误差。在边坡岩体力学参数预测方面,将GSMR值代替RMR值,更能反映边坡岩体实际力学性质,并将其用于边坡稳定分析,是一种边坡工程上可行的方法。
     2.用微结构张量表示广义Hoek-Brown强度准则参数,使之可以考虑边坡岩体各向异性特性;把边坡开挖弱化因子和锚固增强因子引入广义Hoek-Brown强度准则,并提出了两个因子的计算公式,研究了爆破开挖和锚固对边坡岩体力学参数的影响程度,计算了爆破开挖和锚固后的岩体力学参数。算例分析表明:变形模量、抗拉强度、粘结力和加载方向与结构面夹角正弦的平方呈线性相关,具有不同程度的各向异性,粘结力的各向异性特别地明显:内摩擦角在未扰动、开挖和描固条件下的各向异性不明显,均保持不变。开挖对不同边坡岩体的力学参数的影响程度不同,一般地对坚硬岩体的影响大于软弱岩体;开挖弱化因子与变形模量、粘结力和内摩擦角呈线性相关,与抗拉强度呈指数相关。锚固对变形模量、抗拉强度、粘结力提高幅度大,对内摩擦角提高幅度不大;锚固增强因子与变形模量、粘结力和内摩擦角呈线性相关,与坚硬岩体的抗拉强度呈线性相关,与软弱岩体的抗拉强度呈指数相关。
     3.考虑圆形截面岩石简支梁中央受集中力作用,用应变片测定简支梁某些点的应变值,推导了量测应变值与流变参数蠕变柔量之间的关系表达式;根据粘弹性本构模型理论,推导了系统模型蠕变柔量的一般形式;当岩石简支梁出现弹-粘塑性变形时,推导了量测应变与梁挠度之间的关系表达式;使用最小二乘法建立目标函数,对模型流变参数进行估计;用龙滩水电站泥板岩岩样流变试验所测得的应变值,反演了泥板岩的流变参数,进行了泥板岩粘弹性模型辨识,得出了符合泥板岩的流变本构模型。
    
    中文摘要
     4.假定层状岩体为层状复合材料,采用复合介质的等效介质理论研究了层状
    岩体的等效弹性模量,并提出与边坡类型对应的等效介质模型,与层状岩体边坡
     (包括切层边坡和反倾向边坡)对应的力学模型为并联模型,与顺层边坡对应的
    力学模型为串联模型。研究表明:Voigt一Reuss模型上下限范围大、精度不高,
    Hashin一Shtrikman模型上下限范围小、精度高,Eshelby模型、自洽模型、微分模
    型和Mori~1’a naka模型预测结果基本保持一致。
     5.利用本文的研究成果,给出了向家坝水电站左岸层状岩体边坡未扰动区
    和开挖扰动区的岩体力学参数建议值,并在此基础上对该边坡变形进行三维数值
    模拟分析,进行了工程实例分析验证。
    关键词:层状岩体边坡、力学参数、GSMR法、Hoek一Brown强度准则、蠕变柔
     量、等效弹性模量、向家坝水电站
The reasonable confirmation of rock mass mechanical parameter is a fundamental job in rock slope mechanics and engineering. Because rock mass possesses heterogeneity, discontinuity and rheology property, there exists some problems on the choice of rock mass mechanical parameter of layer rock mass slope engineering. In this paper, the currently difficult problems on rock mass mechanical parameter are carried out, which study results are applied to the slope engineering practice.The main study work in the dissertation are focused on following several aspects:1. Based on the advantages of RMR on the slope rock mass quality evaluation, GSMR(General Slope Mass Rating) method is proposed, which is applied to the evaluation of slope rock mass mechanical parameters. Intact rock strength, orientation, interval and roughness of structural plane, groundwater condition, rock quality index, slope height, basic earthquake intensity in study zone, excavation method, shape of artificial slope, the factors of affecting the rock mass mechanical properties, are all taken into account by the GSMR system. The continuous modification quadratic function or semi-logarithmic function for intact rock strength, rock quality index or structural plane spacing are put forward, and then the error caused by the subjective judgement is decreased. So the RMR value can be replaced by the GSMR value when slope rock mass mechanical parameter is forecasted, which can reflect the slope rock mass mechanical properties, what's more, the slope stability analysis can be used the GSMR value. It shows that the GSMR method is a feasible method on the slope engineering.2. Aiming at the deficiencies of using Hoek-Brown strength criterion estimate the rock mass mechanical parameter in the practical application, the microstructure tensor is adopted to describe the parameters of the Hoek-Brown strength criterion, which can consider the anisotropism of slope rock mass. The slope excavation softening factor and anchorage strengthen factor is introduced to Hoek-Brown strength criterion, and the commutated equation of the above two factors is put forward, which investigates the effect extent of blast excavation and anchorage on the slope rock mass mechanical parameters, and at the same time rock mass mechanical parameters behind blast excavation and anchorage are computed. Case research indicates that deformation modulus, tensile strength, and cohesion take linear relation with the sine squared of
    
    the angle between the loading direction and structural plane, which possess the anisotropism with different extents. The anisotropism of cohesion is clear specially, however the anisotropism of internal friction angle isn't very distinct and basically a constant under the undisturbed, excavated and bolted conditions. The effect extent of excavation on mechanical parameters of different slope rock mass is varying. In a general way, the influence on the hardness rock mass is greater than that on the softness one. The excavation softening factor and deformation modulus, cohesion, internal friction angle have a linear relation, but it takes index relation with the tensile strength. The deformation modulus, tensile strength, cohesion are increased greatly by the bolt strengthen factor, nevertheless the internal friction angle is increased weakly by the bolt strengthen factor. The relation between the bolt strengthen factor and deformation modulus, cohesion, internal friction angle, tensile strength of the hardness rock is linear, and the tensile strength of the softness rock possesses index relation.3. Considering a concentrated force in the middle of the rock simple beam with round section, the strain value of some points on the rock simple beam is investigated by using the strain gauge, and the relation between the strain value and the creep compliance (rheological parameter) is deducted. Then the general format of creep compliance of the system model is derived on basis of visco-elastic constitutive model theory, and the relation between the strain value and beam deflection is de
引文
1.孙广忠.地质工程理论与实践[M].北京:地震出版社,1996
    2. Goodman R E. Introduction to rock mechanics (2nd ed.)[M]. New York: New York Press, 1989
    3.夏熙伦.工程岩石力学[M].武汉:武汉工业大学出版社,1998
    4.潘家铮.岩石力学与反馈设计[J].水电站设计,1994,10(3):3~10
    5.王建锋.斜坡稳定:方法论[J].水文地质工程地质.1999(2):30~34
    6.符文熹,尚岳全,孙月红等.岩体变形参数渐变取值模型及工程应用[J].工程地质学报,2002.10(2):198~203
    7.MUller L.岩石力学基本原理及其在地面-地下工程稳定性分析中的应用[J].水电站设计.1987(1):1~4
    8.王思敬.中国岩石力学与工程的世纪成就与历史使命[J].岩石力学与工程学报,2003, 22(6):867~871
    9.陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社.1991
    10. Oda M A. Method for evaluating the representive elementary volume based on joint survey of rockmass[J]. Can. Geotech. J.. 1988, 25(3): 281~287
    11. Ramamurth T. Strength and modulus response of anisotropic rocks[J]. Comprehensive Rock Mech., 1993, 4(1): 23~28
    12.张林洪.结构面抗剪强度的一种确定方法[J].岩石力学与工程学报,2001.20(1):114~117
    13.李建林.孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报.2001.20(3):338~341
    14.尤明庆,苏承东.岩石的非均质性与杨氏模量的确定方法[J].岩石力学与工程学报,2003.22(5):757~761
    15.张振南.茅献彪、郭广礼.松散岩块压实变形模量的试验研究[J].岩石力学与工程学报.2003.22(4):578~581
    16. Olsson W A. The compressive strength of tuff as a function of strain rate from 10~(-6) to 10~(-3)/sec[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1991, 28(1): 115~118
    17. Zhao J, Li H B, Wu H B, et al. Dynamic uniaxial compression tests on granite[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1999, 36(2): 273~277
    18.李海波.蒋会军,赵坚.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报.2003.22(11):1887~1891
    19.杨海波.赵坚,李延芥.滑移型裂纹模型在研究岩石动态单軕抗压强度中的应用[J].岩石力学与工程学报,2001.20(3):315~319
    20.廖红建,吴建英,黄飞强等.用统一强度理论求解岩土材料的动力强度参数[J].岩石力学与工程学报.2003.22(12):1994~2000
    21.时向东,陈永建.高边坡岩体各向异性和动力特性的测试研究[J].地质灾害与环境保护.2001,12(3):56~59
    
    22.周维垣.高等岩石力学[M].北京:水利电力出版社.1990
    23. Brown E T. Analytical & Computational Methods in Engineering Rock Mechanics[M]. London: London Press, 1987, 129~163
    24.朱维申,王平,节理岩体的等效连续模型与工程应用[J].岩土工程学报,1992,14(2):1~11
    25.徐光黎,潘别桐.晏同珍.节理岩体变形模量估算新方法[J].地球科学,1991.16(5):573~580
    26. Kawamoto T, Ichikawa Y, Kyoya T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory[J]. Int. J. Num. & Analy. Meth. in Geomech., 1988(12): 1~30
    27.周维址,杨延毅.节理岩体力学参数取值研究[J].岩土工程学报,1992.14(5):1~11
    28.凌建明.节理裂隙岩体损伤力学研究中的若干问题[J].力学进展.1994,25(2):57~263
    29.谢和平、分形—岩石力学导论[M].北京:科学出版社,1996
    30.李久林,唐辉明.分形几何在岩体损伤分析中的应用[J].工程勘察.1994.15(4):294~297
    31.刘东燕.断续节理岩体的压剪断裂及其强度特性研究(博士论文)[D].重庆:重庆建筑工程学院,1993
    32. Kulatilake P H S W. Uepirti H. Wang S, et al. Use of the distinct element method to perform stress analysis in rock with non-persistent joints and study the effect of joint geometry parameters on the strength and deformability of rock masses[J]. Rock Mech. & Rock Eng.. 1992, 25(4): 253~274
    33. Ikeda K A. Classification of rock condition for tunneling[A]. In: Proc. 1st Int. Congr. Eng. Geology IAEG [C]. Paris: [s. n.]. 1970, 1258~1265
    34. Aydan O. Akagi T: Kawamoto T: The squeezing potential of rock around tunnels: theory and prediction[J]. Rock Mech. & Rock Eng., 1993, 26(2): 137~163
    35. Ito J. Konda T. Aydan O. Performance of the support system of a tunnel in squeezing rocks[A]. In: Proc. Korea-Japan Joint Symp. on Rock Eng.. Seoul: [s. n.], 1996. 337~382
    36. Lashkaripour G R. Passaris E K S. Development of a database system on shale characteristics[A]. In: Olivie R. Rodrigues L F, Coelho A G ed. Procecding of 7th international IAEG Congress[C]. New York: Pergamon. 1994. 6: 4 477~4 482
    37. Kim K, Gao H. Probabilistic approaches to estimating variation in the mechanical properties of rock masses[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1995. 32(2): 111~120
    38. Barton N. The influence of joint properties in modeling jointed rock masses[A]. In: Proc. 8th Int. Rock Mech. Congr.. Tokyo: [s. n.]. 1995, 3~4
    39. Singh B. Indian case studies of squeezing grounds and experiences of application of Barton's Q system[A]. Workshop on Norwegian Method of Tunneling, CSMRS. New Delhi, 1993
    40. Kalamaras G S, Bicniawski Z T. A rock mass strength concept for coal seams incorporating the effect of time[A]. In: Proc. 8th ISRM Congr.. Tokyo: [s. n.], 1995, 295~302
    41. Hoek E. Brown E T. Empirical strength criterion for rock masses[J]. J. Geotech. & Geoenv. Eng.. 1980. 106(9): 1 013~1 035
    42. Bieniawski Z T: Rock mass classification in rock engineering[A]. Explor. for Rock Eng.. Proc. of the Symp., A. A. Balkema, Geotech Div, Transvaal, Cape Town, S Aft, 1976, 97~106
    43
    
    43. Serafim J L, Pereira J P. Consideration of the Geomechanics Classification of Bieniawski[A]. In: Proc. Int. Symp. Eng. Geol. & Underground Construction. Lisbon, Portugal, 1983, 1(Ⅱ): 33~44
    44. Barton N, By T L, Chryssanthakis P. et al. Predicted and messured performance of the 62m span Norwegian Olympic Ice Hockey Cavern at Gjovik[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1994, 31(6): 617~641
    45. Palmstrm A. Characterizing rock masses by the RMI for use of the rock mass index (RMI)[J]. Tunn. & Underground Space Tech., 1996, 11 (2): 175~188
    46.王芝银.杨志法,王思敬.岩石力学位移反演分析回顾与进展[J].力学进展,1988.28(4):488~497
    47.王思敬.岩石力学与工程的新世纪[A].见:中国岩石力学与工程学会生编.中国岩石力学与工程学会第七次学术大会论文集[C].北京:中国科学科技出版社.2002,1~4
    48. Kavanagh K T, Clough R W. Finite element application in the characterization of elastic solids[J]. Int. J. Solids Structures. 1972(7): 11~23
    49. Gioda G, Pandolfi A, Cividini A. A comparative evaluation of some back analysis algorithms and their application to in-site load tests[A], In: Proc. 2nd Int. Symp. On Field Measurement in Geom.[C]. [s. 1.]: [s. n.], 1987, 1131~1144
    50. Arai R. An inverse problem approach to the prediction of Multi-dimensional consolidation behavior[J]. Int. J. Solid & Foundation, 1984, 24 (1) : 95~108
    51. Sakulai S. Interpretation of the result of displacement measurements in cut slopes[A]. In: Proc. 2nd Int. Symp. On Field Measurement in Geom.[C]. [s. 1.]: [s. n.], 1987, 528~540
    52. Sonmez H, Ulusay R. Gokceoglu C. A practical procedure for the back analysis of slope failure in closely jointed rock[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1998, 35(2): 219~233
    53.李守巨,刘迎曦.刘玉晶.基于改进神经网络的边坡岩体弹性力学参数识别方法[J].湘潭矿业学院学报.2002.17(1):58~61
    54. Xu W Y, Shao J F. Feedback design methodology and artificial neural network theory application in rock slope engineering[A]. Computer Methods and Advances in Geomechanics. A.A. Balkema. Rotterdam. 1998(4): 2 569~2 576
    55.徐卫亚.蒋晗.谢守益.三峡永久船闸高边坡变形的人工神经网络预测法[J].岩土力学,1999,20(2):108~112
    56.乔春生.张清.典修云.岩土工程数值分析中选择岩体力学参数的神经元网络方法[J].岩石力学与工程学报.2000,19(11):64~67
    57.高玮.郑颖人.一种新的岩土工程进化反分析算法[J].岩石力学与工程学报.2003,22(2):192~196
    58. Feng X T, Zhang Z Q, Xu E Adaptive and intelligent prediction of determination time series of high rock slope[J]. Trans. Nonferrous Met. Soc.. 1994(4): 842~846
    59. Feng X T, Zhang Z Q, Sheng Q. Indentifying rockmass mechanical parameters of Three Project permanent shiplock using intelligent displacement back analysis method[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 2000, 37(9): 1 039~1 054
    60
    
    60.赵洪波,冯夏庭.位移反分析的进化支持向量机研究[J].岩石力学与工程学报,2003,22(10):1618~1622
    61.陈胜宏,陈尚法,杨启贵.三峡工程船闸边坡的反馈分析[J].岩石力学与工程学报,2001,20(5):619~626
    62.邓建辉.李焯芬,葛修润.BP 网络和遗传算法在岩石边坡位移反分析中的应用[J].岩石力学与工程学报,2001.20(1):1~5
    63.龚玉锋,剧创兵,梁轶等.参数反演在岩质高边坡变形与稳定分析中的应用[J].岩土力学,2002,23(5):570~574
    64.张治强,冯夏庭,祁宏伟.三峡工程永久船闸高边坡岩体力学参数的敏感度分析[J].东北大学学报(自然科学版).2000,21(6):637~640
    65.杜景灿,陆兆溱.加权位移反演法确定岩体结构面的力学参数[J].岩土工程学报,1999,21(2):209~212
    66.陈子萌.由位移测定值反算流变岩体变形参数及地应力[J].煤炭学报,1982,7(4):340~345
    67.薛琳.岩体粘弹性力学模型的判定定律和应用[J].岩土工程学报.1994.16(5):1~10
    68.夏才初.孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996(3):53~58
    69.徐日庆,龚晓南,王明洋等.粘弹性本构模型的识别与变形预报[J].水利学报,1998(4):75~80
    70. Yang Z F, Wang Z Y. Liu Y, et al. Visco-elastic back-analysis on displacements and prediction of deformation in the shiplock slope of Wuqiangxi hydroelectric power station[J]. J. Geotech. Eng.. 2000, 22(1): 66~71
    71. Yang Z F. Wang Z Y. et al. Back analysis of viscoelastic displacement in a soft rock road tunnel[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 2001, 38(3): 331~341
    72. Zamam M, Hossain M, Faruque M. Creep constitutive modeling of rock shale and evaluation of model parameters using optimization[J]. Indian Geotech. J., 1997.27(3): 221~240
    73. Hossain M I, Faruque M O, Zaman M. Creep modeling of rock salts for geoenvironmental app(?)cation[J]. J. Energy Resources Technology, 1995, 117(2): 108~114
    74.刘保国.郭忠平.岩体粘塑性流动系数γ的反演计算[J].岩土工程学报.1999,21(2):213~216
    75.朱珍德,徐卫亚.岩体粘弹性本构模型辨识及其工程应用[J].岩石力学与工程学报.2002,21(11):1605~1609
    76.祝玉学.边坡可靠性分析[M].北京:冶金工业出版社.1993
    77.张征.程祖锋,王思佯等.岩土参数随机场空间最优估计精度分析与特异值研究[J].岩土工程学报.1999,21(5):586~590
    78.胡小荣,俞茂宏,唐奋安.岩土体的非均质性及力学参数的条件摸拟赋值[J].岩石力学与工程学报,2002.21(9):13~17
    79.吴传清,陆述远,宋晓林等.岩体结构面宏观抗剪强度的随机场分析[A].见:中国岩石力学与工程学会主编.中国岩石力学与工程学会第七次学术大会论文集[C].北京:中国科学科技出版社,2002, 209~213
    80
    
    80.王保田.土质边坡抗滑稳定的可靠性分析(博士论文)[D].南京:河海大学,1994,25~90
    81. Chowdhuny R N. Slope Analysis[M]. New York: Elsesbier Scientific Publishing Company, 1978
    82.徐建平,胡厚田,张安松等.边坡岩体物理力学参数的统计特征研究[J].岩石力学与工程学报,1999.18(4):382~386
    83.祁双月.崔桂梅.某些岩土参数的对数正态分布特征[J].水文地质工程地质,2000(1):42~44
    84.严春风,刘东燕,张建晖等.岩土工程可靠度关于强度参数分布函数概型的敏感度分析[J].岩石力学与工程学报,1999,18(1):36~39
    85. Yan C F. Zhang J H. The use of Bayes method to infer distribution of mechanical parameters[A]. In: Proc. Rock Mech. & Env. Geotech., EMRG'97 [C]. Chongqing: Chongqing University Press, 1997, 61~66
    86.严春风.刘东燕,朱可善.岩石抗剪强度指标互相关性的敏感度分析[J].水文地质工程地质.1997(6):45~47
    87.许传华,虏定旺,朱绳武.边坡稳定性分析中工程岩体抗剪强度参数选取的神经网络方法[J].岩石力学与工程学报,2002.21(6):858~862
    88.社景灿.陈祖煜.汪小刚.寻优方法在岩体结构面连通特性和综合抗剪强度研究中的应用[J].岩石力学与工程学报.2003,22(9):1441~1447
    89.黄志全.王思敬,李华晔等.岩体力学参数取值的置信度及其可靠性[J].岩石力学与工程学报.1999.18(1):33~35
    90.熊文林.李胡生.岩石样本力学参数值的随机模糊处理方法[J].岩土工程学报.1992.14(6):101~108
    91.李胡生,熊文林.岩石力学参数概率分布的随机模糊估计方法[J].固体力学学报.1993.14(4):347~350
    92. Nawari N O. Liang R. Fuzzy-based approach for determination of characteristic values of measured geotechnical parameters[J]. Canadian Geotech. J., 2000, 37: 1131~1140
    93.章杨松.罗国煜.李晓昭等.随机-模糊处理方法在岩石力学指标统计及岩组划分中的应用[J].工程地质学报,2001.9(2):182~187
    94.何满潮.薛廷河.彭延飞.工程岩体力学参数确定方法的研究[J].岩石力学与工程学报,2001.20(2):225~229
    95. Deere D C. Technical description of rock cores for engineering purposes[J]. Rock Mech. & Eng. Geol., 1964(1): 17~22
    96. Bieniawski Z T. Mining engineering handbook[M]. New York: Wiley, 1994
    97. Bieniawski Z T. Engineering classification of joint rock masses[J]. The Civil Engineer in South Africa, 1973, 15(12): 335~343
    98. Bieniawski Z T. Geomechanics classification of rock masses and its application in tunneling[A]. In: Proc. 3rd Congr. Int. Soc. Rock Mech., Denver CO, USA Part A. 1974, 27~32
    99. Bieniawski Z T. Determining rock mass deformability: experiences from case histories[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1978, 15(5): 237~247
    10
    
    100. Bieniawski Z T. The geomechanics classification in rock engineering application[A]. In: Proc. 4th Int. Congr. Rock Mech.. Balkema, Rotterdam, 1979, 2: 41~48
    101. Bieniawski Z T. Engineering Rock Mass Classifications in Mining and Tunneling[M]. New York: Wiley, 1980
    102. Bieniawski Z T. Rock mass classification as a design aid in tunnelling[J]. Tunn. Tunn. Int., 1988, 20(7): 19~22
    103. Bieniawski Z T. The rock mass rating (RMR) system (geomechanics classification) in engineering practice[A]. Rock classification system for engincering purposes, Kir-kaldieL (ed). (Special technical publication papers from Symp.), 1988, 17~31
    104. Bieniawski Z T. Engineering Rock Mass Classification: a complete manual for engineers and geologists in mining, civil, and petroleum engineers[M]. New York: Wiley, 1989
    105. Bieniawski Z T Design Methodology in Rock Engineering[M]. Theory, Education and Practice, A. A. Balkema, 1992
    106. Bieniawski Z T. Classification of rock masses for engineering: the RMR system and future trends[A]. In: Hudson J A, Hoek E ed. Comprehensive Rock Engineering. New York: Pergamon, 1993, 3: 553~573
    107. Bieniawski Z T. Classification of rock masses for engineering[M]. New York: Wiley, 1993
    108. Barton N R, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics, 1974, 6(4): 198~236
    109. Wickham G E, Tiedeman H R, Skinner E H. Support determinators based on geological predictions[A]. North Ameri. Rapid Excavation and Tunneling Conference Chicago Proce., 1972, 143~164
    110.徐卫亚.许兵.张学年等.长江三峡工程工程地质力学研究[M].北京:中国三峡出版社,1996
    111. Terzaghi K. Rock defects and loads on tunnel support [A]. In: Proctor R V, White T (Eds.), Rock Tunneling with Steel Supports. Commercial Shearing Co., Youngstown, Ohio, 1946, 15~49
    112. Lauffer H. Gebirgsklassifizierung fur den Stollenbau[J]. Geologie und Bauwesen, 1958, 24(1): 46~51
    113.中华人民共和国标准编写组.工程岩体分级标准(GB50218-94)[S]. Beijing: [s. n. ], 1994
    114. Rutledge J C, Preston R L. Experience with engineering classifications of rock for the prediction of tunnel support[A]. In: Proc. Int. Tun. Symp., Tokyo, 1978, 3~17
    115. Cameron-Clarke I S, Budavari S. Correlation of rock mass classification parametera obtained from borehore and insitu observations[J]. Engin. Geol., 1981, 17: 18~53
    116. Kaiser T K, Gale A D. Evaluation of cost and emprical support design at B.C. rail tumbler ridge tunnels, Canadian Tunneling, Tunneling Association of Canada[M]. New York: Wiley, 1985, 77~106
    117. Rawlings C, Barton N. The relationship between Q and RMR classification in rock engineering[A]. In: Tashio Fujill ed. Proc. 8th Int. Congre. Rock Mech.. Akasaka: Minato-kutokyo Press, 1995(5): 29~31
    118. Turul A. The application of rock mass classification systems to underground excavation in weak limestone, Ataturk dam, Turkey[J]. Eng. Geo., 1998, 58(3): 337~345
    11
    
    119. Goel R K, Jethwa J L, Paithankar A G. Correlation between Barton's Q and Bieniawski's RMR - a new approach[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1996, 33(2): 179~181
    120. Nilsen B, Shrestha G L, Panthi K K, et al. RMR vs Q vs RMi[J]. Tunn. Tunn. Int., 2003, 35(5): 45~48
    121. Priest, S D. Discontinuity Analysis for Rock Engineering[M]. Chapman and Hall, London, 1993
    122. Ali El-Naqa. Application of RMR and Q geomechanicai classification systems along the proposed Mujib Tunnel roete, central Jordan[J]. Bull. Eng. Geol. Env., 2001, 60: 257~269
    123. Afrouz A, Hassani F P, Uear R. Stability analysis of steep rock slopes[J]. Can. Geotech. J., 1989, 26(4): 595~603
    124. Sklavounos P, Sakellariou M. Intelligent classification of rock masses[J]. Applic. Artif. lntell. Eng., 1995(3): 387~393
    125. Moon V, Russell G, Stewart M. The value of rockmass classification systems for weak rock masses: a case example from Huntly, New Zealand[J]. Eng. Geo., 2001, 61(1): 53~57
    126.蔡斌,喻勇,吴晓铭.《工程岩体分级标准》与Q分类法、RMR分类法的关系及变形参数估算[J].岩石力学与工程学报,2001,20(增):1677~1679
    127. Hoek E, Brown E T. Underground Excavations in Rock[M]. London: Institution of Mining and Metallurgy, 1980
    128. Hoek E. Brittle Failure of Rock[M]. In Rock Mechanics in Engineering Practice (eds Stagg K G and Zienkiewicz O C), London: Wiley, 1968, 99~124
    129. Brown E T. Strength of models of rock with intermittent joints[J]. J. Soil Mech. Found., 1970, 96(6): 1935~1949
    130. Hoek E, Wood D, Shah S. A modified Hoek-Brown criterion for jointed rock masses[A]. Proc. rock characterization, symp. Int. Soc. Rock Mech.: Eurock'92, ( Hudson J. ed.). 1992: 209~214
    131. Hoek E. Strength of rock and rock masses[J]. ISRM News Journal, 1994, 2(2): 4~16
    132. Hoek E, Kaiser P K, Bawden W F. Support of Underground Excavations in Hard Rock[M]. Rotterdam: Balkema, 1995
    133. Hoek E, Marinos P, Benissi M. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses, the case of the Athens Schist Formation[J]. Bull. Engg. Geol. Env., 1998, 57(2): 151~160
    134. Hoek E, Marinos P. Predicting tunnel squeezing[J]. Tunn. & Tunn. Int., Part 1- November Issue, 2000: 45~51, Part 2 -December, 2000: 34~36
    135. Marinos P G, Hoek E. GSI-A geological friendly tool for rock mass strength estimation[A]. In: Proceedings of the International Conference on Geotechnical & Geological Engineering (GeoEng 2000), Technomic Publishing Co. Inc., Melbourne, Australia, 2000: 1422~1440
    136. Marinos P, Hoek E. Estimating the geotechnical properties of heterogeneous rock masses such as flysch[J]. Bull. Engg. Geol. Env., 2001, 60: 85~92
    13
    
    137. Sonmez H, Ulusay R. Modifications to the geological strength index (GSI) and their applicability to stability of slopes[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1999, 36(6): 743~760
    138. Hoek E, Brown E T. The Hoek-Brown failure criterion-a 1988 update[A]. Proc. 15th Canadian Rock Mech. Symp. (Curran J H ed.), Toronto: Civil Engineering Dept., University of Toronto, 1988, 31~38
    139. Hoek E. Strength of jointed rock masses, 23rd. Rankine Lecture [J]. Géotechnique, 1983, 33(3): 187~223
    140. Ucar R. Determination of shear failure envelope in rock masses[J]. J. Geotech. Eng., 1986, 112(3): 303~315
    141. Londe P. Discussion on the determination of the shear stress failure in rock masses[J]. J Geotech. Eng., 1988, 14(3): 374~379
    142. Hoek E. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1990, 12(3): 227~229
    143. Hoek E, Brown E T. Practical estimates of rock mass strength[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1997, 34(8): 1165~1 186
    144. Hoek E, Carranza-Torres C T, Corkum B. Hoek-Brown failure criterion -2002 edition[C]. Proc. North American Rock Mechanics Society meeting in Toronto in July 2002, 2002
    145. Helgstedt. An assessment of the in-situ shear strength of rock masses and discontinuities[A]. Trans. Instsn. Min. Metall., 1997, 105: 37~47
    146. Sheorey P R. Emprtical Rock Failure Criteria[M]. Rotterdam: A. A. Balkema, 1997
    147. Romana M. New adjustment ratings for application of Bieniawski classification to slopes[A]. In: Int. Symp. on the Role of Rock Mech.. ISRM, Zacatecas, 1985, 49~53
    148. Romana M. SMR classification[A]. In: Proc. 7th ISRM Congress, 1991, 955~960
    149. Romana M. A geomechannical classifbation for slopes: slope mass rating[A]. In: Comprehensive Rock Engineering. Pergamon on Press, Oxford, 1993(3): 575~600
    150. Sen Z, Sadagah B H. Modified rock mass classification system by continuous rating[J]. Eng. Geol., 2003, 67: 269~280
    151.哈秋舱,李建林,张永兴等.长江三峡工程节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社.1998
    152.周创兵,孙万和,王柏源等.白水峪水电站右岸坝下游边坡岩体的RMR—SMR分类及稳定性评价[J].工程地质学报,1997,5(3):224~230
    153.冯光乐,罗蓉,凌天清等.RMR法在公路边坡应用中的几点修正[J].长安大学学报(自然科学版),2002,22(6):19~24
    154. Priest S D, Hudson J A. Discontinuity spacings in rocks[J]. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1976, 13(2): 135~148
    155. Priest S D, Hudson J A. Estimation of discontinuity spacing and trace length using scanline survey[J]. Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., 1981, 18(2): 183~197
    156. Pietruszczak S, Mroz Z. Formation of anisotropic failure criteria incorporating a microstructure tensor[J]. Comp. & Geotech., 2000, 26(2): 105~112
    15
    
    157. Sjberg J, Sharp J C, Malorey D J. Slope stability at Aznalcóllar[M]. In: Slope stability in surface mining, Littleton: Society for Mining, Metallurgy and Exploration, Inc., 2001, 183~202
    158. Pierce M, Brandshaug T, Ward M. Slope stability assessment at the Main Cresson Mine[M]. In: Slope stability in surface mining, Littleton: Society for Mining, Metallurgy and Exploration, Inc., 2001, 239~250
    159. Kenorski F S, Cumming R A, et al. Rock mass classification for block caving mine drift support[A]. Proc. 5th Int. Rock Mech. ISRM., 1983, 51~63
    160. Serrano A, Olalla C. Ultimate bearing capacity of rock masses[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1994, 31(1): 93~106
    161.王让甲.声波岩石分级和岩石动弹性力学参数的分析研究[M].北京:地质出版社,1997,13~37
    162.赵平劳,姚增.层状岩石动静态力学参数相关性的各向异性[J].兰州大学学报(自然科学版),1993,29(4):427~430
    163.王卫国,薛卫,邵国建.锚杆支护机理及工程应用[J].焦作工学院学报(自然科学版),2002,21(6):225~229
    164.赵赤云,薛玺成.模拟岩体结构面锚固试验[J].水利水电技术,1999,30(12):39~41
    165. Zischinsky U. On the deformation of high slopes[A]. Proc. 1st Int. Congr. Rock Mech. Lisbon. 1966
    166. Broudbent C D, Ko K C. Geologic aspects of rock slope failures[C]. In: Cording E J ed. Stability, of Rock Slopes, 1971: 573~593
    167.巫德斌,徐卫亚,朱珍德等.泥板岩流变试验与粘弹性本构模型研究.岩石力学与工程学报,2004,23(8):1242~1246
    168.杨挺清.粘弹性力学[M].武汉:华中理工大学出版社,1988
    169.刘保国,孙钧.岩体粘弹性模型本构模型辨识的一种方法[J].工程力学,1999,16(1):18~25
    170.刘世君.岩石力学反演分析研究及工程应用(博士论文)[D].南京:河海大学,2003.69~80
    171.刘雄.岩石流变学概论[M].北京:地质出版社,1994
    172. Ko H Y, Gerstle K H. Elastic properties of two coal[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1976, 13(1): 81~90
    173. Hashin Z. Analysis of composite materials: A survey[J]. J, Appl. Mech., 1983, 50(3): 481~505
    174. Jones R M. Mechanics of Composite Materials[M]. Washington D. C.: Script Book Co., 1975
    175. Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook[M]. Cambridge University Press, 1998
    176. Christensen R M. Mechanics of Composite Materials[M]. New York: John Wiley and Sons, Inc., 1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700