基于协调的变风量空调系统递阶优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中央空调是现代建筑中的能耗大户,其耗能占整个建筑能耗的50%-70%。空调系统在设计时通常采用的是最不利工况设计,一般是按照空调系统最大的负荷来进行设计的。但实际运行时,空调系统90%以上的时间都是处于部分负荷状态下的,空调系统对于负荷的处理有很大的冗余,而且在实际的空气调节中也有很大的灵活性。变风量(Variable Air Volume,VAV)空调系统是一种通过调节风量来满足室内负荷变化及舒适性要求的全空气调节系统,由于其无凝结水害、设计系统灵活、高效节能的优点得到了广泛应用。然而,由于变风量空调系统具有非线性、大滞后、耦合性强、多变量、多扰动等特点,传统的控制方式难以适应其控制要求,使得变风量空调系统的节能性、舒适性得不到充分体现。如何通过最优化控制,使空调系统在满足环境舒适性的同时,能稳定的运行,并最大限度地减少系统能耗,就成为研究的重点。
     由于变风量空调系统设备较多,因此发生故障的频率也相对比较高。如果变风量空调系统中存在故障,会直接影响系统的能耗,导致系统能耗增加,并且会影响空调室内的舒适性。对于设备来说,会增加其损耗和减少其使用寿命。变风量空调系统应运行在无故障状态下,因此对于故障状态的检测就具有重要的现实意义。对与防止运行事故的发生,提高空调系统设备的有效利用时间,延长空调系统的使用寿命都具有非常良好的效果。
     本文通过改进的神经网络方法建立了变风量空调系统负荷模型,通过负荷的预测对变风量空调系统的能耗进行监测,并与实际的能耗检测值进行比较,利用统计学方法进行系统故障检测,能够在变风量空调系统运行过程中进行故障状态提示,确保变风量空调系统运行在无故障状态下。采用了一种基于协调的递阶优化控制,根据变风空调系统的工作原理对变风量空调大系统进行合理的分解,并通过实验对变风量空调大系统进行稳态建模,得到其稳态大系统模型。提出了其目标优化方法,以变风量空调系统舒适性和节能性为优化目标为各个控制器确立优化设定值,实现变风量空调系统的优化与节能控制。根据变风量空调系统主要部件的模型、能量平衡方程以及部件的物理限制定义了全局协调优化的目标函数和约束条件,实时优化系统各动态参数,通过寻找最优的操作条件,确定最佳工作点。并针对不同的控制回路采用不同自适应控制策略对各子系统进行稳定控制,使系统的控制参数始终维持在设定值附近。并对系统进行合理的设计、设备选型、软件选取和优化算法的实施,开发了变风量空调系统优化的计算机控制系统,对实际的操作提供了有指导意义的根据。仿真和实验研究结果表明该优化方法不仅能保证系统的舒适性而且能显著地降低系统能耗。
Central air-conditioning is the large energy consumption of modern construction, itis almost50%~70%percent of the whole building energy consumption.Usually thedesign of air-conditioning system is on the most unfavorable condition, generally isaccording the maximum load. But actually,air-conditioning system always work in partload.It can be90%time. The ability of air treatment equipment has a lot of rich.Therefore, it adjustment also has a lot of flexibility. VAV (Variable AirVolume)air-conditioning system is a full air conditioning system. It meet the change ofload and comfort requirements by adjust the air volume. Because of its no condensationwater disasters, design system agile, high efficiency and energy saving.It has a widerange of applications. However, the VAV air-conditioning system has nonlinear, delay,strong coupling, multivariable and disturbance characteristics, it is difficult to adapt tothe control requirements by traditional control mode.This makes the energyconservation and comfort in VAV system not fully reflected. Through the optimizationcontrol, how to make the air-conditioning system in comfort, stable operation, andminimize the system energy consumption, will become the focus of research.
     Because the air conditioning system have a lot of equipments, fault frequencybecome higher. Fault will increase energy consumption and reduce indoor comfort. Atthe same time, it will increase the equipment loss, affect the service life. So make surethe VAV system is running in trouble-free state has very important practical significance.It has the good effect to prevent accidents, improve equipment effective use and prolongits service life.
     This article use the improved neural network to establish load model and obtain theenergy consumption. Then compared the forecast energy consumption and the actual consumption values in operation process. Fault state use statistical methods for faultdetection. To ensure the VAV system is running in trouble-free state. The system use acoordination control based on global hierarchical optimization. Decomposition andestablish the system static model according to the working principle of VAV system andthrough experiment. Puts forward the multi-objective optimization of VAV system. Thisoptimize can established optimization setting values for each controller. The goal ofoptimization control is more comfort and less energy conservation. According to themain parts of system model, the energy balance equation and components of thephysical limit, define the global energy saving optimization objective function andconstraint conditions. The optimization algorithm find optimal operation value in thesystem. Using different adaptive control strategy of each subsystem, make controlparameters always near the set point. Through system design, device selection, softwareplan and optimization strategy, we developed the computer control of VAV systemoptimization. It can provide directions in actual operation. The simulation andexperiment results show that the optimization method can not only ensure the comfortof the system and can significantly reduce the system energy consumption.
引文
[1]侯志坚,连之伟,蔡志军.某大型空调系统能耗分析[J].建筑节能,2007,35(4):43-45.
    [2]何湘勇.空调水系统变流量节能控制分析[J].暖通空调HV&AC,2007,37(1):113-115.
    [3]袁锋,胡益雄.变风量系统能耗及节能特性研究[J].暖通空调HV&AC,2005,35(3):113-117.
    [4]安大伟,任庆昌.暖通空调系统自动化[M],北京:中国建筑工业出版社,2009
    [5]江亿.科学发展实现中国特色建筑节能[J].城市住宅,2009,1:38-41.
    [6]赵哲身.智能建筑控制与节能[M].北京:中国电力出版社,2007.
    [7]Andrew Kusiak, Fan Tang, Guanglin Xu. Multi-objective optimization of HVACsystem with an evolutionary computation algorithm[J].Energy,2011(36):2440-2449.
    [8]刘春蕾,孙勇.中央空调系统节能运行控制的优化模型[J].建筑节能,2008(24):21-23.
    [9]李玉衔,蔡小兵,郭林.中央空调系统模糊控制节能技术及应用[M].北京:中国建筑工业出版社,2009.
    [10]Andrew Kusiak, Mingyang Li,Fan Tang. Modeling and optimization of HVACenergy consumption[J].Applied Energy,2010(87):3092–3102.
    [11]Young-Hum Cho,Mingsheng Liu. Correlation between minimum airflow anddischarge air temperature[J].Building and Environment,2010(45):1601-1611.
    [12] Xinhua Xu, Shengwei Wang.A model-based optimal ventilation control strategy ofmulti-zone VAV air-conditioning systems[J].Applied Thermal Engineering,2009(29):91–104.
    [13]刘战国.智能控制在建筑空调控制系统及电梯群控系统中的应用研究[D].重庆:重庆大学,博士学位论文,2008.
    [14]王填,张国强,陈兆平. LonWorks技术在变风量系统控制中的应用[J].智能建筑与城市信息,2004,(4):27-33.
    [15]霍小平.变风量系统的概念、分类及应用实例[J].暖通空调,1997,27(5):22-26.
    [16]周洪煜,陈小健,陈孜虎.变水量与变风量的中央空调节能控制策略[J].控制工程,2011,18(3):474-478.
    [17]符学伍,徐新华.变风量空调系统优化控制[J].山西建筑,2007,33(16):194-195.
    [18]Min Ning, M. Zaheeruddin. Neuro-optimal operation of a variable air volumeHVAC&R system[J].Applied Thermal Engineering,2010(30):385–399.
    [19]Young-Hum Cho, Mingsheng Liu. Minimum airflow reset of single duct VAVterminal boxes[J].Building and Environment,2009(44):1876–1885.
    [20]N. Nassif, S. Moujaes. A new operating strategy for economizer dampers of VAVsystem[J]. Energy and Buildings,2008(40):289–299.
    [21]Xue-Bin Yang,Xin-Qiao Jin,Zhi-Min Du.Evaluation of four control strategies forbuilding VAV air-conditioning systems[J]. Energy and Buildings,2011(43):414–422
    [22]Zhentao Wei,Radu Zmeureanu. Exergy analysis of variable air volume systemsfor an office building[J].Energy Conversion and Management,2009(50):387–392.
    [23]Ivan Zlatanovi′c, Kosta Gligorevi′c, Sanjin Ivanovi′c.Energy-saving estimationmodel for hypermarket HVAC systems applications[J].Energy and Buildings,2011(43),3353–3359.
    [24]石磊,李茁.制冷空调DCS中的大系统观点[J].工业仪表与自动化装置,2002(5):41-43.
    [25]毕崇宁,李歧强.变水量空调二次泵供水系统效率优化策略研究[J].计算机仿真,2009,26(2):269-273.
    [26]Ye Yao,Li Wang. Energy analysis on VAV system with different air-sideeconomizers in China[J].Energy and Buildings,2010(42):1220-1230.
    [27]甘敏,彭辉,王勇.多目标优化与自适应惩罚的混合约束优化进化算法[J].控制与决策,2010,25(3):378-382.
    [28]黄永红.基于递阶结构的变风量空调系统故障检测与诊断研究[D].长沙:湖南大学,博士学位论文,2007.
    [29]胡昶.基于温度检测和神经网络的空调负荷预测[J].仪器仪表学报,2003,24(1):427-428.
    [30]李志生,张国强.暖通空调系统故障检测与诊断研究进展[J].暖通空调,2005(12):31-38.
    [31]姚健,闫成文,叶晶晶.基于神经网络的建筑能耗预测[J].建筑节能,2007(10):31-33.
    [32]Yoshida H., Iwami T., Yuzawa H., et al. Typical faults of air-conditioning systemsand detection by ARX and extended Kalman filter[J].Control Engineering Practice,2005,13(4):12-34.
    [33]王建玉,任庆昌.中央空调水系统的节能优化[J].西安建筑科技大学学报:自然科学版,2010,42(6):850-855.
    [34]廖金宝,刘甫,孙帅帅.中央空调系统节能控制的全局优化模型[J].数学的实践与认识,2009,39(16):219-225.
    [35]荣剑文.冷水机组群控策略的讨论[J].暖通空调,2005(12):9-10.
    [36]薛亚丽.热力过程多变量控制系统的优化设计[D].北京:清华大学,博士学位论文,2005.
    [37]黄永红,易异勋.基于稳态模型的制冷系统能耗优化控制研究[J].暖通空调HV&AC,2008,38(3):1-5.
    [38]蒋红梅,任庆昌,冯增喜.中央空调冷冻水系统优化控制研究.吉林建筑工程学院学报,2012,29(6):53-56.
    [39]马庆,李岐强,吴皓.变流量水系统协调优化控制研究[J].计算机工程与应用.2010,46(11):204-209.
    [40]王婧,袁丽,王瑞海.VWV系统的控制策略及能耗分析[J].制冷与空调,2010,24(5):47-50.
    [41]柴天佑,丁进良,王宏,等.复杂工业过程运行的混合智能优化控制方法[J].自动化学报,2008,34(5):505-515.
    [42]Satyam Bendapudi.A comparison of moving-boundary and finite-volumeformulations for transients in centrifugal chillers[J].international journal ofrefrigeration.2008(31):1437-1452.
    [43]杜志敏,晋欣桥,郭轶波.变风量空调系统送风温度优化及容错控制[J].上海交通大学学报,2009,43(6):962-966.
    [44]赵廷法,王瑞华,王普.遗传算法在VAV中央空调优化控制中的应用[J].控制工程,2009(16):110-113.
    [45]晋欣桥,柴小峰,杜志敏.过渡季节VAV空调系统送风温度的优化控制策略[J].天津大学学报,2009,42(7):586-590.
    [46]吴杰.冰蓄冷空调系统负荷预测模型和系统优化控制研究[D].杭州:浙江大学,博士学位论文,2002.
    [47]卢勇.数据信息采掘与热工过程控制优化[D].北京:清华大学,博士学位论文,2003.
    [48]佘锋,程大章.一种基于神经网络的建筑设备故障诊断模型[J].智能建筑与城市信息,2003,9:40-42.
    [49]杨晓庆,左为恒,李昌春.改进PSO算法在中央空调控制系统中的应用[J].计算机仿真,2011,28(11):201-204.
    [50]徐凯,李琦.变风量空调的自适应模糊PID复合控制[J].计算机仿真,2011,28(10):151-155.
    [51]邹木春,龙文.基于PSO算法的HVAC系统LSSVM预测控制[J].中南大学学报(自然科学版),2012,43(7):2642-2647.
    [52]李界家,瞿春.变风量空调系统优化控制策略研究.控制工程,2012,15(5):790-794.
    [53]王军,王雁,王瑞祥.一种优化控制变风量空调系统的新方法[J].上海交通大学学报,2006,20(2):248-252.
    [54]邝小磊,聂玉强,李安桂.中央空调系统节能的蚁群优化控制方法.哈尔滨工业大学学报,2009,41(8):217-220.
    [55]刘金平,麦粤帮,刘雪峰.中央空调系统变水温和变水量协调优化控制研究[J].建筑科学,2007,23(6):12-15.
    [56]闫秀英,任庆昌,孟庆龙.变风量空调系统的迭代学习控制研究,计算机工程与应用.2011,47(16):211-213.
    [57]王建玉,任庆昌.变风量空调系统的模型预测控制及仿真研究.系统仿真学报,2008,20(16):4446-4450.
    [58]张韵辉,吕震中,张小松.冷水机组的优化运行[J].暖通空调HV&AC,2004,34(3):13-16.
    [59]陈丹丹,晋欣桥,杜志敏.多台冷水机组联合运行空调系统的负荷优化分配[J].上海交通大学学报,2007,41(6):974-977.
    [60]於仲义,罗启军,王彬.冰蓄冷空调系统的动态规划优化控制[J].制冷,2005年增刊:1-6.
    [61]王清,唐莉萍,欧阳文斌.基于热舒适度的节能型空调控制算法,华东大学学报(自然科学版),2010,36(1):57-60.
    [62]郭怡,毕建平,曹可生.中央空调系统运转参数的优化[J].河南工程学院学报(自然科学版),2008年,20(3):71-73.
    [63]途国河,孙岗,杨水利.对大系统多目标决策求解方法的探讨[J].河南水利与南水北调,2008,(8):83-84.
    [64]苏子健,钟毅芳.基于BP神经网络的工程大系统协调优化[J].机械科学与技术,2006,25(4):465-467.
    [65]李人厚,邵福庆.大系统的递阶与分散控制[M].西安:西安交通大学出版社,1986.
    [66]郭宗仁,王志凯,李琰.PLC分级递阶智能控制系统的实现与应用[J].电子学报,2002,(4):480-483.
    [67]董永权.大系统最优控制的递阶算法[J].河北建筑科技学院学报,2001,18(1):38-40.
    [68]钱富才,刘丁,杨恒占.基于Hopfield网络的不可分稳态大系统递阶优化控制[J].系统工程理论与实践,2001,(11):8-13.
    [69]黄挚雄.中药生产过程优化控制策略的研究[D].长沙:中南大学,博士学位论文,2006.
    [70]王建玉,任庆昌.基于协调的变风量空调系统分布式预测控制[J].信息与控制,2010,39(5),651-655.
    [71]聂玉强,中央空调系统的二级最优控制方法及其理论分析[J].中山大学学报(自然科学版),2008,47(3),57-61
    [72]石磊.基于负荷预测在线修正的冰蓄冷空调系统优化运行研究[D].西安:西安建筑科技大学,博士学位论文,2002.
    [73]万百五.工业大系统优化与产品质量管理[M].北京:科学出版社,2003.
    [74]周斌,袁建新.空调用制冷机能耗分析[J].暖通空调,2009,39(9):93-96.
    [75]孙志高,郭开华.空调冷热源选择能耗分析[J].流体机械,2006年第7期:76-78.
    [76]American Society of Heating, Refrigerating and Air-ConditioningEngineers,ASHRAE handbook-systems and equipment [M].USA:ASHRAE Inc.,2000.
    [77]周漠仁.流体力学泵与风机[M].京:中国建筑工业出版社,1994.
    [78]胡益雄,袁锋,变风量系统水系统运行能耗分析[J],长沙铁道学院学报,2001,19(4):60-63
    [79]Stoecker WE. Procedures for simulating the performance of componentsand systems for energy calculations [M].New York:ASHRAE,1975.
    [80]丁云飞,江长平.变频调速水泵的能耗分析[J].流体机械,2001年第3期:25-27.
    [81]赵廷法,王瑞华,王普.VAV中央空调能耗建模与仿真研究[J].计算机仿真,2010,27(3):326-329.
    [82]唐娟,魏兵,石舒健.基于Matlab/Simulink的某空调系统能耗仿真分析[J].建筑热能通风空调,2010,29(2):53-57.
    [83]周汉清,王云良,史二颖.基于人体热舒适性指标PMV的暖通空调控制器[J].测控技术,2008,27(4),42-46.
    [84]刘向龙.室内热舒适性指标PMV影响因素分析与研究[J].制冷与空调,2006(4):19—25.
    [85]Victor Bayona,Miguel Moscoso,ManuelKindelan.Gaussian RBF-FD weights andits corresponding local truncation errors[J].Engineering Analysis with BoundaryElements,2012(36):1361–1369.
    [86]魏海坤,李奇,宋文忠.梯度算法下RBF网的参数变化动态[J].控制理论与应用,2007,24(3):356-360.
    [87]陈武,邓仕明.VAV空调系统的动态建模及其送风机控制研究[J].暖通空调HV&AC,2005,35(8):104-109.
    [88]周洪煜.基于人工智能和专家系统的中央空调节能运行及故障诊断技术研究与实现[D],重庆:重庆大学,博士学位论文,2007.
    [89]Youqing Wang, Furong Gao.Survey on iterative learning control, repetitive control,and run-to-run control[J]. Journal of Process Control,2009(19):1589–1600.
    [90]白建波.基于Simulink的空调系统先进自校正控制仿真研究[J].系统仿真学报,2008,20(19):5125-5130.
    [91]Jianbo Bai,Shengwei Wang.Development of an adaptive Smith predictor-basedself-tuning PI controller for an HVAC system in a test room[J].Energy and Buildings,2008(40):2244–2252.
    [92]Jianbo Bai,Xiaosong Zhang.A new adaptive PI controller and its application inHVAC systems[J].Energy Conversion and Management,2007(48):1043-1054.
    [93]郑益慧,王昕,李少远.随机系统的多模型直接自适应解耦控制器[J].自动化学报,2010,36(9):1295-1304.
    [94]李晓斌,王海波,孙海燕.阳极焙烧温度的建模与多变量解耦控制[J].计算机工程与应用,2010,46(26):241-244.
    [95]I.J. Gyongy, D.W. Clarke.On the automatic tuning and adaptation of PIDcontrollers[J].Control Engineering Practice,2006(14):149-163.
    [96]刘静纨,魏东,刘熙.变风量空调系统温度模糊PID控制[J].土木建筑与环境工程,2009,31(4):98-102.
    [97]唐鑫,左为恒,李昌春.中央空调房间温度智能PID控制的仿真研究[J].计算机仿真,2011,28(5):140-144.
    [98]刘伟,赵哲身,孙怡佳.变风量空调末端系统的辨识[J].上海大学学报(自然科学版),2005,11(5):490-494.
    [99]王秀峰,卢桂章.系统建模与辨识[M].北京:电子工业出版社,2004.
    [100]白建波,张小松.空调系统在线辨识算法的研究[J].暖通空调HV&AC,2007,37:18-23.
    [101]王粟,赵旭伟.基于MATLAB变风量空调系统的建模与仿真[J].湖北工业大学学报,2009,24(5):31-33.
    [102]姜雪辉,余波,张春辉.基于Matlab的变风量空调系统的仿真[J].机械工程与自动化,2006,1:80-82.
    [103]Bourhan Tashtoush,M Molhim,M Al-Rousan.Dynamic model of an HVACsystem for control analysis[J].Energy,2005,30:1729-1745.
    [104]晋欣桥,夏清.多区域VAV空调系统及其局部DDC控制器的动态模拟[J].制冷学报,1999,(1),17-23.
    [105]Wang Shengwei.Dynamic simulation of building VAV air-conditioning Systemand evaluationi of EMCS on-line control strategies [J].Building and Envirment,1999,34:681-705.
    [106]Wang Shengwei, Jin xinqiao.Model-based optimal control of VAVair-conditioning system using genetic algorithm [J].Building and Envirment,2000,35:471-487.
    [107]Michael Anderson a,1, Michael Buehner.An experimental system for advancedheating, ventilating and air conditioning (HVAC) control[J]. Energy and Buildings,2007(39):136–147.
    [108]张洁,潘毅群,黄治钟.变风量空调系统静压设定值重置方法及控制策略研究[J].暖通空调HV&VC,2011,41(12):50-56.
    [109]Hongmei Jiang,Qingchang Ren,Yan Bai.Research on the variable static pressurecontrol used iterative algorithm in a VAV system[J].Advanced Materials Research,2012(374-377):728-731.
    [110]张谋雄.冷水机组变流量的性能[J].暖通空调,2000,30(6):56-58.
    [111]Rossi T. M. Braun J. E. A statistical rule-based fault detection and diagnosticmethod for vapor compression air conditioners[J]. International Journal of HVAC&RResearch.2004,10(1):67-78.
    [112]YaoY,Lian ZW,LiuW W,etal.Evaluation program for the energy-saving ofvariable-air-volume systems. Energy and Buildings,2007(39):558-568.
    [113]郑守铎,陆宇平,叶玮.基于χ2检验的FADS系统故障检测与管理技术研究[J].计算机测量与控制,2007(11):1449-1454.
    [114]Lee W. Y., Park C., Kelly G. E. Fault detection in an air handling unit usingresidual and recursive parameter identification methods[J]. Applied ThermalEngineering,2003,23(1):41-53.
    [115]Yan Bai, Qingchang Ren, Hongmei Jiang.The analysis of combined predictionmodel of building energy consumption with grey theory and RBF neural network[J].Advanced Materials Research,2012(374-377):90-93.
    [116]乔俊飞,韩红桂. RBF神经网络的结构动态优化设计[J].自动化学报,2010,36(6):865-872.
    [117]Maki Y., Loparo K. A. Neural-network approach to fault detection anddiagnosisin industrial processes. IEEE Transactions, Control Systems Technology,1997,13(6):529-541.
    [118]白建波.测试室空调系统自适应控制的研究[D].南京:东南大学,博士学位论文,2006.
    [119]蒋红梅,任庆昌.变风量空调的自适应Smith控制仿真研究[J].计算机仿真,2012,29(10):228-231.
    [120]李丹.变风量空调水系统的优化控制研究[D].西安:西安建筑科技大学,硕士论文,2010.
    [121]蒋红梅,任庆昌.变风量空调的自适应解耦控制研究.计算机工程与应用,2012,48(30):210-215.
    [122]翟峰,余成波.基于LabVIEW和OPC实时数据采集系统研制[J].压电与声光,2006,28(6):741-743.
    [124]Jun Wang, Yan Wang.Performance improvement of VAV air conditioning controlsystem through diagonal matrix decoupling and Lonworks technology[J]. Energy andBuildings,2005(37):911–919.
    [125] TAN Wen,LIU Jizhen,FANG Fang,et al.Tuning of PID controllers for boilerturbine units[J].ISA Transactions,2004,43(2):571-573.
    [126]Yongmin Yan, Jin Zhou, Yaolin Lin.Adaptive optimal control model for buildingcooling and heating sources[J].Energy and Buildings,2008(40):1394–1401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700