导电聚苯胺和聚苯胺复合阳极材料的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在湿法炼锌工业中,高浓度H28O4电解液体系使得Zn电积过程一直采用铅基合金阳极。但铅基合金阳极析氧过电位高,增加无用电耗约占Zn电积总能耗的30%,同时存在抗蠕变性能差以及Pb被腐蚀进入电解液并降低电Zn品质等问题。针对上述问题,Ti基电催化涂层阳极尽管可有效降低阳极过电位,但较短寿命与高昂成本使其难以取代铅基合金阳极。因此,开发新型节能阳极仍是湿法炼Zn领域的重要课题。
     本文在整合了有机化学、材料学、有色冶金和电化学等学科基础上,提出聚苯胺基节能阳极的概念。在保持铅银合金阳极优势的同时,降低阳极析氧过电位,减少阳极腐蚀并提高Zn品质。论文研究开发了导电聚苯胺、聚苯胺/二氧化钛(PANI/TiO2)和聚苯胺/碳化钨(PANI/WC)复合材料的制备技术,探讨了聚苯胺的聚合机理、导电机理、掺杂机理以及聚苯胺复合材料的复合机理,并探索出较佳工艺条件;建立了聚苯胺基阳极成型工艺,系统研究了聚苯胺基阳极的抗氧化性和电化学行为;深入研究了PANI/WC阳极在ZnSO4-Mn2+-H2SO4体系中析氧电位、槽电压、阳极寿命、电流效率、电能消耗、Mn2+的行为和阴极Zn品质;在此基础上,进一步与工业用Pb-Ag(1.0%)阳极比较。
     并利用FTIR、UV-vis、Raman、XRD、SEM、TEM、XPS、EDS、激光粒度分析和热分析等手段对材料的结构物相、表面形貌、氧化程度、掺杂程度、成分、粒径大小和热稳定性进行分析。采用阳极极化曲线、塔菲尔曲线、交流阻抗和循环伏安等电化学手段在酸性体系和碱性体系中分析了电极的动力学参数。研究结果如下:
     (1)开发了导电聚苯胺和聚苯胺复合材料的制备技术,建立了聚苯胺基阳极的成型工艺,制备了尺寸为70mm×50mm×5mm的聚苯胺基电极。
     (2)苯胺聚合是以头-尾连接的形式进行,且中间产物是高氧化态聚苯胺而后又逐渐转变成中间氧化态聚苯胺;质子化优先发生在分子链的亚胺氮原子上,质子酸发生离解,生成的H+转移到聚苯胺分子链上,使聚苯胺链中亚胺基团上的氮原子发生质子化反应,质子化反应使聚苯胺链上掺杂段的价带出现空穴,即P型掺杂;在导电聚苯胺分子中,无论是内分子链与分子链之间,还是分子与分子之间,变程跳跃导电和隧穿导电是同时存在的,是互相竞争的。
     (3)TiO2或WC与聚苯胺之间不是简单的混合而是存在着一定的相互作用;聚苯胺复合材料的环境稳定性和热稳定性均比纯聚苯胺的好;在高温下氧化,材料的主体结构未发生变化,表现出较好的抗氧化性,其中PANI/WC的抗氧化性最好。
     (4) PANI/WC复合材料中WC粒子中的C与PANI产生了化学键的作用,其导电能力是PANI的电子导电和W原子导电共同作用的结果;而PANI/TiO2复合材料中PANI分子链上的阳离子自由基生成的对阴离子受到TiO2中的O离子的置换,致使原来相临的两个对阴离子被O离子置换走,其导电能力是pn结形式的空穴和电子两种载流子参与导电。
     (5)系统研究了聚苯胺基电极的电化学行为,揭示了聚苯胺基电极的电化学行为与特征。结果表明,聚苯胺基电极在硫酸体系中的耐蚀性最好,在碱性体系中次之,在盐酸体系中耐蚀性最差。在硫酸体系中PANI/WC耐蚀性最好并且具有较好的催化活性。PANI/WC电极在硫酸体系电积锌工业中具有良好的应用前景。
     (6)采用尺寸为70mm×50mm×5mm的聚苯胺基阳极进行电解试验。结果表明,与工业用Pb-Ag(1.0%)阳极相比,电流密度为500A/m2时,聚苯胺基阳极析氧电位都明显降低了200~475mV。槽电压和电能消耗都有很大程度的降低;并且阴极Zn无铅污染;特别是PANI/WC阳极最为突出,槽电压降低到2.87V,电流效率提高到92.4%,电积1吨锌可节约电能为16.24%。另外,电解液中Mn2+本身的贫化发生了明显的变化,即Pb-Ag(1.0%)阳极对应电解后电解液Mn2+贫化比较明显,其贫化量为0.673g,而以聚苯胺基阳极的电解后电解液Mn2+贫化量为0.187~0.236g,聚苯胺基阳极有利于减少阳极泥的生成。
     (7)系统研究了不同电流密度下PANI/WC阳极的电化学行为,揭示了电流密度对槽电压、电流效率和阴极Zn品质的影响。当电流密度为250A/m2时电积锌在(101)晶面择优取向生长;电流密度增加到2000 A/m2时电积锌转变为在(002)晶面择优取向生长,同时对锌的表面形貌也有很大的影响。
     (8)PANI/WC阳极在电解过程中,失效的主要原因一方面是包覆在WC表面的聚苯胺逐渐脱落,使得WC裸露出来,从而阳极的导电性减弱;另一方面是阳极表面逐渐出现裂纹,最终甚至出现裂缝,使得整个阳极导电发生断路,从而失去导电性。
The anode of lead-based alloy is always used in industrial production of zinc owing to high concentration of H2SO4 in the electrolyte. However, there are several problems on the lead-based anode such as high oxygen evolution overpotential which can increase the energy consumption about 30% of the total energy consumption, low corrosion resistance and decrease of zinc quality due to lead dissolution in the electrolyte. Although titanium-based electro-catalytic coating anode can effectively reduce the oxygen evolution potential, it still cannot replace the lead-based anode due to its short life and high cost. Therefore, it still is an important subject to develop new energy-saving anode in the zinc hydrometallurgy.
     The concept of polyaniline (PANI)-based anode was put forward by the author based on the knowledge of organic chemistry, materials, non-ferrous metal and electrochemistry. PANI-based anode can reduce the anodic overvoltage, lower the anode corrosion rate and improve the product Zn quality while maintaining the advantages of Pb-Ag alloy anode. In this paper, the equipment and technics of PANI and PANI composite materials were developed, the polymerizing mechanism, conducting mechanism and doping mechanism of PANI and compositing mechanism of PANI/TiO2 and PANI/WC composite materials were studied systematically through exploring their synthesis conditions, and the optimal preparation condition under which the resultant PANI/WC had the highest conductivity was obtained. The equipment and technics of PANI-based anodes were developed, the electrochemical properties and anti-oxidation nature of PANI-base anodes were evaluated systematically。The cell voltage, current efficiency, anode life and zinc quality were discussed using PANI-based anodes in ZnSO4-Mn2+-H2SO4 system. Based on that, further with the industrial Pb-Ag (1.0%) compared with PANI-based anode.
     The microstructure, crystal phase, morphology, oxidation degree, doping level surface composition, particles size and thermal stability of synthesized materials were characterized by means of FTIR,UV-vis, Raman, XRD, SEM, TEM,XPS,EDS,laser grain size analysis and thermal analysis and so on. The electrochemical properties of anodes had also been studied by linear sweep voltammetry, A.C. impedance, Tafel plot and cyclic voltammetry. The main results are as following:
     (1) The equipment and technology of conductive PANI and PANI/composite materials were designed and developed. The forming process of PANI-based anodes was established and PANI-based anodes with dimension of 70mm×50mm×5mm are prepared.
     (2) Aniline polymerization was head-to-tail structure. Even intermediate products were higher oxidation states, and then turned to be emeraldine base gradually. Quinine-imine (-N=) was priorly protonated in doping reaction process. Pronton acid was ionized form H+, and H+ transfer in polyaniline molecule chain, and then the positive charge was distributed periodically along the molecular chain according to the inner-chain charge transfer. After protonated reaction, valence band of the doping segment polyaniline appeared hole (p model doping). In conductive polyaniline molecule, no matter among the chains or among the molecule, variable-range hopping and tunneling conductive existed at the same time and competed with each other.
     (3) WC or TiO2 particles and PANI molecular chains were not simply blended or mixed up, and a strong interaction existed at the interface of WC or TiO2 and PANI. Addition of TiO2 or WC could improve the conductivity composites. The environment and thermal stability of the composites were higher than that of the pure PANI. At a high temperature oxidation, the main structure of materials didn't change, so they displayed a better anti-oxidation nature. Anyway, the anti-oxidation nature of PANI/WC anodes was best.
     (4) In the PANI/WC composites, chemical bonds were formed the WC particles and the PANI. The conductivity of the PANI/WC composites was the collaboration effect of the electronic conduction of the PANI and the conduction of free electrons. While in the PANI/TiO2 composites, the adjacent anion produced by the radical cation on the PANI molecule chain were replaced the 0 ions in the TiO2, its conductivity was the result of the participation of the hole and electron by the form of pn junction in the conduction process。
     (5) The electrochemical behavior of PANI-based anodes was studied systematically and electrochemical characteristics of PANI-based anodes were revealed. Results showed that the corrosion resistance of PANI-based anodes was best in sulfuric acid system and was worst in hydrochloric acid system. In sulfuric acid system, the corrosion resistance and catalytic activity of PANI/WC were best. In a word, PANI/WC anode has a good application prospects in sulfuric electrowinning zinc in the industry.
     (6) The PANI-based anodes with dimension of 70mm×50mm×5mm were tested in simulation electrolysis experiment and the anodes were found to perform well in industrial electrolysis conditions. The results showed that the anodic potential was decreased about 200-475mV at the current density of 500A/m2 compared with the Pb-Ag(1%) anode. The specific energy consumption was smaller than that of Pb-Ag (1%) anode and the lower material costs. Zinc deposits obtained had not Pb pollution. For the most prominent PANI/WC anode, the cell voltage was about 2.87V, current efficiency was about 92.4%, energy savings of electrowinning 1 ton zinc was about 16.4%. The current efficiency for PANI-based anodes was almost same as that of Pb-Ag (1%) anode which was 91%-93% while the PANI-based anodes were beneficial for reducing anode slime because the phenomenon of Mn2+ dilution was less obvious.
     (7) In order to illustrate effect of current density on PANI/WC anode, cell potential, current efficiency and the quality of cathode zinc were studied systematically at different current densities. Current density had great effect on the orientation of zinc crystals in electrowinning zinc. When the current density was 250A/m2, the zinc was superior to develop on the crystal face of (101), while to develop on the crystal face of (002) when the current density turned to 2000A/m. At the same time, current density also had effect on the surface morphology of deposited zin.
     (8) In the process of electrolysis, the PANI covered on the surface of the WC was peeled off gradually, which resulted in the decline of the conductivity of the PANI/WC anode. In addition, the cracks and even the crevices were emerged on the surface of the PANI/WC anode, appeared gradually on anodes made the cutting-out of the entire electrode conduct system, and finally lost conductivity.
引文
[1]邱竹贤.有色金属冶金学[M].北京:冶金工业出版社,1983:209-213
    [2]Li Ping, Cai Qi-Zhou, Wei Bo-Kang. Failure analysis of the impeller of slurry pump used in zinc hydrometallurgy process [J]. Engineering Failure Analysis,2006,13(6): 876-885
    [3]Gurmen S, Emre M A. laboratory-scale investigation of alkaline zinc electrowinning[J]. Minerals Engineering,2003,16(6):559-562
    [4]梅光贵,王润德,周敬元,等.湿法炼锌学[M].长沙:中南大学出版社,2001
    [5]王彦军,谢刚,杨大锦,等.降低电积锌直流电耗的现状分析[J].湿法冶金,2005,24(4):208-211
    [6]梁鹏.我国锌冶炼现状及技术发展方向分析[分析报告].新华社信息郑州电,2006
    [7]周国宝.让《铅锌行业准入条件》发力[J].中国有色金属,2007,5:4-4
    [8]吕少祥,戴曦.降低锌电积直流电耗生产实践[J].中国有色金属学报,冶炼部分,2001,(6):13-17
    [9]Cachet C, Rerolle C, Wiart R. Kinetics of Pb and Pb-Ag anodes for zinc electrowinning [J]. Electrochem Acta,1996,41(1):83-87
    [10]Ivanov I, Stefanov Y, Noncheva Z, et al. Insoluble anodes used in hydrometallurgy Part Ⅰ. Corrosion resistance of lead and lead alloy anodes [J]. Hydrometallurgy,2000, 57:109-115
    [11]Ivanov I, Stefanov Y, Noncheva Z, et al. Insoluble anodes used in hydrometallurgy Part Ⅱ. Anodic behaviour of lead and lead-alloy anodes [J]. Hydrometallurgy,2000, 57:12-19
    [12]付运康.锌电积电流效率低的原因与对策[J].有色金属(冶炼部分),2002,(5):21-23,34-37
    [13]Lupi C., Pilone D. New lead alloy anodes and organic depolariser utilization in zinc electrowinning [J]. Hydrometallurgy,1997,44(3):347-358
    [14]Klaus H., Thomas S. Oxygen overvoltage at insoluble anodes in the system Pb-Ag-Ca [J]. Synth. Metal,1991,44(9):447-451
    [15]王恒章.四元合金阳极板在湿法炼锌中的应用[J].有色冶炼,2001,30(6):18-20
    [16]张招贤.钛电极工学[M].北京:冶金工业出版社,2002
    [17]Jari A., Olof F. Evaluation of the electrochemical activity of a Ti-RuO2-TiO2 permanent anode [J]. Electrochimica Acta,2006,51(27):6104-6110
    [18]Ye Zhi-Guo, Meng Hui-Min, Sun Dong-Bai. New degradation mechanism of Ti/IrO2+MnO2 anode for oxygen evolution in 0.5M H2SO4 solution [J]. Electrochimica Acta,2008,53 (18):5639-5643.
    [19]Ye Zhi-Guo, Meng Hui-Min, Sun Dong-Bai. Electrochemical impedance spectroscopic (EIS) investigation of the oxygen evolution reaction mechanism of Ti/IrO2+MnO2 electrodes in 0.5 M H2SO4 solution[J]. Journal of Electroanalytical Chemistry,2008,621(1):49-54.
    [20]Panic V.V., Jovanovic V.M., Terzic S.I., et al. The properties of electroactive ruthenium oxide coatings supported by titanium-based ternary carbides [J]. Surface & Coatings Technology,2007,202(2):319-324
    [21]王峰,俞斌.一种新型Pb02电极的研制[J].应用化学,2002,19(2):193-195
    [22]王桂清,刘敏娜.塑料基体上化学镀二氧化铅[J].电镀与环保,1995,15(3):20-21
    [23]周明华,戴启洲,雷乐成,等.新型二氧化铅阳极电催化降解有机污染物的特性研究[J].物理化学学报,2004,20(8):871-876
    [24]Wesselmark M., Lagergren C., Lindbergh G. Methanol oxidation as anode reaction in zinc electrowinning [J]. J Electrochem Soc,2005,152(11):201-206
    [25]殷敬华,莫志深.现代高分了物理学[M].北京:科学出版社,2001
    [26]Heeger A J. Semiconducting and metallic polymers:the fourth generation of polymeric materials [J]. Synth. Met.,2002,125(1-2):23-42
    [27]Chen Y, Kang E T, Neoh K Q, et al. Intrinsic redox states of polyaniline studied by high-resolution X-ray photoelectron spectroscopy [J]. Colloid and Polymer Science, 2001,279(1):73-76
    [28]Barta P, Kugler T, Salaneck W R, et al. Electronic structure of emeraldine and pemigraniline base:a joint theoretical and experimental study [J]. Synth. Met.,1998, 93(56):83-87
    [29]Yang D, Adams P N, Mattes B R. Intrinsic viscosity measurement of dilute emeraldine base solutions for estimating the weight average molecular weight of polyaniline[J]. Synth. Met.,2001,119(1-3):301-302
    [30]Wan M, Yang J, Zhu C, et al. Scanning tunneling microscopy image of polyaniline[J]. Thin Solid Films,1992,208(2):153-155
    [31]Angelopoulos M, Dipietro R, Zheng W G, et al. Effect of selected processing parameters on solution properties and morphology of polyaniline and impact on conductivity [J]. Synth Met.,1997,84(1-3):35-39
    [32]Ou F, Smauels, R. Investigation of fundamental molecular parameters of polyaniline films[J]. J. Polym. Sci. B,1999,37(24):3473-3487.
    [33]王惠忠,王荣顺,赵大成.掺杂聚苯胺能带结构和导电机理的研究[J].高等学校化学学报,1991,12(9):1229-1233
    [34]Talaie A., Romagnoli J.A. An integrated artificial neural network/polymer-based PH sensor:a new engineering perspective to conducting polymer technology [J]. Synthetic Metals,1996,82(3):231-235
    [35]Javadi H. S., Laversane R., Epstein A. J., et al. Conduction Mecllanism of Polyaniline: Effect of Moisture[J]. Synth. Met,1989(29):439-445
    [36]Epstein A. J., Ginger J. M., Rchter A. F., et al. In Conducting Polylmers:Special Applications Alcacer Led [M]. Dordrecht, Holland:D. Reidel publishing company, 1987
    [37]Ohmura K., Kijima M., Shirakawa H. Synthesis of conducting polymers with conjugated earbon-carbon triple bonds by electrochemical condensation of acetylene derivatives catalyzed by copper complex[J]. Synthetic Metals,1997, (84):417-418
    [38]李英,赵地顺.导电高分子材料[J].河北科技大学学报.2000,21(2),9-12
    [39]Nechtschein M., Santier C., Travers J. P., et al. Water effects in polyaniline:NMR and transport properties [J]. Synth Met,1987,18(1-3):311-316
    [40]王利祥,王佛松.导电聚合物——聚苯胺的研究进展[J].应用化学,1990,7(6):1-8
    [41]Javadi H. S., Zou F., Angelopoulos M., et al. Conduction mechanism of polyaniline: Effect of moisture[J]. Synthetic Metal,1988,26(1):1-8
    [42]Lundberg B., Salaneck W. R. Pressure-temperature and field dependence of hopping conduction in polyaniline [J]. Synth Met,1987,21(1-3):143-147
    [43]Epstein A J, Ginder J M, Zuo F, et al. Insulator-to-metal transition in polyaniline [J]. Synth Met,1987,18(1-3):303-309
    [44]Javadi H H S, Laversanne R, Epstein A J, et al. ESR of protonated "emeraldine": Insulator to metal transition [J]. Synthetic Metals,1989,29(1):439-444
    [45]Nechtschein M, Geond F, Menardo C, et al. Water absorption study in polyaniline [J]. Synth Met,1989,29(1):457-462
    [46]Meixiang W, Jing Y. Electrochemical polymerization of polyaniline at the applied magnetic field [J]. Synthetic Metals,1995,69(3):155-156
    [47]Suzhen L, Meixiang W. Photo-induced doped polyaniline by the vinylidene chloride and methylacrylate copolymer as photo acid generator[J]. Chinese Journal of Polymer Science,1997,15(2):108-113
    [48]刘承美,邱进俊.聚苯胺的微波掺杂反应[J].高分子材料科学与工程,2004,20(1):191-194
    [49]Yong C, Smith P, Alan J H. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers[J]. Synthetic Metals,1992,48(1):91-97
    [50]Wen-Guang L, Mei-Xiang W. Porous polyaniline films with high conductivity [J]. Synthetic Metals,1998,92(2):121-126
    [51]Yongmei M, Chunrong C, Junshi G, et al. Matrix effect of secondary doping in polyaniline composite[J]. Chemical Journal of Chinese Universities,1997,18(12): 2048-2052
    [52]Yongmei M, Xiangyang W, Junshi G, et al. Effect of secondary doping on properties of the conductive composite of polyaniline [J]. Chemical Journal of Chinese Universities,1997,18(9):1560-1564
    [53]曲济方,张生万,马望京,等.在醇水溶剂中硫酸、油酸共掺杂聚苯胺的研究[J].功能材料,2002,33(1):57-59
    [54]Seimei S S, Kazuki K, Masayoshi Y. High performance smell Sensor using spatially controlled LB films with Polymer backbone [J]. Sensors and Actuators B,2000, 64(1-3):70-75
    [55]Michaels F, Nathan S L. A chemically diverse conducting Polymer-based "electronic nose" [J]. Proc Natl Acad Sci USA,1995,92:2652-2656
    [56]陆珉,吴益华,姜海夏.聚苯胺的特性及其应用[J].功能材料,1998,29(4):353-355
    [57]Genis E M, Lapkowske M. Polyaniline films electrochemical redox mechanisms [J]. Synth Met,1988,24(1-2):61-68
    [58]Ginder J M, Epstein A J, MacDiarmid A G. Electronic phenomena in polyaniline [J]. Synth Met,1989,29(1):395-400
    [59]Volkov A, Tourillon G, Lacaze P C, et al. Electrochemical Polymerization of Aromatic Amines IR, XPS and PMT Study of Thin film Formation on a Platinum Electrode [J]. Electroanal Chem,1980,115(2):279-291
    [60]Wan M X, McaDiannid A G, Epstien A J. Photoelectrochemistry of Polyniline Spring Ser [J]. Solid-state Sci,1987,76:216-222
    [61]Noufi R, Nozik A J, White J, et al. Enhanced Stability of Photoelectrodes with Electrogenerated Polyaniline Films [J]. Electrochem Soc,1982,129(10):2261-2265
    [62]董绍俊,宋益发.聚苯胺薄膜修饰电极对抗坏血酸的电催化氧化[J].物理化学学报,1992,8(1):82-86
    [63]罗维忠,吴婉群.聚苯胺薄膜和聚吡咯膜电极对Fe(Ⅱ)和Sb(Ⅲ)电催化作用[J].应用化学,1994,1(1):42-45
    [64]Machado D S, Moraes S R, Motheo A J. Aspects of the chemical synthesis of Pani-DBSA and its properties[J]. Molecular Crystals and Liquid Crystals,2006, 447(3):215-222
    [65]Byoung-Jin K, Seong-Geun O, Moon-Gyu H, et al. Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions[J]. Synthetic Metals,2001, 122(2):297-304
    [66]Gospodlnova N, Mokreva P, Tsanov T, et al. A new route to polyaniline composite [J]. Polymer,1997,38(3):743-746
    [67]Jaroslav S, Irina S. On the origin of colloidal particles in the dispersion polymerization of aniline [J]. Journal of Colloid and Interface Science,2004,274(2): 489-495
    [68]Qi Xi-Min, Du Yan-Fang, Zhang Gui-Rong, et al. Electrosynthesis of polyaniline in ionic and its electro-catalytic properties [J]. Journal of Eastchina Normal University (Natural Science),2005, (3):53-58
    [69]Ronggllan L, Shuling Z, Jinqing K, et al. Electrochemical synthesis of polyaniline nano-particles in the presence of magnetic field and erbium chloride[J]. Synthetic Metals,2005,150(2):115-122
    [70]Collins G E, Buckiey L J. Conductive polymer-coated fabrics for chemical sensing [J]. Synthetic Melals,1996,78(2):93-101
    [71]Wilbur J M, Sandreczki T C, Brown 1 M, et al. A representative of a new class of conducting oligomer:acetylene-terminated polyaniline[J]. Synthetic Metals,1996, 82(3):175-181
    [72]Xiaomeng S, Ying C, Shuangxi X, et al. Synthesis of PANI/Ag, PANI/BaSO4 and PANI/TiO2 nanocomposite in CTSB/hexanol/water reverse micelle[J]. Materials Letters,2004,58(8):1225-1259
    [73]周海晖,焦树强,陈金华,等.Pt微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化[J].物理化学学报,2004,20(1):9-14
    [74]Yuezhong X, Yi H, Fang L, et al. Glucose biosensor based on Au nanop articles-conductive polyaniline nanocomposite[J]. Biosensors and Bioeleclronics, 2006,21(10):1996-2000
    [75]Ferreria M, Dinelli L R, Wohnrath K, et al. Langmuir-Blodgett films from polyaniline/ruthenium complexes as modified electrodes for detection of dopamine[J]. Thin Solid Films,2004,446:301-306
    [76]Axel H, Raphael S, Denis B, et al. New polyanlline/Ni (0) nanocomposites: Synthesis, characterization and evaluation of their catalytic activity in Heck couplings[J]. Synthetic Metals,2005,151(2):165-174
    [77]Fenelon A M, Breslin C B. Polyaniline-coated iron:studies on the dissolution and electrochemical activity as function of pH[J]. Surface & Coatings Technology,2005, 190:264-270
    [78]Girija T C, Sangaranarayanan M V. A novel role for organic polymers[J]. Synthetic metals,2006,156(2):244-250
    [79]Conroy K G, Breslin C B. The electrochemical deposition of polyaniline at pure aluminium:Electrochemical activity and corrosion protection properties[J]. Electrochimica Acta,2003,48(6):721-732
    [80]Kerr T A, Wu H, Nazar L F. Concurrent polymerization and insertion of aniline in molybdenum trioxide:Formation and properties of a [poly(aniline)]o.24Mo03 nanocomposite[J]. Chem Mater,1996,8(8):2005-2015
    [81]Koene B, Nazar L F. Formation and properties of a PANI/HNb(Ta)WO6 nanocomposite[J]. Solid State Ioics,1996,89:147-157
    [82]Kuwabata S, Idzu T, Martin C R, et al. Synthesis and characterization of intercalated mesostructured PANI/V2O5[J]. J Electrochem Soc,1998,145:2707-2710
    [83]Hwang K S, Lee C W, Yoon T H, et al. Fabrication and characteristics of a composite cathode of sulfonated polyaniline and Ramsdellite-MnO2 for a new rechargeable lithium polymer battery[J]. J powe Soures,1999,79(2):225-230
    [84]Matveeva E S, Ferrer G C, Gonzalez T M J. Charge transfer behaviour of the indium-tin oxide/polyaniline interface:dependence on pH and redox state of PANI[J]. Synthetic Metals,2001,123(1):117-123
    [85]魏亦军,陈士昆,褚道葆.纳米TiO2/聚苯胺复合膜的制备及其光催化降解苯酚[J],淮南师范学院学报,2003,5:31-33
    [86]Kazantseva N E, Vilakova J, Kesalek V, et al. Magnetic behavior of composite containing po lyaniline-coated manganese-zink ferrite [J]. Journal of Magnetism and Magnetic Materials,2004,269(1):30-37
    [87]Yunze L, Zhaojia C, Jean L D, et al. Electrical and magnetic properties of polyaniline/Fe3O4 nanostructures[J]. Physica B:Condensed Matter,2005,370(4): 121-130
    [88]Elena N K, Jaroslav S, Miroslava T, et al. Multi-wall carbon nanotubes coated with polyaniline[J]. Polymer,2006,47 (16):5715-5723
    [89]Vinay G, Noria M. Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composite[J].2006,157(1):616-620
    [90]Hori T, Kuramoto N, Tagaya H, et al. Preparation of conducting film composed of polyaniline and metal oxide by sol-gel method[J]. Journal of Materials Research, 1999,14(1):5-7
    [91]Tang B Z, Geng Y, Larn J W Y, et al. Processible nanostructured materials with electrical conductivity and magnetic susceptibility:preparation and properties of Maghemite/polyaniline nanocomposite films[J]. Chemistry of Materials,1999,11(6): 1581-1589
    [92]Liangchao L, Jing J, Feng X. Novel polyaniline-LiNio.5Lao.02Fe1.98O4 nanocomposites prepared via an in situ polymerization [J]. European Polymer Journal,2006,42(10): 2221-2227
    [93]Zhiming Z, Meixiang W. Nanostructure of polyaniline composites containing nanomagnet[J]. Synthetic Metals,2003,132(2):205-212
    [94]Shoji Y, Furnihiko O, Yasushi O, et al. Synthesis of polyaniline-montmo-rillonite nanocomposites by the mechano-chemical intercalation method[J]. Synthetic Metals, 2004,145(3):265-270
    [95]王金库,陈军,林薇薇.透明导电聚苯胺复合膜的研究进展[J].材料科学与工程,2001,19(1):121-123
    [96]Kwang S R, Kwang M K, Seong G K, et al. Comparison of lithium/polyaniline secondary batteries with different dopants of HC1 and lithium ionic salts [J]. Journal of Power Sources,2000,88 (2):197-201
    [97]Rehan H H. A new polymer/polymer rechargeable battery:polyaniline/LiClO4 (MeCN)/poly-l-naphthol [J]. Journal of Power Sources,2003,113(1):57-61
    [98]Sotomuka U T, Takeyama H K. New Organodisulfide-Polyaniline Composite Cathode for Secondary Lithium Battery [J]. Electrochim Acta,1992,37(10):1851-1584
    [99]Naoi K, Kawase K. Electroactive high storage capacity polycarbonsulfide materials and electrolytic cells containing same [J]. J Electrochem. Soc.,1997,144(6):170-176
    [100]唐晓辉,李永舫,方世璧.二硫二磺酸掺杂聚苯胺电化学性能的研究[J].物理化学学报,1998,14(3):211-218
    [101]Duic L, Grigic S. The effect of polyaniline morphology on hydroquinone/quinone redox reaction [J]. Electrochimica Acta,2001,46(18):2795-2803
    [102]Mikhaylova A A, Molodkina E B, Khazova O A, et al. Electrocatalytic and adsorption properties of platinum microparticles electrodeposited into polyaniline films [J]. J Electroanal Chem,2001,24(2):119-127
    [103]Rajendre Prasad K, Munichandraiah N. Fabrication and evaluation of 450F electrochemical redox supercapacitors using inexpensive and high performance polyaniline coated stainless steel electrodes [J]. J. Power Sources,2002,112 (2): 443-451
    [104]吴婉群,王月丰,范例,等.铂微粒修饰的聚苯胺薄膜电极对甲醛氧化的电催化作用[J].应用化学,1995,12(1):68-72
    [105]李五湖,陈琳琳,钟起玲,等.钯微粒修饰聚苯胺电极对甲酸氧化的电催化研究[J].应用化学,1993,10(4):55-57
    [106]王朝瑾,李云峰,陈志刚.聚苯胺修饰钨丝针型pH传感器的研究及在河鲫鱼测试中的应用[J].食品科学,2000,21(12):118-120
    [107]Matsushita P, Sagyo K. JP 0 72 828 01 A,1995.
    [108]Matsushita E I C. JPO 42 825 57A,1995
    [109]Canon K K. JP 072 952 77A,1995
    [110]穆绍林,薛怀国.聚苯胺黄嘌呤氧化酶电极的生物电化学活性[J].化学学报,1995,53(6):521-525
    [111]阚锦晴,穆绍林.聚苯胺尿酸酶电极性能的研究[J].物理化学学报,1993,9(3):345-351
    [112]Kan J Q, Pan X, Chen H C. Glucose biosensor based on immobilization of glucose oxidase in poly (o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode[J]. Biosensorsand Bioelectronias,2007,22(12):2898-2905
    [113]Pan X H, Kan J Q, Yuan L M. Polyaniline glucose oxidase biosensor prepared with template process [J]. Sensorsand Actuators B. Chemical,2004,102(5):325-330
    [114]Hu H L, Hechavarria L, Campos J. Optical and electrical responses of polymeric electrochromic devices:Effect of polyacid incorporation in polyaniline film [J]. Solid State Ionics,2003,161 (2):165-172
    [115]Cortes M T, Moreno J C. Artificial muscles based on conducting polymers [J]. e-Polymers,2003, no.041 (http://www.e-polymers.org)
    [116]李松瑞.铅及铅合金[M].中南工业大学出版社,1996
    [117]刘良绅,柳松,刘建中,等.Pb-Ag-Ca三元合金机械性能的研究[J].矿冶工程, 1995,15(4):61-64
    [118]Adolfvon R,罗尧谦.达特伦电锌厂的改建[J].中国有色冶金,1988,17(3):18-23
    [119]衷水平,赖延清,蒋良兴,等.锌电积用Pb-Ag-Ca-Sr四元合金阳极的阳极极化行为.中国有色金属学报,2008,18(7):1342-1346
    [120]王佛松.聚苯胺的掺杂反应[J].武汉大学学报,1993,(6):65-73
    [121]屠晶景,宁永功,李元勋.XPS对电导性纳米聚苯胺的性能表征[J].化学与生物工程,2006,23(3)15-21
    [122]康茹珍,杨善武,贺信莱,等.反应物中氧化剂和掺杂剂浓度对聚苯胺性能与结构的影响[J].北京科技大学学报,2005,17(1):45-49
    [123]阐锦晴,穆绍林.氧化剂对聚苯胺性质的影响[J].高分子学报,1989,4:465-471
    [124]于化江,武克忠,王庆飞,等.不同质子酸掺杂对苯胺电聚合速率影响的确定[J].河北师范大学学报(自然科学版),2008,32(1):79-84
    [125]杨春明,陈迪钊,方正,等.聚苯胺在有机溶剂中掺杂质子酸的光谱及其因子分析法解谱[J].高等学校化学学报,2002,23(6):1198-1201
    [126]王利祥,王佛松.导电聚合物—聚苯胺的研究进展I.合成链结构和凝聚态结构化学[J].应用化学,1990,7(5):1-10
    [127]苏静,王庚超,邓惠山,等.掺杂质子酸的类型对聚苯胺结构和电导率的影响[J].功能高分子学报,2002,15(2):122-126
    [128]林薇薇,丁力,张卫英,等.掺杂剂类型和浓度对聚苯胺微波介电性能的影响[J].化学物理学报,1996,9(3):282-286
    [129]蔡林涛,姚士冰,周绍民.聚苯胺的成核及生长机理[J].化学学报,1995,53:1150-1156
    [130]吐尔逊·阿不都热依木,张校刚.温度对固相聚合反应盐酸掺杂聚苯胺的影响[J].功能材料,2004,35(3):330-332
    [131]王氢,邓家棋.正交试验选择组织电极的最佳分析条件[J].分析化学,1994,22(6):615-618
    [132]Bhadra S, Khastgir D. Degradation and stability of polyaniline on exposure to electron beam radiation (structure-property relationship) [J]. Polym Degrad Stab, 2007,92:1824-1832
    [133]Kennedy C J, Lerber K V, Wess T J. Measuring crystallinity of leaser cleaned silk by X-ray diffraction [J]. e-Preserv Sci,2005,2:31-37
    [134]Laska J. Conformations of polyaniline in polymer blends [J]. Journal of Molecular Structure,2004,701:13-18
    [135]Adams P M, Abell L, Middleton A, et al. Low temperature synthesis of high molecular weight polyaniline using dichromate oxidant[J]. Synthetic Metals,1997, 84(1-3):61-62
    [136]曾幸荣,龚克成.K103作氧化剂合成聚苯胺[J].高分子材料科学与工程,1993,9(5):21-25
    [137]陈贻瑞,王建.基础材料与新材料[M].天津:天津大学出版社,1999
    [138]任斌,余成.导电聚苯胺的合成及其性能研究[J].光谱实验室,2005,22(1)148-151
    [139]刘皓,谢洪泉.聚苯胺/聚乙烯醇导电复合膜的制备及性质研究[J].高分子学报,1995,12(6):693-698
    [140]刘丹丹,宁平,夏林,等.导电聚苯胺/EAA共混物的导电性能研究[J].中国塑料,2005,19(2):45-47
    [141]Jia W, Segai E, Kornemandel D, et al. Polyaniline-DBSA/Organophilic clay nanocomposites:synthesis and characterization [J]. Synthetic Metals,2002,128 (1): 115-120
    [142]沙兆林,苏广均,施磊,等.导电聚苯胺的合成[J].南通工学院报,2000,16(1):25-27
    [143]Lefrant S, Koziel K, Lapkowski M, et al. Spectroelectrochemical investigations of the memory effect in polyaniline[J]. Synlthetic Metals,1995,69(1-3):217-218
    [144]朱道本,王佛松.有机固体[M].上海:上海科学技术出版社,1999
    [145]刘承美,邱进俊,田大听.二磺酸掺杂高热稳定性导电聚苯胺的合成及性能[J].功能高分子学报,16(4):489-494
    [146]Wu C G, Yeh Y R, Chen J Y. Electroless surface polymerization of ordered Conducting polyaniline films on aniline-primed substlates[J]. Polymer,2001,42(7): 2877-2885
    [147]Zhang Xin-Yu, Chan Yu-King, Roch, et al. Nanofibers of polyaniline synthesized by interfacial polymerization[J]. Synthetic Metals,2004,145(1):23-29
    [148]Laska J, Pron A, Girault R. Raman spectroscopic studies of polyaniline protonation with bis(2-ethylhexyl) hydrogen phosphate[J]. Synthetic Metals,1995,75:69-74
    [149]Akhavan J, Slack K. Coating of a semiconducting polymer for use in electrorheological fluids[J]. Synthetic Metals,2001,124(2-3):363-371
    [150]马利,刘昊,甘孟瑜,等.乳液法合成磺基水杨酸掺杂纳米聚苯胺[J].表面技术,2006,35(4):42-45
    [151]傅和青,张心亚,黄洪,等.乳液聚合法制备聚苯胺及其导电性能[J].化工学报,2005,56(9):1790-1793
    [152]韩笑,王源升.Fe304的含量对纳米磁性导电聚苯胺电磁参数的影响[J].高校化学工程学报,2007,21(6):1024-1030
    [153]Palaniappan S, Amarnath C A. Polyaniline-dodecyl-hydrogensulfate-acid salt: Synthesis and characterization[J]. Materials Chemistry and Physics,2005,92 (1): 82-88
    [154]Cochet M, Louarn G, Quillard S, et al. Theoretical and experimental vibrational study of polyaniline in base forms:non-planar analysis:Part I[J]. J. Raman Spectrosc.,2000, 31:1029-1039
    [155]Kang E T, Neoh K G, Tan E L. A polymer with many interesting intrinsic redoxstates[J]. Prog. Polym. Sci.,1998,23:277-324
    [156]Li Z F, Kang E T, Neoh K G, et al. Effect of thermal processing conditions on the intrinsic oxidation states and mechanical properties of polyaniline films[J]. Synth. Met.,1997,87(1):45-52
    [157]Ram M K, Yavuz O, Lahsangah V, et al. CO gas sensing from ultrathin nano-composite conducting polymer film [J]. Sensors Actuators B,2005,106(2): 750-758
    [158]Ansari R, Price W E, Wallace G G. Effect of thermal treatment on the electroactivity of polyaniline [J]. Polymer,1996,37(6):913-917
    [159]谢泉,刘让苏,彭平,等.白炭黑和炭黑含量对导电硅橡胶拉敏特性影响的研究[J].高分子材料科学与工程,1998,14(1):94-97
    [160]Bhadra S, Singha NK, Khastgir D. Dual functionality of PTSA as electrolyte and dopant in the electrochemical synthesis of polyaniline and its effect on electrical properties[J]. Polym Int.,2007,56 (7):919-927
    [161]Lee Y M, Kim J H, Kang J S, et al. Annealing Effects of Dilute Polyaniline/NMP Solution[J]. Macromolecules.2003,3(20):7431-7436
    [162]Trchova M, Sedenkova I, Tobolkova E, et al. FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films[J]. Polym. Degrad. Stab.,2004, 86(1):179-185
    [163]Mzenda V M, Goodman S A, Auret F D, et al. Characterization of electrical charge transfer in conducting polyaniline over the temperature range 300    [164]Conklin J A, Huang S C, Huang S M, et al. Thermal properties of polyaniline and poly (aniline-co-o-ethylaniline) [J]. Macromolecules,1995,28:6522-6527.
    [165]MacDiarmid A G, Epstein A J. The concept of secondary doping as applied to polyaniline[J]. Synthetic Metals,1994,65(2-3):103-108
    [166]韦玮,刘郁杨.聚苯胺的掺杂及其导电性能研究[J].西安交通大学学报,1997,3(11):35-39
    [167]王延敏,韦玮.聚苯胺导电衍生物的掺杂条件和方法研究[J].化工新型材料,2002,30(2):13-41
    [168]Wan M, Yang J. Mechanism of proton doping in polyaniline[J]. Journal of Applied Polymer Science,1995,55(3):399-405
    [169]於黄中,陈明光,黄河.不同类型的酸掺杂对聚苯胺结构和电导率的影响[J].华南理工大学学报(自然科学版),2003,31(5):21-24
    [170]席宝信,王梅,王益亨,等.聚苯乙烯/纳米二氧化铈复合材料的制备与表征[J].工程塑料应用,2005,33(3):57-60
    [171]范颖,刘丽敏,李长江.胶体分散的聚苯胺/氧化钇纳米复合物的合成与表征[J].高分子材料科学与工程,2005,21(3):70-73
    [172]叶露,陈丹清,刘继忠,等.表面处理对原位悬浮聚合PVC纳米碳酸钙复合材料的影响[J].中国塑料,2002,16(6):39-43
    [173]Santos J B O, Valenca G P, Rodrigues J A J. Catalytic decomposition of hydrazine on tungsten carbide:the influence of adsorbed oxygen [J]. Catalysis,2002,210(1):1-6
    [174]Kim J W, Kim S G, Choi H J, et al. A high-precision rotating disk apparatus for drag reduction characterization [J]. Polymer Testing,2000,20(1):43-48
    [175]Saxena V, Malhotra B D. Prospects of conducting polymers in molecular electronics[J]. Current Applied Physics,2003,3(3):293-305
    [176]Pouget J P, Jozefowicz M E, Epstein A J, et al. X-ray structure of polyaniline[J]. Macromolecules,1994(24):779-789
    [177]Li X, Chen W C, Bian C, et al. Surface modification of TiO2 nanoparticles by polyaniline[J]. Appl. Surf. Sci.,2003(217):16-22
    [178]于雅鑫,张德文,陆平.CdS/聚苯胺导电复合材料的制备与表征[J].长春工业大学学报(自然科学版),2008,29(6):670-374
    [179]Chuang F Y, Yang S M. Titanium oxide and polyaniline core-shell nano-composites[J]. Synth. Met,2005,152:361-368
    [180]Ray S S, Biswas M. Water-dispersible conducting nano-composites of polyaniline and poly N-vinylcarbazole with nanodimensional zirconium dioxide [J]. Synth Met, 2000,108:231-236
    [181]Maity A, Biswas M A. Conducting composite based on poly(N-viny-lcarbazole)-formalin resin and acetylene black [J]. J Appl Polym Sci,2004,94: 803-811
    [182]刘少琼,于黄中,黄河,等.TiO2纳米微粒对聚苯胺性能的影响[J].高等学校化学学报,2002,23(1):161-163
    [183]任斌,黄河,刘少琼,等.原位聚合法制备聚苯胺/聚乙烯醇导电材料的研究[J].华南师范大学学报,2003,2:58-61
    [184]段继光,工程陶瓷技术[M].长沙:湖南科学技术出版社,1994
    [185]崔硕景,许大鹏,苏文辉,等.高压下聚苯胺系高分子导体电学特性的研究[J].高压物理学报,1987,1(1):71-76
    [186]Mazeikiene R, Malinauskas A. Electrochemistry stability of polyaniline[J]. European Polymer Journal,2002,38:1947-1952
    [187]Stiwell D E, Park S M. Eleetroehemistry of conductive polymers VI:degradation Reaetion kineties of Polyaniline studied by rotating ring disk eleetrode[J]. Journal of Electrochemical Society,1989,136:688-698
    [188]Arsov L D, Plierh W, Kossmehl G. Electrochemical and Raman spectroscopic study of polyaniline:influence of the potential on the degradation of polyaniline[J]. Journal of Solid State Electroehemistry,1998,2:355-361
    [189]Nakayama M, Saeki S, Ogura K. In situ observation of electrochemical formation and degradation proeesses of polyaniline by fourier-transform infrared spectroscopy [J]. Analytical Sciences,1999,15:259-263
    [190]Maksimov Y M, Podlovehenko B I, Gladysheva T D, et al. Structural and sorptive properties of platinum-polyaniline and palladium-polyaniline systems obtained by cycling the electrode potential [J]. Russian Journal of Electrochemistry,1999,35: 1225-1231
    [191]Cai L T, Chen H Y. Preparation and electroactivity of polyaniline/poly(acrylieacid) film electrodes modified by platinum micropartieles[J]. Journal of Applied Electrochemistry,1998,28:161-166
    [192]Zagal J H, Delrio R R, Retamal B A, et al. Stability and electrocal properties of polyaniline films formed with EDTA and Fe-EDTA in the electrolyte [J]. Journal of Applied Electrochemistry,1996,26:95-101
    [193]Li Han-Lu, Wang Ji-Xiao, Chu Qing-Xian, et al. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid[J]. J. Power Sources,2009,190(2): 578-586.
    [194]Horvat-Radosevic V., Kvastek K., Kraljic-Rokovic M. Impedance spectroscopy of oxidized polyaniline and poly(o-ethoxyaniline) thin film modified Pt electrodes[J]. Electrochimica Acta,2006,51(17):3417-3428
    [195]Lindfors T, Bobacka J, Lewenstam A, et al. Study on soluble polypyrrole as a component in all-solid-state ion-sensors [J]. Electrochim Act,1998,43(23): 3503-3509
    [196]Bard A J, Faulker L R. Electrochemical methods:Fundamentals and applications 2nd Edn[M]. Jhon Wiley & Sons,2001,386
    [197]胡吉明.Ti基IrO2+Ta2O5阳极析氧电催化与失效机制研究[D]:[博士论文],北京科技大学,2000
    [198]Alves V A, Silva L A, Boodts J F C. Sueface characterization of IrO2/TiO2/CeO2 oxide electrodes [J]. Electrochimica Acta,1998,44:1525-1534
    [199]Da Silva L A, Alves V A, Trasatti S, et al. Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7-x)PtxO2. Oxygen evolution from acidic solution [J]. J. Electroanal. Chem.,1997,427(1-2):97-104
    [200]Trasatti S. Electrocaltalysis in the anodic evolution of oxygen and chlorine[J]. Electrochem Acta,1984,29(11):1503-1512
    [201]Ma Hong-Chao, Liu Chang-Peng, Liao Jian-hui, et al. Study of ruthenium oxide catalyst for electrocatalytic performance in oxygen evolution[J]. J. Molecular Catalysis A:Chemical,2006,247(1-2):7-13
    [202]Alves V A, Silva L A, Boodts J F C. Surface characterization of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkalin solution[J]. Electrochimica Acta,1998,44(5):1525-1534
    [203]Bohm H. Fuel cell assemblies with an acidic electrolyte[J]. Journal of Power Sources, 1976,1(2):177-182
    [204]梁镇海,孙彦平.Ti/SnO2+Sb2O3+MnO2/PbO2阳极的性能研究[J].无机材料学报,2001,16(1):183-188
    [205]薛彩霞,梁镇海.Ti/SnO2+Sb2O3+CF/PbOx电极的制备及性能研究[J].太原理工大学学报,2007,38(5):431-434
    [206]衷水平.锌电积用铅基多孔节能阳极的制备、表征与工程化试验[D]:[博士论文],中南大学,2009
    [207]Amadelli R, Maldotti A, Molinari A, et al. Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media [J]. J. Electroanal. Chem.,2002,534 (1):1-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700