新型节能阳极材料制备技术及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在锌电积中采用的阳极材料一般为铅基合金,这种电极存在的不足之处是:(1)电解时形成的PbO2膜对氧析出反应(OER)有很高的超电位,使电解能耗增加;(2)阴极产品易受铅的污染;(3)机械强度低,易弯曲甚至造成短路。一种新型惰性二氧化铅阳极受到广泛的应用,此电极一般由钛基体、底层、中间层以及表面层组成。底层一般是为了改善二氧化铅镀层与钛基体的结合性能;中间层是为了增强二氧化铅镀层与电极结合的牢固度,以及缓和镀层中的电沉积畸变的产生(一般使用不存在电积畸变的α-PbO2作中间层);表面层是β-PbO2。与旧式二氧化铅相比较,新型的二氧化铅提高了电极的坚固性、导电性和耐蚀性,但钛价格高;而铝价格便宜,导电性好,质量轻,也是阀型金属。在铝基体上制得的新型二氧化铅电极材料用在有色金属电积中有广阔的应用前景。
     本文首先通过热力学分析讨论了水溶液中PbO2和MnO2生成的条件;其次,采用阳极电沉积方法,在A1基上电沉积二氧化铅镀层;然后,通过改进实验条件将具有特殊性能的纳米或微米颗粒以及离子掺杂进入PbO2中,分别制备了以α-PbO2-CeO2-TiO2作为中间层,以β-PbO2-WC-ZrO2或β-PbO2-MnO2-WC-ZrO2作为最外层的两种具有高催化活性和耐蚀性的新型节能惰性阳极材料。利用SEM、XRD、EDS、金相显微镜、激光粒度分析、HX-1等手段对镀层的表面形貌、结构物相、成分、金相组织、固体颗粒大小以及显微硬度进行了表征。采用阳极极化曲线、Tafel、EIS、循环伏安等手段在酸性介质中测定了动力学参数。采用快速寿命法考察了复合电极在硫酸溶液中2A/cm2下的预期使用寿命。探讨了固体颗粒在PbO2复合镀层中的作用机制。
     对Pb-H2O系和Mn-H2O系进行了系统的热力学分析,分析表明:镀液温度对生成MnO2和α-PbO2的影响比生成β-PbO2大,且MnO2和β-PbO2共沉积之前已发生了MnO2的沉积。
     在氢氧化钠体系、硝酸体系和醋酸体系中分别制备了A1基α-PbO2、Al基α-PbO2/β-PbO2 (NO3-)和A1基α-PbO2/β-PbO2 (CH3COO-)电极。在硝酸体系中得到的电极表面粗糙度最高,催化活性好;外层β-PbO2与中间层α-PbO2之间形成最大固溶体,增加了电极的导电性和耐蚀性能。提出了A1基α-PbO2和A1基α-PbO2/β-PbO2(NO3-)两种电极的结构模型,在析氧反应机理中Tafel斜率b值大于120mV是由于电极在阳极极化过程中表面的活性颗粒数目减少所致。
     在碱性镀液中研究了A1基上阳极电沉积α-PbO2镀层的工艺。电沉积的电流密度对镀层的表面形貌影响最大,在电流密度小于3mA cm-2所得的镀层致密均匀;进一步提高电流密度则镀层晶体减小,但会产生孔g隙。HPbO2浓度在0.12M和温度为40℃下所得的镀层的晶体分布良好;但在较长的电沉积时间下会产生孔隙。在碱性镀液中得到的α-PbO2镀层具有很高的非计量式,尤其是在电流密度较大时得到的PbO2镀层更甚;镀层中除了α-PbO2外,还含有少量的PbO物相。
     利用电化学阳极复合电沉积技术,掺杂TiO2和CeO2纳微米颗粒于碱性镀液中,在A1基上制备了α-PbO2-CeO2-TiO2复合镀层。确定了制备复合电极材料的最佳配方及操作条件:氧化铅加入4M氢氧化钠水溶液中至饱和、TiO2浓度(15g/L)、CeO2浓度(10g/L)、温度(40℃)、电流密度(0.5A/dm2)、电沉积时间(3h)。在此条件下获得PbO2-(3.77wt.%)TiO2-(2.13wt.%)CeO2复合镀层。α-PbO2-CeO2-TiO2复合镀层的厚度、显微硬度和致密性都优于未掺杂的α-PbO2镀层。A1基α-PbO2-3.70wt.% TiO2-2.14wt.% CeO2电极在碱性溶液中在相同的电势下所需要的活化能最小,并且在电势为0.35V左右可分为电化学步骤和扩散步骤控制。在硫酸溶液中,α-PbO2-3.69 wt.% TiO2-2.12wt.% CeO2镀层的耐蚀性最强,催化活性最好。初步提出了两种颗粒的复合共沉积模型。
     通过β-PbO2和纳米Zr02.WC微粒的阳极共沉积,在A1基α-PbO2-CeO2-TiO2上制备了β-PbO2-WC-ZrO2复合镀层,确定了制备复合电极材料的最佳配方及操作条件:Pb(NO3)2 250g/L、HNO3 15g/L、WC 40g/L、ZrO2 50g/L、温度50℃、电流密度3A/dm2、电沉积时间4h。在此条件下,可获得β-PbO2-6.56wt.% WC-3.74wt.% ZrO2综合性能较好的复合电极材料,沉积厚度为408μm,显微硬度为723Hv。β-PbO2-6.56wt.% WC-3.74wt.% ZrO2镀层在硫酸中的催化活性和耐蚀性最好。
     纯β-PbO2镀层的晶粒呈金红石结构。掺WC的β-PbO2镀层中的晶胞较大,晶胞之间有裂纹,晶胞由许多纳米球形形状的晶粒堆积而成,在高放大倍数下发现WC颗粒呈不规则形状;β-PbO2晶粒形状轮廓模糊。掺纳米ZrO2的β-PbO2镀层中的晶粒细小且均匀,β-PbO2晶粒轮廓清晰,呈八面体结构,ZrO2纳米颗粒均匀地镶嵌在基质β-PbO2中。掺纳米ZrO2和WC的β-PbO2镀层中晶粒更加细小,纳米ZrO2和WC弥散分布于β-PbO2基体中,极大地增加了镀层表面的粗糙度。掺WC的β-PbO2复合镀层中固体微粒WC上发生了二氧化铅的电沉积反应、掺纳米ZrO2的β-PbO2复合镀层中纳米ZrO2上未发生电化学反应,即ZrO2颗粒未进入β-PbO2的晶格中,只掺杂在晶界中,但其具有吸附二氧化铅晶粒的能力。WC和ZrO2能相互产生协同作用。
     三种掺杂的复合镀层与纯β-PbO2镀层的衍射峰相比:(1)掺WC的β-PbO2复合镀层的衍射峰强度明显减弱了,且晶面间距d值变大了。WC颗粒的衍射峰在掺WC的β-PbO2复合镀层衍射峰中表现突出,尤其是WC的晶面(110)和(101),甚至比最强的p(211)衍射峰还强。(2)纳米ZrO2可抑制α-PbO2晶体的产生,掺杂纳米ZrO2能使β-PbO2镀层的晶面发生择优取向。(3)掺WC和ZrO2的β-PbO2复合镀层发现了新相PbWO4,并且PbWO4在复合镀层中的衍射峰最强。掺杂固体颗粒的β-PbO2复合电极的寿命都比纯β-PbO2电极的长,尤其是A1基α-PbO2-CeO2-TiO2/β-PbO2-6.58wt.% WC-3.78wt.%ZrO2电极在硫酸溶液中高电流密度2A/cm2下的寿命可达441h。
     通过MnO2、PbO2和WC、ZrO2颗粒的复合电沉积,在A1基α-PbO2-CeO2-TiO2上制备了催化活性好的β-PbO2-MnO2-WC-ZrO2复合镀层。当电流密度和硝酸锰浓度分别控制在1A/dm2和80g/L时,复合镀层的固体颗粒含量达到最高值,分别为6.63%和3.49%左右,此电极用于高电流密度2A/cm2条件下电解时,寿命可达到368h,锌电积的槽电压比Pb-1wt.%Ag合金电极低0.4V。电流密度升高,镀层中的晶粒会长大,镀层中的二氧化锰含量将降低,但对镀层相结构影响不大;增加硝酸锰含量,复合镀层的晶粒得到细化,二氧化锰的含量将呈指数增加;当浓度超过80g/L时复合镀层因内应力作用而产生裂纹,镀层将由晶态转化为混晶态。
At present, the lead alloys containing small amounts of silver, tin, calcium or antimony have been widely used as insoluble anodes in zinc electrowinning industry. The anodes can meet the needs of zinc electrowinning, but oxygen overpotential of the anodes is still high. Lead ions dissolved in the electrolyte can be reduced on the cathode and contaminate the cathode zinc. A new type of PbO2-coated metal anode, which has been widely used in electrolysis, is made up of four layers. The base is made of titanium plate and is covered with a conductive undercoating(such an undercoating is necessary for protecting the substrate from passivation) as bottom. The intermediate coating is composed ofα-PbO2, andβ-PbO2 is electrodeposited as the surface layer. Titanium is not, however, a viable substrate for practical electrodes in electrodepositing nonferrous metals for its cost. Aluminum is relatively cheap and has a good conductivity. The electrode material by electrodepositing lead dioxide on Al substrate has a huge market prospects.
     Firstly, thermodynamic analysis for the feasibility of electrodepositing PbO2 and MnO2 from aqueous solution was discussed. Secondly, lead dioxide on Al substrate was prepared through anodic deposition from aqueous solutions. Foreign ions or fine particles were added to the electrolyte aims at incorporate with the lead dioxide. Therefore, the electrocatalytic activity and the stability of the PbO2 electrodes can be enhanced. For example, the intermediate coating, consisting ofα-PbO2-CeO2-TiO2, was prepared by electrodepositing lead dioxide with doping nano-titanium dioxide and rare-earth oxide. The surface coating, consisting ofβ-PbO2-WC-ZrO2(orβ-PbO2-MnO2-WC-ZrO2), was prepared by doping WC and nano-ZrO2 particles. The morphology, crystal phase, surface composition, microstructure, particles size and microhardness of the electrode were characterized by means of SEM, XRD, EDS and so on. The electrocatalytic properties of electrodes have also been studied by linear sweep voltammetry, A.C.Impedance, Tafel plot and Cyclic voltammetry. The anticipated service lives of electrodes were measured by accelerated life test using in 150g/L H2SO4 solution at a current density of 2A/cm2. The electrocatalytic activity and service life of the composite layers in the oxygen evolution reaction have been investigated with aim of assessing the effect of fine particles.
     The E-pH diagrams of Pb-H2O and Mn-H2O system were calculated and drawn by a number of thermodynamic data. The results showed that the potential of electrodepositedα-PbO2 andγ-MnO2 were changed more obviously than that ofβ-PbO2 by increasing the temperature. On the basis of standard redox potentials, anodic deposition of MnO2 was easier than deposition of PbO2.
     α-PbO2、α-PbO2/β-PbO2 (NO3-) andα-PbO2/β-PbO2 (CH3COO-) were obtained from alkaline、nitrate and acetate bath, respectively. The surface roughness ofα-PbO2/β-PbO2 (NO3-) on A1 substrate was the largest, resulting in a considerable electrocatalytic activity. The solid solubility ofα-PbO2 inβ-PbO2 (NO3-) presented the maximal value, providing a way to improve the conductivity and corrosion resistance. The structural models of A1/α-PbO2 and A1/α-PbO2/β-PbO2 (NO3-) electrodes were proposed. In the reaction mechanisms for oxygen evolution, the relatively high values of Tafel slope were interpreted by the decreasing of the number of activity particles covered on electrode surface.
     The electrodeposition process ofα-PbO2 coating on the A1 substrate was studied. Applied current density during the deposition of PbO2 had a strong influence on the morphology of the prepared film. A compact and uniform layer of lead dioxide was obtained at the current density≤3mA/cm2. A further increase in current density resulted in a smaller particle with high porosity. The morphology and particle size distribution could be improved when the HPbO2- concentration was 0.12M or higher and the bath temperature was 40℃. However, theα-PbO2 coating with a few porosities was obtained at a very long plating time. The PbO2 deposited in alkaline conditions was highly non stoichiometric. The PbO impurities were formed on the surface of the electrode besides theα-PbO2 phase.
     Theα-PbO2-CeO2-TiO2 composite electrodes prepared by electrochemical anodic codeposition technique by doping CeO2 and TiO2 in alkaline bath were studied. The best formula and process conditions were got as follows:4M NaOH with litharge PbO, current density 0.5A/dm2, TiO2 15g/L, temperature 40℃, electrodeposition time 3h, CeO2 10g/L. On this condition, theα-PbO2-(3.77 wt.%)TiO2-(2.13 wt.%)CeO2 codeposited electrode material could be prepared. The thickness, hardness and film density of composite coating was better than that of the pureα-PbO2 coating. The apparent energies of activation of theα-PbO2-(3.77wt.%)TiO2-(2.13wt.%)CeO2 electrode was the lowest in alkaline bath. In the potential of 0.35V, the lead dioxide deposition was influenced by the kinetic control and diffusion control. In H2SO4 solution, the Al substrateα-PbO2-(3.77wt.%)TiO2-(2.13wt.%) CeO2 electrode showed the best catalytic activity and corrosion resistance. The Guglielmi model for CeO2 and TiO2 codeposition withα-PbO2 was proposed.
     WC-ZrO2/β-PbO2 composite coatings were prepared on the Al/α-PbO2-CeO2-TiO2 surface by anodic codeposition ofβ-PbO2, nano-ZrO2 and WC particles. The best formula and process conditions were got as follows:Pb(NO3)2 250g/L, HNO3 15g/L, WC 40g/L, ZrO2 50g/L, temperature 50℃, current density 3.0A/dm2, electrodeposition time 4h. On this condition, theβ-PbO2-(6.56wt.%)WC-(3.74wt.%) ZrO2 codeposited electrode material with a thickness of 408μm and a microhardness of Hv 723 could be prepared. Theβ-PbO2-(6.56wt.%)WC-(3.74wt.%) ZrO2 showed the best electrocatalytic activity and good corrosion resistance.
     A typical rutile structure was observed in undoped-β-PbO2 coating. The doped-WC-β-PbO2 coating was composed of a lot of bigger crystal cell, and there was a larger crack between the crystal cells. The crystal cell was made up of the clusters of nano-grains. The WC particles had the random structure on the composite coating. In addition, the composite coating possessed an unclear outline of the rutile crystallite ofβ-PbO2. The doped nano-ZrO2-β-PbO2 coating had a fine grain and uniform distribution besides a clear outline ofβ-PbO2 structure. The composite coating possessed a uniform and dispersive distribution of nano-ZrO2 particles. The doped nano-ZrO2-WC-β-PbO2 electrode possessed more fine grain, and a uniform, dispersive distribution of nano-ZrO2 and WC particles within theβ-PbO2 matrix oxide. The codeposition of WC and nano-ZrO2 particles induced a markedly increase in the roughness of PbO2 deposits. The new crystallites were easily nucleated on the WC particle. The new crystallites could not be nucleated on nano-ZrO2 particles. However, they could absorbe the nano-ZrO2 particles. There was a synergic effect of the nano-ZrO2 and WC particles.
     Compared with undoped-β-PbO2, the intensities of the undoped-WC-β-PbO2 peaks became less intense, and the halfwidth increased as the degree of crystallinity decrease. The peak intensity of WC phase was high in the doped-WC-β-PbO2 composite coating, especially the WC(110) and WC(101) planes, which were higher than theβ(200) andβ(211). Compared with undoped-β-PbO2, the doped-nano-ZrO2 particle could decrease the content of a-phase. The phase obtained in the doped-ZrO2-β-PbO2 composite coating had a strong preferential orientation of the crystallites. The presence of peak(2θ=27.43,32.75,44.738°) was regarded as the attributive indicator of the tetragonal PbWO4, and the PbWO4(112)'s peak was the highest intensity. The service life of the composite coating was longer than the undoped-β-PbO2 in H2SO4 solution, especially the anticipated service life of Al/α-PbO2-CeO2-TiO2/β-PbO2-(6.58wt.%)WC-(3.78wt.%) ZrO2 which could reach 20.1y in an industrial current density(1000A/m2).
     WC-ZrO2/β-PbO2-MnO2 composite coatings were prepared on the Al/α-PbO2-CeO2-TiO2 surface by anodic codeposition of PbO2、MnO2、nano-ZrO2 and WC particles. When the current density and Mn(NO3)2 concentration in electrolyte were controlled at 1.0A/dm2 and 80g/L, the contents of the nano-ZrO2 and WC particles of the composite coatings could reach 6.63% and 3.49%, respectively, and the service life of the composite electrode could reach 368h in a current density 2A/cm2. The increase of the current density leaded to the upgrowth of the grain structure and decreased the content of MnO2 in the composite coating. However, the increase of the current density had a little effect on the phase. The increase of the Mn(NO3)2's concentration made the grain structure refine, and the content of MnO2 of the composite coating increased exponentially. When Mn(NO3)2 concentration >80g/L, the crack of the composite coating appeared and the structure of deposit changed from crystalline to amorphous step by step.
引文
[1]梁可.锌冶金工艺概述.有色金属设计,2004,31(4):13-17,29
    [2]蒋继穆.我国锌冶炼现状及近年来的技术进步.中国有色冶金,2006,10(5):19-23
    [3]王钧扬.锌电积的节电探讨.湖南冶金,2003,31(3):45-48
    [4]付运康.锌电积电流效率低的原因与对策.有色金属(冶炼部分),2002,(5):21-23,34
    [5]陈康宁.金属阳极.上海:华东师范大学出版社,1989
    [6]张招贤.钛电极工学.北京:冶金工业出版社,2002
    [7]徐金法.电积锌阳极材质的发展.有色金属(冶炼部分),1995,26(1):39-41
    [8]Lupi,C., Pilone,D.. New lead alloy anodes and organic depolariser utilization in zinc electrowinning.Hydrometallurgy,1997,44(3):347-358
    [9]I. Ivanov, Y. Stefanov, Z. Noncheva, et al. Insoluble anodes used in hydrometallurgy: Part Ⅰ. Corrosion resistance of lead and lead alloy anodes. Hydrometallurgy,2000, 57(2):109-124
    [10]I. Ivanov, Y. Stefanov, Z. Noncheva, et al. Insoluble anodes used in hydrometallurgy: Part II. Anodic behaviour of lead and lead-alloy anodes. Hydrometallurgy,2000, 57(2):125-139
    [11]邹忠,李劫,丁凤其,等.稀土Eu掺杂对金属氧化物涂层阳极电催化性能的影响.中国有色金属学报,2001,11(1):91-94
    [12]S. Nijjer, J.Thonstad, G.M.Haarberg. Cyclic and linear voltammetry on Ti/IrO2-Ta2O5-MnOx electrodes in sulfuric acid containing Mn2+ ions. Electrochimica Acta,2001,46: 3503-3508
    [13]Jari Aromaa, Olof Forsen. Evaluation of the electrochemical activity of a Ti-RuO2-TiO2 permanent anode. Electrochimica Acta,2006,51(27):6104-6110
    [14]Zhi-Guo Ye, Hui-Min Meng, Dong-Bai Sun.New degradation mechanism of Ti/IrO2+MnO2 anode for oxygen evolution in 0.5M H2SO4 solution. Electrochimica Acta, 2008,53 (18):5639-5643
    [15]Zhi-Guo Ye, Hui-Min Meng, Dong-Bai Sun. Electrochemical impedance spectroscopic (EIS) investigation of the oxygen evolution reaction mechanism of Ti/IrO2+MnO2 electrodes in 0.5 M H2SO4 solution. Journal of Electroanalytical Chemistry,2008, 621(1):49-54
    [16]J. M. Hu, H. M. Meng, J. Q. Zhang, et al. Degradation mechanism of long service life Ti/IrO2-Ta2O5 oxide anodes in sulphuric acid. Corrosion Science,2002,44(8):1655-1668
    [17]V.V. Panic, V.M. Jovanovic, S.I. Terzic, et al. The properties of electroactive ruthenium oxide coatings supported by titanium-based ternary carbides. Surface &
    Coatings Technology,2007,202(2):319-324
    [18]David J. Payne, Russell G. Egdell, Wang Hao, et al. Why is lead dioxide metallic?. Chemical Physics Letter,2005,411:181-185
    [19]J.P.Pohl, G.L.Schlectriemen. Concentration, mobility and thermodynamic behaviour of the quasi-free electrons in lead dioxide. Journal of Applied Electrochemistry,1984,14: 521-531
    [20]V.H.Dodson. The composition and performance of positive plate material in the lead-acid battery. Journal of Electrochemical Society,1961,108:406-412
    [21]W.Mindt. Electrical properties of electrodeposited PbO2 films. Journal of Electrochemical Society,1969,116:1076-1080
    [22]J.P.Carr, N.A.Hampson. The lead dioxide electrode. Chemical reviews,1972, 72(6):679-703
    [23]H.Y. Peng, H.Y. Chen, W.S. Li, et al. A study on the reversibility of Pb(Ⅱ)/PbO2 conversion for the application of flow liquid battery. Journal of Power Sources,2007, 168:105-109
    [24]J. Feng, D.C. Johnson. Alpha-lead dioxide electrodeposited on stainless steel substrates. Journal of Applied Electrochemistry,1990,20:116-124
    [25]Wen.T.G, Chang.C.C. The structural changes of PbO2 anodes during ozone evolution. Journal of Electrochemical Society,1993,140(10):2764-2770
    [26]Serdar Abaci, Ugur Tamer, Kadir Pekmez, et al. Electrosynthesis of benzoquinone from phenol on α and β surfaces of PbO2. Electrochimica Acta,2005,50:3655-3659
    [27]A.Mottram couper, Derek Pletcher, Frank C.Walsh. Electrode materials for electrosynthesis. Chemical reviews,1990,90:837-865
    [28]R. Amadelli, L. Armelao, A. B. Velichenko, et al. Oxygen and ozone evolution at fluoride modified lead dioxide electrodes. Electrochimica Acta,1999,45:713-720
    [29]R. Amadelli, A. De Battisti, D. V. Girenko, et al. Electrochemical oxidation of trans-3,4-dihydroxycinnamic acid at PbO2 electrodes:direct electrolysis and ozone mediated reactions compared. Electrochimica Acta,2000,46:341-347
    [30]Y. Samet, S. Chaabane Elaoud, S. Ammar, et al. Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes. Journal of Hazardous Materials B,2006,138:614-619
    [31]D. C. Johnson, J. Feng, L. L. Houk. Direct electrochemical degradation of organic wastes in aqueous media. Electrochimica Acta,2000,46:323-330
    [32]D. Velayutham, M. Noel. Preparation of a polypyrrole-lead dioxide composite electrode for electroanalytical applications. Talanta,1992,39 (5):481-486
    [33]艾仕云,彭惠琦,李嘉庆,等.纳米Pb02修饰电极电催化氧化性能的研究.分子催化,2004,18(5):366-370
    [34]Shiyun Ai, Mengnan Gao, Wen Zhang, et al. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines. Talanta,2004,62 (3):445-450
    [35]谢天,王斌.二氧化铅电极制备方法综述.成都大学学报(自然科学版),2003,23(3) : 26-30
    [36]周雅宁,万亚珍,刘金盾.二氧化铅电极的制备及应用现状.无机盐工业,2006,38(10) : 8-11
    [37]Shahram Ghasemi, Hassan Karami, Mir Fazlollah Mousavi, et al. Synthesis and morphological investigation of pulsed current formed nano-structured lead dioxide. Electrochemistry Communications,2005,7 (12):1257-1264
    [38]Yusairie Mohd, Derek Pletcher. The fabrication of lead dioxide layers on a titanium substrate. Electrochimica Acta,2006,52 (3):786-793
    [39]R. Fitas, L. Zerroual, N. Chelali, et al. Heat treatment of α-and β-battery lead dioxide and its relationship to capacity loss. Journal of Power Sources,1996,58 (2):225-229
    [40]AI Shi-yun, LI Jia-qing, LI luo-ping, et al. Electrochemical deposition and properties of nanometer-structure Ce-doped lead dioxide film electrode. Chinese journal of Chemistry,2005,23:71-75
    [41]Marco Musiani, Ferdinando Furlanetto, Renzo Bertoncello. Electrodeposited PbO2+RuO2:a composite anode for oxygen evolution from sulphuric acid solution. Journal of Electroanalytical Chemistry,1999,465:160-167
    [42]P. Westbroek, E. Temmerman. In line measurement of chemical oxygen demand by means of multipulse amperometry at a rotating Pt ring-Pt/PbO2 disc electrode. Analytica Chimica Acta,2001,437:95-105
    [43]Leonardo S. Andrade, Luis Augusto M. Ruotolo, Romeu C. Rocha-Filho, et al. On the performance of Fe and Fe, F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater. Chemosphere,2007,66:2035-2043
    [44]A. B. Velichenko, D. V. Girenko, F. I. Danilov. Electrodeposition of lead dioxide at an Au electrode. Electrochimica Acta,1995,40 (17):2803-2807
    [45]Natasa D. Popovic, James A. Cox,Dennis C. Johnson. Electrocatalytic function of Bi(V) sites in heavily-doped PbO2-film electrodes applied for anodic detection of selected sulfur compounds. Journal of Electroanalytical Chemistry,1998,455:153-160
    [46]R. Amadelli, L. Armelao, E. Tondello, et al. A SIMS and XPS study about ions influence on electrodeposited PbO2 films. Applied Surface Science,1999,142:200-203
    [47]J. Gonzalez-Garcia, J. Iniesta, E. Exposito, et al. Early stages of lead dioxide electrodeposition on rough titanium. Thin Solid Films,1999,352:49-56
    [48]Bing Joe Hwang, Kin Lon Lee. Conductivity and stability of polypyrrole film electrosynthesized on a PbO2/SnO2/Ti substrate. Thin Solid Films,1995,254:23-27
    [49]Bing Joe Hwang, Kin Lon Lee. Electropolymerization of pyrrole on PbO2/SnO2/Ti substrate. Thin Solid Films,1996,279:236-241
    [50]B. Monahov, D. Pavlov, D. Petrov. Influence of Ag as alloy additive on the oxygen evolution reaction on Pb/PbO2 electrode. Journal of Power Sources,2000,85 (1):59-62
    [51]I. Petersson, E. Ahlberg. On the question of electrochemical activity of differently formed lead dioxides. Journal of Power Sources,2000,91 (2):137-142
    [52]WANG Ya-qiong, TONG Hong-yang, Xu Wen-lin. Effects of Precursors for Preparing Intermediate Layer on the Performance of Ti/SnO2+Sb2O3/PbO2 AnodeEffects of Precursors for Preparing Intermediate Layer on the Performance of Ti/SnO2+ Sb2O3/PbO2 Anode. The Chinese Journal of Process Engineering,2003,3 (3):238-242
    [53]Veronica Saez, Jose Gonzalez-Garcia, Jesus Iniesta, et al. Electrodeposition of PbO2 on glassy carbon electrodes:influence of ultrasound frequency. Electrochemistry Communications,2004,6:757-761
    [54]M. Musiani, P. Guerriero. Oxygen evolution reaction at composite anodes containing Co3O4 particles Comparison of metal-matrix and oxide-matrix composites. Electrochimica Acta,1998,44:1499-1507
    [55]T. Mahalingam, S. Velumani, M. Raja, et al. Electrosynthesis and characterization of lead oxide thin films. Materials Characterization,2007,58:817-822
    [56]J.E.Graves, D.Pletcher, R.L.Clarke, et al. The electrochemistry of magneli phase titanium oxide ceramic electrodes part Ⅱ:ozone generation at Ebonex and Ebonex/lead dioxide anodes. Journal of Applied Electrochemistry,1992,22:200-203
    [57]D. Devilliers, M.T. Dinh Thi, E. Mahe, et al. Electroanalytical investigations on electrodeposited lead dioxide. Journal of Electroanalytical Chemistry,2004,573:227-239
    [58]V. Suryanarayanan, I. Nakazawa, S. Yoshihara, et al. The influence of electrolyte media on the deposition/dissolution of lead dioxide on boron-doped diamond electrode-A surface morphologic study. Journal of Electroanalytical Chemistry,2006,592:175-182
    [59]Noureddine Belhadj Tahar, Andre Savall. Mechanistic aspects of phenol electrochemical degradation by oxidation on a Ta/PbO2 anode. Journal of Electrochemical Society,1998,145 (10):3427-3434
    [60]Pei Kang Shen, Xiao Lan Wei. Morphologic study of electrochemically formed lead dioxide. Electrochimica Acta,2003,48:1743-1747
    [61]N.Vatistas, S.Cristofaro. Lead dioxide coating obtained by pulsed current technique. Electrochemistry Communications,2000,2:334-337
    [62]Ingela Petersson, Elisabet Ahlberg, Bo Berghult. Parameters influencing the ratio between electrochemically formed α- and β-PbO2. Journal of Power Sources,1998, 76(1):98-105
    [63]N.Munichandraiah. Physicochemical properties of electrodeposition β-lead dioxide: effect of deposition current density. Journal of Applied Electrochemistry,1992,22: 825-829
    [64]V.H.Dodson. Some important factors that influence the composition of the positive plate material in the lead-acid battery. Journal of Electrochemical Society,1961,108: 401-405
    [65]N.E.Bagshaw, R.L.Clarke, B.Halliwell. The preparation of lead dioxide for X-ray diffraction studies. J.Appl.Chem.,1966,16:180-184
    [66]N.Munichandraiah, S.Sathyanarayana. Insoble anode of α-lead dioxide coated on titanium for electrosynthesis of sodium perchlorate. Journal of Applied Electrochemistry, 1988,18:314-316
    [67]T.C.Wen, M.G.Wei, K.L.Lin. Electrocrystallization of PbO2 deposits in the presence of additives. Journal of Electrochemical Society,1990,137(9):2700-2702
    [68]H.A.Laitinen, N.H.Watkins. Mechanism of anodic deposition and cathodic stripping of PbO2 on conductive tin oxide. Journal of Electrochemical Society,1976,123(6): 804-809
    [69]P.Ruetchi, R.T.Angstadt, B.D.cahan. Oxygen overvoltage and electrode potentials of alpha and beta-PbO2. Journal of Electrochemical Society,1959,106 (7):547-551
    [70]S.A.Campbell, L.M.Peter. A study of the effect of deposition current density of the structure of electrodeposited α-PbO2. Electrochimica Acta,1989,34 (7):943-949
    [71]J.A.Duisman, W.F.Giauque. Thermodynamics of the lead storage cell the heat capacity and entropy of lead dioxide from 15 to 318K. J.Physical.Chemistry,1968,72 (2):562-573
    [72]I.-H.Yeo, D.C.Johnson. Effect of groups ⅢA and ⅤA metal oxides in electrodeposited β-PbO2 dioxide electrodes in acidic media. Journal of Electrochemical Society,1987,134:1973-1977
    [73]B.S.Nielsen, J.L.Davis, P.A.Thiel. Surface properties of PbO2 and Bi-modified PbO2 electrodes. Journal of Electrochemical Society,1990,137:1017-1022
    [74]I.-H.Yeo, S.Kim, R.Jacobson, et al. Comparison of structural data with electrocatalytic phenomena for bismuth-doped lead dioxide. Journal of Electrochemical Society,1989, 136:1395-1401
    [75]Larry A.Larew, James S.Gordon, Yun-Lin Hsiao, et al. Application of on electrochemical quartz crystal microbalance to a study of pure and bismuth-doped beta-lead dioxide film electrodes. Journal of Electrochemical Society,1990,137:3071-3078
    [76]James S.Gordon, Victor G.Young, Dennis C.Johnson. Application of an electrochemical quartz crystal microbalance to a study of the anodic deposition of PbO2 and Bi-PbO2 film on gold electrodes. Journal of Electrochemical Society,1994,141: 652-659
    [77]Kirk T.Kawagoe, Dennis C.Johnson. Oxidation of phenol and benzene at bismuth-doped lead dioxide electrodes in acidic solutions. Journal of Electrochemical Society,1994,141:3404-3409
    [78]Jianren Feng, Dennis C.Johnson. Titanium substrates for pure and doped lead dioxide films. Journal of Electrochemical Society,1991,138:3328-3337
    [79]Natasa D.Popovie, James A.Cox, Dennis C.Johnson. A mathematical model for anodic oxygen-transfer reactions at Bi(V)-doped PbO2-film electrodes. Journal of Electroanalytical Chemistry,1998,456:203-209
    [80]申哲民,雷阳明,贾金平,等.Pb02电极氧化有机废水的研究.高校化学工程学报,2004,18(1):105-108
    [81]李善评,胡振,孙一鸣,等.新型钛基Pb02电极的制备及电催化性能研究.山东大学学报(工学版),2007,37(3):109-113
    [82]K.Fukuda, Ch.Iwakura, H.Tamura. Anodic processes on a titanium-supported Ruthenium dioxide electrode at high potentials in a mixture of sulfuric acid and ammonium sulfate. Electrochimica Acta,1978,23 (7):613-618
    [83]K.Fukuda, Ch.Iwakura, H.Tamura. Effect of the addition of NH4F on anodic behaviors of DSA-type electrodes in H2SO4-(NH4)2SO4 solutions. Electrochimica Acta,1978,24(4): 367-371
    [84]D.Gilroy, R.Stevens. The electrodeposition of lead dioxde on titanium. Journal of Applied Electrochemistry,1980,10:511-525
    [85]A. B. Velichenko, D. V. Girenko, S. V. Kovalyov, et al. Lead dioxide electrodeposition and its application:influence of fluoride and iron ions. Journal of Electroanalytical Chemistry,1998,454:203-208
    [86]R. Amadelli, A. Maldotti, A. Molinari, et al. Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media. Journal of Electroanalytical Chemistry,2002,534(1):1-12
    [87]A.B.Velichenko, D.Devilliers. Electrodeposition of fluorine-doped lead dioxide. Journal of fluorine chemistry,2007,128 (4):269-276
    [88]Jianglin Cao, Haiyan Zhao, Fahe Cao, et al. The influence of F- doping on the activity of PbO2 film electrodes in oxygen evolution reaction. Electrochimica Acta,2007,52 (28): 7870-7876
    [89]Jianren Feng, Dennis C.Johnson. Fe-doped beta-lead dioxide electrodeposited on noble metals. Journal of Electrochemical Society,1990,137:507-510
    [90]J.Feng, D.C.Johnson, S.N.Lowery, et al. Electrocatalysis of anodic oxygen-transfer reaction:evolution of ozone. Journal of Electrochemical Society,1994,141(10):2708-2711
    [91]A. B. Velichenko, R. Amadelli, G. L. Zucchini, et al.Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts. Electrochimica Acta,2000,45; 4341-4350
    [92]D.Tench, L.F.Warren. Electrodeposition of conducting transition metal oxide/ hydroxide films from aqueous solution. Journal of Electrochemical Society,1983,130(4): 869-872
    [93]Sandro Cattarin, Isabelle Frateur, Paolo Guerriero, et al. Electrodeposition of PbO2+CoOx composites by simultaneous oxidation of Pb2+ and Co2+ and their use as anodes for O2 evolution. Electrochimica Acta,2000,45 (14):2279-2288
    [94]L.D.Burke, M.M.Mclarthy. Modification of the electronic transfer properties of Co3O4 as required for its use in DSA-type anodes. Journal of Electrochemical Society,1988, 135(5):1175-1179
    [95]D.Baronetto, I.M.Kodintsev, S.Transatti. Origin of ohmic losses at Co3O4/Ti electrodes. Journal of Applied Electrochemistry,1994,24(3):189-194
    [96]K. S. A. Gnanasekaran, K. C. Narasimham, H. V. K. Udupa. Stress measurements in electrodeposited lead dioxide. Electrochimica Acta,1970,15:1615-1622
    [97]Sandro Cattarin, Paolo Guerriero, Marco Musiani. Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides. Electrochimica Acta,2001, 46:4229-4234
    [98]A. B. Velichenko, R. Amadelli, E. A. Baranova, et al. Electrodeposition of Co-doped lead dioxide and its physicochemical properties. Journal of Electroanalytical Chemistry, 2002,527:56-64
    [99]王留成,李晓乐,赵建宏,等.掺杂PbO2/Ti阳极在硫酸铬电氧化过程的电极行为.化学研究与应用,2007,19(2):172-175
    [100]崔玉虹,冯玉杰,刘峻峰.Sb掺杂钛基Sn02电极的制备,表征及其电催化性能研究.功能材料,2005,36(2):234-237
    [101]Yuehai Song, Gang Wei, Rongchun Xiong. Structure and properties of PbO2-CeO2 anodes on stainless steel. Electrochimica Acta,2007,52:7022-7027
    [102]Renzo Bertoncello, Sandro Cattarin, Isabelle Frateur, et al. Preparation of anodes for oxygen evolution by electrodeposition of composite oxides of Pb and Ru on Ti. Journal of Electroanalytical Chemistry,2000,492:145-149
    [103]I.-H.Yeo, Y.S.Lee, D.C.Johnson. Growth of lead dioxide on a gold electrode in the presence of foreign ions. Electrochimica Acta,1992,37 (10):1811-1815
    [104]Jisheng Ge, Dennis C.Johnson. Electrocatasis of anodic oxygen-transfer reactions: aliphatic amines at mixed silver-lead oxide-film electrodes. Journal of Electrochemical Society,1995,142:1525-1531
    [105]顾静,张文,唐辉,等.纳米Ag2O2-PbO2化学修饰电极对大肠杆菌细胞膜壁和DNA损伤的研究.高等学校化学学报,2005,26(12):2214-2217
    [106]Jing GU, Wen ZHANG1, Yu Feng YANG, et al. Preparation of the Ag2O2-PbO2 Modified Electrode and Its Application towards Escherichia coli Fast Counting in Water. Chinese Chemical Letters,2005,16 (5,):635-638
    [107]万芳利,张文,顾静,等.掺锰纳米PbO2修饰电极色谱电化学用于四氢生物喋呤等物质的检测研究.化学传感器,2003,23(4):15-21
    [108]F.Beck. Cyclic behaviour of lead dioxide electrodes in tetrafluorborate solutions. Journal of Electroanalytical Chemistry,1975,65 (1):231-243
    [109]A.C.Ramamuthy, Theodore Kuwana. Electrochemical nucleation and growth of lead dioxide on glassy carbon electrodes. Journal of Electroanalytical Chemistry,1982,135(2): 243-255
    [110]Marco Musuani, Ferdinando Furlanetto, Paolo Guerriero. Electrochemical deposition and properties of PbO2+Co3O4 composites. Journal of Electroanalytical Chemistry,1997, 440:131-138
    [111]Chun Nan Ho, Bing Joe Hwang. Effect of hydrophobicity on the hydrophobic- modified polytetrafluoroethylene/PbO2 electrode towards oxygen evolution. Journal of Electroanalytical Chemistry,1994,377:177-190
    [112]钟小芳,苏光耀,李朝晖,等.钛基Pb02疏水电极的研究.湘潭大学自然科学报,1999,21(3):46-49
    [113]Shao-Ping Tong, Chun-An Ma, Hui Feng. A novel PbO2 electrode preparation and its applicationin organic degradation. Electrochimica Acta,2008,53:3002-3006
    [114]R. Bertoncello, F. Furlanetto, P. Guerriero, et al. Electrodeposited composite electrode materials:effect of the concentration of the electrocatalytic dispersed phase on the electrode activity. Electrochimica Acta,1999,44 (23):4061-4068
    [115]L.D.Burke, M. McCarthy. Oxygen gas evolution at, and deterioration of, RuO2/ZrO2-coated titanium anodes at elevated temperature in strong base. Electrochimica Acta,1984,29 (2):211-216
    [116]Chiaki Iwakura, Kazuhiro Hirao, Hideo Tamura. Preparation of ruthenium dioxide electrodes and their anodic polarization characteristics in acidic solutions. Electrochimica Acta,1977,22 (4):335-340
    [117]F.Huet, M.Musiani, R.P.Nogueira. Electrochemical noise analysis of O2 evolution on PbO2 and PbO2-matrix composites containing Co or Ru oxides. Electrochimica Acta, 2003,48:3981-3989
    [118]U.Casellato, S.Cattarin, M.Musiani. Preparation of porous PbO2 electrodes by electrochemical deposition of composites. Electrochimica Acta,2003,48 (27):3991-3998
    [119]J.P. Carr, N.A. Hampson, R. Taylor. A study of the electrical double layer at PbO2 in aqueous KNO3 electrolyte. Journal of Electroanalytical Chemistry,1970,27(1):109-116
    [120]曹建春,郭忠诚,潘君益,等.新型不锈钢基PbO2/PbO2-CeO2复合电极材料的研制.昆明理工大学学报(理工版),2004,29(5):38-41
    [121]Jiangtao Kong, Shaoyuan Shi, Lingcai Kong, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochimica Acta,2007,53: 2048-2054
    [122]苗治广,郭忠诚.新型不锈钢基PbO2-WC-ZrO2复合电极材料的研制.电镀与涂饰,2007,26(4):15-17,20
    [123]U.Casellato, S.Cattarin, P.Guerriero, et al. Anodic synthesis of oxide-matrix composites. Composition, morphology, and structure of PbO2-matrix composites. Chemistry of Materials,1997,9:960-966
    [124]N.Guglielmi. Kinetics of the deposition of inert particles from electrolytic baths. Journal of Electrochemical Society,1972,119:1009-1012
    [125]蔡天晓,鞠鹤,武宏让,等.β-PbO2电极中加入纳米级Ti02的性能研究.稀有金属材料与工程,2003,32(7):558-560
    [126]M.Fleischmann, M.Liler. The anodic oxidation of solutions of plumbous salts, part1. the kinetics of deposition of a-lead dioxide from acetate solutions. Trans.Faraday soc., 1958,54:1370-1381
    [127]M.Fleischmann, H.R.Thirsk. The potentiostatic study of the growth of deposits on electrodes. Electrochimica Acta,1959,1:146-160
    [128]M.Fleischmann, H.R.Thirsk. Anodic electrocrystallization. Electrochimica Acta, 1960,2:22-49
    [129]M. Fleischmann, J. R. Mansfield, H. R. Thirsk, et al. The investigation of the kinetics of electrode reactions by the application of repetitive square pulses of potential. Electrochimica Acta,1967,12:967-982
    [130]H.Chang, D.C.Johnson. Chronoamperometic and voltammetric studies of the nucleation and electrodeposition of β-lead dioxide at a rotated gold disk electrode in acidic media. Journal of Electrochemical Society,1989,136(1):17-22
    [131]H.Chang, D.C.Johnson. Detection of soluble intermediate products during electro deposition and stripping of P-lead dioxide at a gold electrode. Journal of Electrochemical Society,1989,136(1):23-27
    [132]A.B.Velichenko, D.V.Girenko, F.I.Danilov. Mechanism of lead dioxide electro-deposition. Journal of Electroanalytical Chemistry,1996,405:127-132
    [133]A.B.Velichenko, R.Amadelli, A.Benedetti, et al. Electrosynthesis and physicochemical properties of PbO2 films. Journal of Electrochemical Society,2002,149: C445-C449
    [134]Michael E.Hyde, Robert M.J.Jacobs, Richard G.Compton. An AFM study of the correlation of lead dioxide electrocatalytic activity with observed morphology. J.Phys.Chem.B,2004,108:6381-6390
    [135]S.A.Campbell, L.M.Peter. Detection of soluble intermediates during deposition and reduction of lead dioxide. Journal of Electroanalytical Chemistry,1991,306:185-194
    [136]Yonglang Guo. A new potential -pH diagram for an anodic film on Pb in H2SO4. Journal of Electrochemical Society,1992,139 (8):2114-2120
    [137]S. Fletcher,O. B. Matthews. Photoelectrochemistry in the lead-sulphuric acid system. Journal of Electroanalytical Chemistry,1981,126:131-144
    [138]M. Dimitrov, K. Kochev, D. Pavlov. The effect of thickness and stoichiometry of the PbO layer upon the photoelectric properties of the Pb/PbO/PbSO4/H2SO4 electrode. Journal of Electroanalytical Chemistry,1985,183:145-153
    [139]R. G. Barradas, D. S. Nadezhdin. Photoactivity on the passivated lead electrode in H2SO4 under illumination during cyclic voltammetry within the potential range between PbSO4/PbO and PbO2/O2 regions. Journal of Electroanalytical Chemistry,1986,202: 241-251
    [140]J. S. Buchanan, L. M. Peter. Photocurrent spectroscopy of the lead electrode in sulphuric acid. Electrochimica Acta,1988,33(1):127-136
    [141]Marco Musiani. Electrodeposition of composites:an expanding subject in electrochemical materials science. Electrochimica Acta,2000,45:3397-3402
    [142]高云芳.铅酸蓄电池用高性能正极的制备与性能研究[博士学位论文].杭州:浙江大学,2002:133-161
    [143]刘静安,谢水生.铝合金材料的应用与技术开发.北京:冶金工业出版社,2004
    [144]郭鹤桐,张三元.复合镀层.天津:天津大学出版社,1991
    [145]姚寿山,李戈扬,胡文彬.表面科学与技术.北京:机械工业出版社,2005
    [146]郭忠诚,杨显万.电沉积多功能复合材料的理论与实践.北京:冶金工业出版社,2002
    [147]王峰,俞斌.一种新型Pb02电极的研制.应用化学,2002,19(2):193-195
    [148]Jeanne Burbank. Anodization of lead and lead alloys in sulfuric acid. Journal of Electrochemical Society,1957,104:693-701
    [149]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册(第一版).北京:冶金工业出版社,1983
    [150]李狄.电化学原理.北京:北京航空航天大学出版社,1999
    [151]李文超.冶金与材料物理化学.北京:冶金工业出版社,2001.457-467
    [152]Minhua Cao, Changwen Hu, Ge Peng, et al. Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorodes. J.Am.Chem.Soc,2003,125:4982-4983
    [153]陈振方,蒋汉瀛,舒余德,等.电沉积PbO2工艺参数、结构组织、机械性能关系的研究.化工冶金,1991,12(2):122-128
    [154]庄京,邓兆祥,梁家和,等β-PbO2纳米棒及Pb3O4纳米晶的制备与表征[J].高等学校化学学报,2002,23(7):1223-1226
    [155]宋建梅,黄效平,陈康宁.高氧超电极在电解法生产氯酸盐中的应用.氯碱工业,2000,6:3-6
    [156]郑晓虹,戴美美,陈古镛.MnO2和PbO2共沉积电极的阳极行为.福建师范大学(自然科学版),1998,14(1):62-65,89
    [157]E.A.Dalchiele,S.Cattarin, M.Musiani, et al. Electrodeposition studies in the MnO2+PbO2 system:formation of Pb3Mn7O15. Journal of Applied Electrochemistry,2000, 30:117-120
    [158]张招贤.钛电极工学.北京:冶金工业出版社,2002.214
    [159]钟凌灏,姚武,吴琴媛.PbO2将Mn2+氧化成几价.大学化学,1995,10(5):47-49
    [160]李仕雄,刘爱心.电解液质量对锌电积过程的影响及其在线控制.中国有色金属学报,1998,8(3):519-522
    [161]C. Y. Cheng, M. D. Urbani, P. Miovski, et al. Evaluation of saponins as acid mist suppressants in zinc electrowinning. Hydrometallurgy,2004,73:133-145
    [162]A. Hrussanova, L. Mirkova, Ts. Dobrev, et al. Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co3O4, Pb-Ca-Sn, and Pb-Sb anodes for copper electrowinning:Part Ⅰ. Hydrometallurgy,2004,72:205-213
    [163]M. Holm, T.J. O'Keefe. Electrolyte parameter effects in the electrowinning of nickel from sulfate electrolytes. Minerals Engineering,2000,13 (2):193-204
    [164]I.G. Sharma, Pamela Alex, A.C. Bidaye, et al. Electrowinning of cobalt from sulphate solutions. Hydrometallurgy,2005,80:132-138
    [165]Cuneyt Arslan, Paul F. Duby. The anodic oxidation of CrⅢ) to Cr (Ⅵ) in a laboratory-scale chromium electrowinning cell. Hydrometallurgy,1997,46:337-348
    [166]S.Nijjer, J. Thonstad, G. M. Haarberg. Cyclic and linear voltammetry on Ti/IrO2-Ta2O5-MnOx electrodes in sulfuric acid containing Mn2+ ions. Electrochimica Acta,2001,46:3503-3508
    [167]黄永昌,叶慧娟,章燕豪.锡锑中间层在钛基二氧化铅电极中作用机理探讨.上海交通大学,1982,4:25-33
    [168]M.Ueda, A.Watanabe, T.Kameyama, et al. Performance characteristics of a new type of lead dioxide-coated titanium anode. Journal of Applied Electrochemistry,1995,25:817-822
    [169]张招贤.钛电极工学.北京:冶金工业出版社,2003.178-189
    [170]刘业翔,吴良蕙.锌电解节能惰性阳极的研究-惰性阳极上的析氧超电压.有色金属(冶炼部分),1984,30(4):28-31
    [171]Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electro-chimica Acta,1984,29(11):1503-1512
    [172]Shahram Ghasemi, Mir Fazllolah Mousavi, Mojtaba Shamsipur. Electrochemical deposition of lead dioxide in the presence of polyvinylpyrrolidone a morphological study. Electrochimica Acta,2007,53:459-467
    [173]胡吉明.Ti基IrO2+Ta2O5阳极析氧电催化与失效机制研究:[博士学位论文].北京:北京科技大学,2000
    [174]L. A. da Silva, V. A. Alves, M. A. P. da Silva, et al. Oxygen evolution in acid solution on IrO2+TiO2 ceramic films. A study by impedance, voltammetry and SEM. Electro-chimica Acta,1997,42 (2):271-281
    [175]史艳华,孟惠民,孙冬柏,等.SbOx+SnO2中间层对Ti/MnO2电极性能的影响.物理化学学报,2007,23(10):1553-1559
    [176]V.A.Alves, L.A.da Silva, J.F.C.Boodts. Surface characterization of IrO2/TiO2/CeO2 oxide electrodes. Electrochimica Acta,1998,44:1525-1534
    [177]D.Devilliers, M.T.Dinh Thi, E. Mahe, et al. Cr(Ⅲ) oxidation with lead dioxide-based anodes. Electrochimica Acta,2003,48:4301-4309
    [178]Mario H. P. Santana, Luiz A. De Faria, Julien F. C. Boodts. Investigation of the properties of Ti/[IrO2-Nb2O5] electrodes for simultaneous oxygen evolution and electrochemical ozone production, EOP. Electrochimica Acta,2004,49:1925-1935
    [179]Meyer R E. Cathdic processes on passive zirconium. Journal of Electrochemical Society,1960,107(10):847-853
    [180]C. P. De Pauli, S. Trasatti. Electrochemical surface characterization of IrO2+SnO2 mixed oxide electrocatalysts. Journal of Electroanalytical Chemistry,1995,396:161-168
    [181]Akiko Yoshiyama, Tautomu Nonaka. Preparation of PTFE composite plate hydrophobic-PbO2 electrodes. Chemistry letters,1994,8:1565-1568
    [182]韦国林,王家荣.硫酸溶液中Pb02电极的电化学行为.电池,1994,24(6):280-283
    [183]史艳华,孟惠民,孙冬柏,等.钛基贱金属氧化物涂层阳极的研究进展.功能材料,2007,38(A07):2696-2699
    [184]Derek Pletcher, Hantao Zhou, Gareth Kear, et al. A novel flow battery-A lead-acid battery based on an electrolyte with soluble lead(II):Part VI. Studies of the lead dioxide positive electrode. Journal of Power Sources,2008,180(1):630-634
    [185]Yuan Liu, Huiling Liu, Yan Li. Comparative study of the electrocatalytic oxidation and mechanism of nitrophenols at Bi-doped lead dioxide anodes. Applied Catalysis B:Environmental,2008,84:297-302
    [186]Jingping Wang, Xiang Li, Linghua Guo, et al. Effect of surface morphology of lead dioxide particles on their ozone generating performance. Applied Surface Science,2008, 254(20):6666-6670
    [187]J. Iniesta, J. Gonzalez-Garcia, E. Exposito, et al. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Research,2001,35(14):3291-3300
    [188]Leonardo S. Andrade, Romeu C. Rocha-Filho, Nerilso Bocchi, et al. Degradation of phenol using Co- and Co, F-doped PbO2 anodes in electrochemical filter-press cells. Journal of Hazardous Materials,2008,153:252-260
    [189]Ingela Petersson, Elisabet Ahlberg, Bo Berghult. Parameters influencing the ratio between electrochemically formed α- and β-PbO2. Journal of Power Sources,1998, 76:98-105
    [190]A. Fukasawa, M. Ueda. Electrodeposited lead dioxide layers having no internal stress. Denki Kagaku oyobi Kogyo Butsuri Kagaku,1976,44(1):646-651
    [191]S. A. Campbell, L. M. Peter. Determination of the density of lead dioxide films by in situ laser interferometry. Electrochimica Acta,1987,32(2):357-360
    [192]Ali Mehdinia, Mir Fazllolah Mousavi, Mojtaba Shamsipur. Nano-structured lead dioxide as a novel stationary phase for solid-phase microextraction. Journal of Chromatography A,2006,1134:24-31
    [193]Paul Delahay, Marcel Pourbaix, Pierre Van Rysselberghe. Potential-pH diagram of lead and its applications to the study of lead corrosion and to the lead storage battery. Journal of Electrochemical Society,1951,98(2):57-64
    [194]L.A. da Silva, V. A. Alves, M. A. P. da Silva, et al. ELectrochemical impedance, SEM, EDX and voltammetric study of oxygen evolution on Ir+Ti+Pt ternary-oxide electrodes in alkaline solution. Electrochimica Acta,1996,41:1279-1285
    [195]张新,孙根生,龙民,等.稀土对Cr(Ⅲ)电镀、镀Cu及Ni-P-SiC复合镀的影响.稀土,1996,17(1):42-45
    [196]Jasem S M, Tseung A C C. A Potentiostatic pluse study of oxygen evolution on Teflon-Bonded nicke-cobalt oxide electrodes. Journal of Electrochemical Society,1979, 126(8):1353-1360
    [197]L. K. Xu, J. D. Scantlebury. A study on the deactivation of an IrO2-Ta2O5 coated titanium anode. Corrosion Science,2003,45:2729-2740
    [198]潘会波.金属阳极涂层的研制及应用.稀有金属材料与工程,1990(1):56-58
    [199]刘淑兰,于德龙PbO2-WC复合物阳极的研究.应用化学,1995,12(5):46-49
    [200]郭忠诚,刘鸿康,王志英,等.电沉积Ni—W非晶合金及Ni-W-SiC复合层.中国有色金属学报,1995,5(4):54-58
    [201]郭忠诚.稀土对复合镀工艺及镀层性能的影响.金属学报,1996,32(5):516-520
    [202]朱诚意,郭忠诚.稀土对电沉积Ni-W-B-SiC复合镀层组织结构及性能的影响.化工冶金,1999,20(3):225-228
    [203]郭忠诚,杨显万,刘鸿康,等.SiC微粒对Ni-W-SiC复合镀层工艺及性能的影响.化工冶金,1997,18(2):108-114
    [204]郭忠诚,文明芬,杨显万.电沉积RE-Ni-W-B-SiC复合镀层的性能.化工冶金,1998,19(2):104-108
    [205]郭忠诚,杨显万,翟大成,等.电沉积RE-Ni-W-P-SiC多功能复合材料的抗高温氧化性研究.功能材料,2000,31(6):651-653
    [206]郭忠诚,朱晓云,杨显万.电沉积法制备多功能复合材料研究动态与发展趋势.中国工程科学,2004,6(4):86-94
    [207]徐瑞东,王军丽,郭忠诚,等.Ni-W-P-CeO2-SiO2纳米复合薄膜材料制备.稀有金属材料与工程,2008,37(10):1809-1814
    [208]徐瑞东,王军丽,郭忠诚,等.钨酸钠和次磷酸钠浓度对脉冲电镀CeO2-SiO2/ Ni-W-P纳米复合薄膜组织及性能的影响.复合材料学报,2008,25(4):106-112
    [209]侯峰岩,王为,刘家臣,等.Zr02纳米颗粒在Ni-ZrO2复合镀层中的分散性对镀层结构及性能的影响.材料工程,2004,3:21-23,27
    [210]朱龙章,张元庆,陈宇飞,等.电沉积镍-钴-碳化钨符合镀层的研究.电镀与涂饰,1999,18(1):4-7
    [211]梁镇海,王森,孙彦平,等Ti/RuO2+Sb2O3+MnOx/MnOx阳极的性能研究.稀有金属材料与工程,1995,24(4):46-48
    [212]武刚,李宁,戴长松,等.阳极电沉积Co-Ni混合氧化物在碱性介质中的电催化析氧性能.催化学报,2004,25(4):319-325
    [213]梁镇海,张福元,孙彦平.耐酸非贵金属Ti/MO2阳极SnO2+Sb2O4中间层研究.稀有金属材料与工程,2006,35(10):1605-1609
    [214]王宏智,姚素薇,张卫国,等.Ni/ZrO2梯度镀层的制备和性能.材料研究学报,2003,17(5):505-509
    [215]苏凌浩,范少华MnO2/PbO2复合电极的电化学电容行为.电源技术,2005,29(7):462-465
    [216]夏熙,龚良玉.Pb02纳米粉体的固相合成及其对Mn02电极材料的改性作用.化学学报,2002,60(1):87-92
    [217]XUE Fang-qin, WANG Yong-liang, WANG Wen-hong, et al. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery. Electrochimica Acta,2008,53:6636-6642
    [218]杨显万,邱定蕃.湿法冶金.北京:冶金工业出版社,1998.22-25
    [219]陈振方,蒋汉瀛,舒余德,等.电沉积Mn02工艺因素对PbO2-Ti/MnO2电极性能的影响.中南矿冶学院学报,1991,22(2):207-214
    [220]李宁,王旭东,吴志良,等.高速电镀锌用不溶性阳极.材料保护,1999,32(9):7-9
    [221]梅光贵,钟竹前,刘勇刚,等.锌电解中铅银阳极的电化学行为.中南工业大学学报,1998,29(4):337-340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700