球磨机节能降耗新途径机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源是国民经济建设与社会发展的物质基础,现阶段,我国95%以上的能源、80%以上的工业原料、70%以上的农业生产资料都来源于矿产资源,30%以上的农业用水和饮用水来自属于矿产资源范畴的地下水。可以说,没有矿产资源持续稳定的供应,就没有现代经济与社会的健康发展。然而,在矿产资源的开发利用过程中需要消耗大量的能量。金属矿的采矿、选矿及冶炼消耗的能耗高达全国总能耗的15%以上。矿山的能耗占35-50%左右,冶金的能耗50-65%左右,矿山采选企业中,采矿耗能1/3,选矿耗能2/3,而选矿厂中,磨矿能耗又占全厂的50%,即占矿山采选的1/3。因此,在矿产资源的开发利用过程中,我国选矿厂特别是其碎矿磨矿阶段面临着节能降耗的艰巨任务。球磨机从诞生到工业应用一百多年的历史还说明,在吨位巨大及价廉的矿料磨碎中,目前及今后相当长的时期内,球磨机还将是一种不可替代的重要磨碎设备。因此,研究新的球磨技术,降低球磨机磨矿能耗对实现“能源开发与节能并重”的战略任务具有现实意义。
     磨碎过程是一个功能转变过程。磨碎过程中磨机输入的功率大部分转变为磨碎损失功,转变为有用功的能量很少。钢球对矿粒的破碎作用具有随机性,球磨机的磨矿过程是一个随机过程,磨碎概率很低,碎矿过程损失的能量大。由此可见,破碎概率低及破碎损失功大是球磨机能耗高的主要原因,节能的重点应放在如何提高矿物破碎概率及介质能量利用率两方面。因此,论文围绕着提高矿物的破碎概率及介质能量的利用率两个目的,从采用磨矿新技术使球径精确,装补球科学,介质形状适宜三个方面阐述粗磨机和细磨机实现节能降耗的机理。
     粗磨的给矿粒度范围宽,破碎比大。需要加多种钢球,故在粗磨过程中不仅需要精确地选择钢球尺寸以保证各级别钢球尺寸的精确,还要保证各级别球径的科学配比。因此,针对粗磨工艺的特点及对介质的要求,在粗磨段采用了精确化装补球方法的磨矿新技术。精确化装补球方法的研究内容主要有三个方面:(1)单级别球径的精确;(2)整体球荷精确;(3)补球精确。在磨矿过程中,矿粒破碎的概率取决于钢球碰到矿粒的概率(碰撞概率)及钢球与矿粒碰撞后发生破碎的概率(破碎概率),破碎矿粒的碰撞概率越高,破碎概率才可能越高,但只有钢球携带的能量足够时,才能使矿粒破碎。因此,矿粒要有高的破碎概率则必须有高的碰撞概率及钢球携带足够的能量。研究证明,只有在球径精确及配比科学的情况下,矿粒的破碎概率也才最高,破碎损失的能量减少,钢球能量的利用率提高,介质的消耗亦下降,因介质消耗与能耗几乎成正比。
     磨矿过程既是一个功能转变的过程,也是一个能量转移的过程。钢球携带的能量除了对矿石做功转变为矿块的变形能、裂纹形成和扩展的能以及形成新生的表面能外,还会因物料、磨矿介质之间的摩擦、振动被消耗掉。因此,钢球携带的能量E主要分为两部分:对矿块的破碎功W有,以其它形式损失的能量W损。E=W有+W损,当输入能量E不变时,W损减少了,W有就增大,则钢球能量的利用率η=W有/E×100%也就提高,介质的消耗亦降低。W有取决于钢球对矿粒的破碎概率。对一定粒度的一组矿粒群来说,钢球对矿粒的破碎概率除取决于钢球的打击次数及表面积外,还取决于钢球携带的能量是否足够。并且在提高η的同时,还要兼顾磨矿效果(即能量的有效利用),如果钢球传递给矿粒的能量W有使不需要破碎的矿粒破碎,形成不必要破碎或无效破碎,浪费了能量,而需要破碎的矿粒却没有破碎,造成磨矿产品中粗粒级和细粒级均过多,不仅浪费了能量而且产品粒度组成特性不好及解离度不高,违背了磨矿的目的及任务。因此,磨矿过程中在降低能耗及提高介质能量的利用率的同时,还要兼顾磨矿效果,也即能量的有效利用,实现矿粒破碎能量与有效破碎能量的最大化,也即实现介质能量转移的最大化与有效性。
     钢球转移给矿粒的能量是使矿粒发生破碎,可选择合适的破碎功耗学说的计算进行相对比较计算,计算结果表明:在装载量一定的情况下,球径愈大,个数愈少,打击次数也愈少,研磨面积也小,打着的易造成过粉碎,打不着的则形成粗粒级多,产品特性不好,故破碎的效率不高,能量的利用率不高。相反,球径越小,个数虽多,打击次数也多,研磨面积也大,但矿粒的有效破碎能量利用并不高,因为任何矿粒的破碎均需要达到一定的能量密度,过小的球携带的能量小,与矿粒相碰时并不能使矿粒破碎。只有在精确的球径及科学的配比下才能实现矿粒破碎能量与有效破碎能量的最大化,降低磨矿能耗,提高磨矿产品质量。球径精确时的钢球能量利用率比过大球径高28%。精确化装补球方案的钢球能量利用率比现厂过大方案高9.15%。矿物的破碎功耗及磨矿效果表明:矿粒发生破碎的概率不仅考虑了能量传递的最大化,还考虑了能量传递过程中使矿物破碎的有效性。因此,在磨矿过程中,不仅可以用矿粒发生破碎的破碎概率判断磨矿效果的好坏,还可以用来判断磨矿方法是否具有节能降耗的效果。在球径偏大的我国现厂磨机中钢球的球径由过大调整为精确后,打击力减小不仅使钢球的磨损速度减慢,亦使消耗减少。球径精确后,磨内的球径减小,磨内的钢球滑动显著减弱,用于克服滑动的功率减少,最终使磨机消耗的绝对功率下降,即绝对电耗下降。因此,球径的精确化提高了矿物破碎概率,磨机的生产率,并提高了能量利用率,使吨矿电耗相对降低,球径的精确使磨内钢球滑动减弱,磨机的绝对功率下降。相对下降与绝对下降的双重作用,实现了磨机的显著节能降耗。
     针对细磨作业特殊的工艺特征,细磨作业采用铸铁段取代传统的钢球。细磨作业用铸铁段代替钢球能实现能量转移的最大化和有效性,不仅能提高磨矿产品的质量,还能降低介质的消耗。由于铸铁段容易绕其轴向转动,而且由于其形状的特殊性,在磨机内翻动时难度大,介质间的滑动减弱。因此,细磨作业用铸铁段取代钢球后,磨内的介质滑动减弱,这种现象比采用小钢球时显著,故磨机消耗的绝对功率显著下降,即绝对电耗显著下降,进而实现细磨机的显著节能效果。生产率提高使得吨矿介质耗相对下降,冲击力减小则使机械磨损减轻,绝对耗量下降,相对下降与绝对下降的双重作用致使磨矿介质消耗显著下降。
     磨矿新技术先后在云锡公司、云铜集团各矿业公司、金川公司及蒙自矿冶公司等10多个矿山公司中进行过工业试验及应用,均取得了显著的节能降耗效果,并产生了显著的经济效益。磨矿新技术在不同的矿石类型(锡铜共生矿、硫化镍矿、铅锌矿、铜矿)及不同的磨矿流程(一段磨矿流程、标准两段磨矿流程、非标准两段磨矿流程)的应用中均取得了显著的节能降耗效果,电耗下降20-40%,介质消耗下降10-30%。证明了磨矿新技术在选矿厂节能降耗的应用中的广泛性、成熟性及可靠性。若全国60%的矿山企业采用磨矿新技术,据测算将每年节省电耗40多亿度,节省钢球消耗13.5万吨。说明了磨矿新技术是一种值得大力推广和应用的新技术,并为选矿厂的节能降耗开辟了新途径。
The mineral resource is material base of the national economy construction and the social development. The present stage, in our country,95% above energy, 80% above industrial raw material,70% above agricultural production originates from the mineral resource,30% above agricultural water and the tap water stems from the ground water which belong to the category of mineral resource. It can be said that there is not the revising stable supply of the mineral resource, there is also not the healthy development of the modern economy and society. However, the mineral resource's development use need consume great energy. The energy consumption, mining、mineral processing and smelting of metalliferous ore, reaches as high as above 15% of the national total energy consumption. The mine energy consumption accounts for about 35-50%, the metallurgy energy consumption is about 50-65%, in the mining and processing enterprise, mining consumes energy 1/3, the mineral processing consumes energy 2/3, and in the mineral processing plant, the grinding energy consumption, occupies 50% of the entire factory's, is 1/3 of the mining and processing enterprise's. Therefore, in process of mineral resource's development use, specially crushing and grinding will be facing the arduous task of saving energy and reducing consumption. The ball mill also explained from the birth to the industrial application more than 100 years history, in mineral grinding of the giant tonnage and the low-priced, at present and in the next quite long time, the ball mill also will be one kind of unreplaceable important grinding equipment. So studying new ball grinding technology reduces grinding energy consumption of the ball mill, this have the practical significance to realize "the energy development and saving".
     The grinding course is a function transformation. In the course, the input's power of grinding machine transforms largely the grinding loss merit, and very few for the useful energy. The steel ball has randomness to crush ore grain, grinding process of ball mill is a stochastic process, crushing probability is low, and the broken ore process loses the big energy. Thus it can be seen, the primary cause of high energy consumption of the ball mill is big the losing merit and low the crushing probability, saving energy should pay attention to two aspects, which how to enhance crushing probability of the mineral and raise crushing efficiency of the medium. Therefore, the paper, revolves two goals that enhance utilization ratio of the medium energy and crushing probability of the mineral, expounds coarse mill and fine mill to realize mechanism of saving energy and reducing consumption by three aspects that use the new grinding technology make ball medium accuracy、ball-load-addition science、suitable medium shape.
     The feeding size range of coarse grinding is wide, broken ratio is big. It need add many kinds of steel balls, thus in the coarse grinding process not only it need choose precisely steel ball size to guarantee precise steel ball size of various grades in the coarse grinding process, but also to guarantee the scientific allocated proportion of various ball diameter. Therefore, in view of characteristic of coarse grinding craft and the medium request, the new grinding technology of accurate ball-load-addition method was adopted in the coarse grinding section. The research content of accurate ball load-addition method have three aspects:(1) single ball diameter is precise; (2) overall ball is precise;(3) ball addition is precise. In the grinding process, the comminution probability of ore grain is decided the probability of the steel ball bumping into ore grain (collision probability) and after happening comminution (comminution probability), collision probability is higher, comminution probability is only then higher. But only the steel ball carries enough energy, the ore grain is comminuted. Only in the situation of precise ball diameter and science ball-load-addition, comminution probability is biggest, the stave loss's energy reduce, the energy utilization ration of steel ball enhance, the medium consumption also drops, because the medium consumption and the energy consumption are proportional nearly.
     The grinding course is a function transformation, is also an energy transfer process. The energy which steel ball carries, besides transforms into the ore's deformation energy, crack forming and expansion energy and the newborn surface energy, but because between the material, the grinding medium friction, the vibration was consumed. Therefore, The energy E which steel ball carries was divided into two parts:to the ore block acting W有, the energy which loses by other formsW损,E=W有+W损,when input energy E is invariable,W损reduces,W有will increases, then the energy utilization ration of steel ballη=W有/E×100% is enhanced, the medium consumption will also reduce.W有is decided comminution probability of steel ball bumping into ore grain. To a group ore grain of certain granularity, the collision probability of steel ball bumping into ore grain is decided by attacking times and the surface area of steel ball. Duringηenhancement, the grinding effect should be paid close attention(the energy uses effectively), if the energy that the steel ball transmits ore grain make ore grain break not to need, form nonessential stave or invalid stave, but needs to break ore grain actually not stave, creates the coarse grade and the thin grade excessively are many in the grinding product, not only the energy has be wasted, and the degree of dissociation are not high, the grinding goal and duty were violated. So During enhancing energy utilization ration of media and reducing energy consumption in grinding process, the grinding effect should be paid close attention, realizes maximization of ore grain comminution energy and effective comminution energy, also namely realizes the medium energy transfer maximization and the validity.
     The energy of the steel ball transfer ore grain make the ore grain to occur comminution, may choose the appropriate inferable formula of comminution power loss theory to calculate, The computed result indicated:In loading certain situation, the ball diameter was bigger, the number was less, steel ball, attacked ore grain number of times less, the attrition area was also small, hitted ore grain created easily the excessive comminution, not hitted the coarse grade were many, the product characteristic was not good, comminution efficiency was not high, energy utilization ration was not high. On the contrary, the ball diameter was smaller, the number was more, steel ball attacked less ore grain number of times more, the attrition area was also bigger, but the effective comminution energy use of ore grain was not also high, because any ore comminution need achieve certain energy density. Only when ball diameter was precise and ball allocated proportion was science, comminution energy of ore grain effective comminution energy would had realized maximization, the grinding product quality was improved, and the grinding energy consumption was reduced. From energy utilization ration of steel ball, precise ball diameter was higher than 28% of oversized ball diameter's, accurate ball-load-addition plan was higher than 9.15% of the present factory's. The comminution power loss of mineral and the grinding effect showed:the event quantity of ore grain comminution not only considered maximization of energy transfer, but also had considered the mineral comminution validity in the energy transfer process. Therefore, in grinding process we not only may use the event quantity of ore grain comminution to judge grinding effect quality, but may also to judge the grinding method whether to have the effect of saving energy and reducing consumption. After ball diameter adjusted precise from oversized,impacting strength reduced, the attrition speed of steel ball reduced, the consumption quantity decreased, After ball diameter precise, the biggest diameter reduced in mills, the glide of steel ball weakened, the power of overcoming the glide reduced, the grinding machine consumed the absolute power to drop finally, namely absolute electric quantity dropped. The dual function of relative drop and absolute drop realized saving energy and reducing consumption of ball mill.
     In view of special craft characteristic of the fine grinding work, the fine grinding work adopted the iron section to substitute tradition steel ball. The fine grinding work replaced the steel ball with the iron section, to be able to realize the energy transfer maximization and the validity, not only he quality of grinding product could be enhanced, but also the medium consumption could be reduced. Because the iron section is easy to revolve its axial rotation, moreover as a result of its shape's particularity, rotation is difficult in the mill, glide between the medium is weakened. Therefore, after fine grinding work replaced steel ball with the iron section, in mill the medium glide was weakened, this phenomenon was more remarkable than the small steel ball's, the absolute power of the mill dropped, the absolute electric quantity obviously dropped, then the remarkable saving energy effect of fine mill was realized. The productivity enhancement caused the relative drop of medium consume, the impulse reduced, then caused the machinery attrition to reduce, the absolute consumption failed down. The dual function of relative drop and absolute drop caused remarkable drop of medium consumption.
     The new grinding technology has carried on the industrial test and the application in Yunnan Tin company、Yunnan copper company、Jinchuan Corporation and Mengze Mining and metallurgy Company and so on more than 10 mine companies, this company have obtained the remarkable the effect of saving energy and reducing consumption, and has had the remarkable economic efficiency. the new grinding technology obtained the remarkable effect of saving energy and reducing consumption in the application of different ore type (Tin copper paragenetic mineral, sulphur-nickel ore, lead-zinc mine, copper mine) and different grinding flow (a section grinding flow, standard two section grinding flow, non-standard two section grinding flow), the electricity consumes dropped 20~40%, the medium consumption dropped 10~30%. It had proven universality, maturation and reliability of the new grinding technology in application of saving energy and reducing consumption of mineral processing plant. If 60% mine enterprise of the national, according to reckoning the electricity consumes will save above 4,000,000,000 kWh every year, the steel ball consumption will savel35,000 tons every year. It explained the new grinding technology is worth vigorously promoting and the application new technology, and opened the new way for saving energy and reducing consumption of mineral processing plant.
引文
[1]陈新燕,我国矿产资源现状研究及保护对策,矿产保护与利用,2005(1):6-8.
    [2]张复明,赵瑞娟,中国矿产资源与经济发展探讨,中国矿产资源与经济发展探讨,2009(1):103-105.
    [3]刘广泌,选矿节能年评,第二届选矿年评报告文集,中国金属学会选矿学术委员会等,1984年6月.
    [4]王壁善,我国选矿厂的能源消耗及节能实践,1981年11月.
    [5]肖治彭,我国有色工业的能耗及节能,冶金能源,1992(4):16-21.
    [6]唐开科,东川落雪矿选矿厂几项节能措施及其效果,全国第二届采选节能学术会议论集论文,1985年8月.
    [7]大力推进节约降耗,缓解资源瓶颈制约,资源与发展,2004,2,3-7.
    [8]孙建成,李兵,新时期我国矿产资源开发特点、问题与对策研究,《中国海洋大学学报》(社会科学版),2008(5):42-45.
    [9]程乐夫,中国实现资源节约型经济的可能性分析,经济管理与研究,2005,No.4,14-17.
    [10]郝美英、赵军伟,张克仁,节约利用矿产资源发展循环经济建设节约型社会,矿产保护与利用,2009(3):1-4.
    [11]向良度,田新池,黑色冶金地下矿山重点节能目标与措施,全国第二届采选节能学术会议论文集论文,1984年12月.
    [12]张福田,铁矿石磁选厂节能工艺的分析,全国第二届采选节能会议论文集论文,1985年8月.
    [13]刘岳云,凤凰山铜矿选厂节能工作的措施及效果,全国第二届采选节能学术会议论文集论文,1985年8月.
    [14]Donald, A. P., World Mining, April,1982,44-48.
    [15]E. G. Joe, Energy Consumption in Canadian Mills,CIM Bulletin, 979, Vol.72, No.806.
    [16]C.E.安德烈耶夫等三人著,有用矿物的破碎磨碎及筛分,北京:中国工业出版社,1963年11月出版.
    [17]R. T.Hukki,Fundamentals of the Closed Grinding Circuit, E/MJ,1979, No.4.
    [18]Neue Bergbautechn.,1983,13, No.4,216-220.
    [19]Herbst,J.A.,ADVANCES in Comminution. A Lecture Series Delivered at Central-South Institute of Mining and Metallurgy.1982.
    [20]Annual Review,1981, Mining Engineering, May,1982,71-78,82-84.
    [21]吴彩斌,破碎统计力学原理及转移概率在装补球制度中的应用研究,博士学位论文,2002年7月.
    [22]张军,张宗华,选矿节能降耗途径的思考,金属矿山,2007(5):1-2。
    [23]谢敏雄,丁辉,选矿节能降耗的途径浅析,国外金属矿选矿,2008(10):2-4.
    [24]T. L. Ramsey, Reducing Grinding Costs, World Mining,1982, Oct, p.78.
    [25]Harris, C. C.,Arbiter, N., Mining Engineering,1983, No.1,43 -46.
    [26]蔡祖光,陶瓷工业连续式球磨机,陶瓷工程,2002.34,(1):25-27.
    [27]蒋文俊,潘龙,浅谈陶瓷连续锥形球磨机,江苏陶瓷,2001.34(1):16.
    [28]王海瑞,高效节能球磨机的特点及应用,新疆有色金属,1998(1)20-24.
    [29]赵昱东,高效节能破磨设备的进展,冶金矿山设计与建设,1999(5):33-36.
    [30]陈建锋,肖飞凤,球磨机的发展方向综,中国矿业,2006(8):94-96.
    [31]Eng. Min. J.,1986, Vol.187, No.2,48.
    [32]Sidery, D., Mining Magazine,1982, Vol.146, No.1,30-33.
    [33]Mining Magazine,1982, Vol.34, No.9,1328-1331.
    [34]Min.J.,1984, Vol.304, No.7781,241.
    [35]Dopson,W.,Mining Engineering, Vol.66, No.10,1980,17-20.
    [36]Themels, N.J., Mining Engineering, Vol.32, No.6,1980.
    [37]江海燕,吕振林,饶启昌,磨机衬板失效分析及其选材,水泥装备,2002(2):32-34.
    [38]杨光春,罗保全,周洪,球磨机衬板材料的研究进展,煤炭科学技术,2000(1)25-28.
    [39]李茂林,毛静波,鲁幼勤等,湿式磨机用低碳高合金钢新材料衬板的研制,水泥科技,2003(1):11-17.
    [40]张增志编著,耐磨高锰钢[M].北京:冶金工业出版,2002.
    [41]Umino M. Sera T, Kondo K, Okada Y et al. Effect of Silicon Content on Tempered Hardness, H igh Temperature Strength and Toughness of Hot W orking Tool Steels. Journal of the Iron and Steel Institute of Japan,2003,89(6):673-679.
    [42]Taneike M, Sawada K and Abe F. Effect of Arbon Concentration on Precipitation Behavior of M23C6 Carbides and MX Carbonitrides in Martensitic 9Cr Steel During Heat Treatment. Metallurgical and Materials Transactions A,2004, 35A(4):1255-1262.
    [43]Li Y, Wilson J A, Crowther D N, et al. The Effects of Vanadium, Niobium, Titanium and Zirconium on the Microstructure and Mechanical Properties of Tlain Slab CastSteels. ISIJ International,2004,44(6):1093-1102.
    [44]Guam Q F, Jiang Q C, Fang J R et al. Microstructures and Thermal Fatigue Behavior of Cr-Ni-Mo Hot Work Die Steel Modified by Rare Earth. ISIJ International,2003,43(5):784-789.
    [45]Kobulashvili G S, Okrostsvaridze Z S, Tavadze L F et al. Effect of Microadditions of Boron, Yttrium and Calciumon Cast Structure of 03Kh20N18M3D2 Steel. Litejnoe Proizvodstvo, 2001, (7):9-12.
    [46]Iwamoto T, H oshino T, M atsuzaki A et al. Effects of Boron and Nitrogen on Graphitization and Hardenability in 0.53% C Steels. ISIJ International,2002,42(SUPPL):77-81.
    [47]Pan Yichuan, Yang Hua, Liu Xiangfa et al. Effect of K/Na on Microstructure of High-speed Stel Used for Rolls. Materials Letters,2004,58(12-13):1912-1916.
    [48]朱军,杨军,大型球磨机衬板材料的研究和应用,铸造技术,2005(12):1119-1121.
    [49]Moller,J.The best of two worlds-a new concept in primary grinding wear protection,Minerals Engng.,1990,3 (1/2),221.
    [50]赵昱东,磨机筒体衬板的开发与应用,有色设备,2001(5)5-8.
    [51]张小平等,矿山用橡胶制品现状及发展,中国橡胶,2001(17):3-9.
    [52]李显明,湿式磨机的橡胶衬板,物料搬运与分离技术,1995(2):52-59.
    [53]王念生摘译自美国《采矿工程》,1990(11):1249-1250.
    [54]杨忠高,橡胶衬板球磨机节能降耗的研究,有色矿山,1992(2):29-34.
    [55]张家胜,磁性衬板在球磨机中的应用,矿业工程,2005,No.2,31-32.
    [56]苏兴强,周鲁生,段其福,金属磁性衬板应用进展,金属矿山,2006(3):14-17.
    [57]徐立军,延福生,刘桂林等,棒磨山铁矿二段磨机采用磁性衬板的实践,金属矿山,2002(12):47-48.
    [58]Edner, J. E., Australian Mining,1982, No.1,9-12.
    [59]Korpi,P.A. and Dopson,G.W.Angular spiral lining systems in wet grinding grate discharge ball mills, Min.Engng. 1982(34):57-60.
    [60]杨忠高,角螺旋衬板减少球磨机的生产费用,译自Idstrie Minirale, Vol.66, No.5.
    [61]P. A. Korpi et al, Angular Spiral Lining System in Wet Grinding Grate Discharge Ball Mill, Mining Engineering,1982, June,57.
    [62]黄和平,邱波,张冶元,微阶段化磨矿技术在安庆铜矿的应用,中国钼业,2005,No.4。
    [63]王宇斌等,微阶段化磨矿研究与实践,化工矿物与加工,2005,No.1,12-14.
    [64]孙盈,王宇斌,张治元等,一段磨矿分级应用水力旋流器的研究与实践,金属矿山,2005(347):28.
    [65]张泾生,余永富,麦笑宇,我国黑色冶金矿山的技术进步,金属矿山,2000,No.4,8-15.
    [66]孙玉波,闭路磨矿中旋流器的工作原则,矿业快报,2002。
    [67]毕秀梅,王书礼,水力旋流器用于一段闭路磨矿工艺,矿业快报,2004,No.4,49-53.
    [68]夏金瑞,赵德孝,鲁炳强,等.选厂磨矿分级控制系统的开发与应用,有色矿冶,2002,18(4):19-22.
    [69]王先华,丁乾玲,节能降耗提高矿山效益,有色冶金节能,2003(1):5-6.
    [70]邹金慧,高兰,黄宋魏,自动化控制技术在磨矿分级中的应用,数据采集与处理,2008(S):131-135.
    [71]W. E. Horst,Grinding Oircuit Control Offers Increered Energy Efficiency, Mining Congress Journal, Oct.1979, Vol.65, No.10.
    [72]Kawatra, S. K. and Eisele, T. C. Rheology effects in grinding circuits, in Proc. XVI Int. Min. Proc. Cong. A, ed. K. S. E. Forssberg,1988,195, Elsevier,Amsterdam.
    [73]Klimpel, R. R. Slurry rheology influence on the performance of mineral/coal grinding circuit Part 1, Minerals Engng.,1982, 34(12),1665-1668.
    [74]Klimpel,R.R..Slurry rheology influence on the performance of mineral/coal grinding circuit Part 2,Minerals Engng., 1983,35(1),21-26.
    [75]Klimpel, R.R. Influence of material breakage properties and associated slurry rheology on breakage rates in wet grinding of coal/ores in tumbling media mills,in Reagents in the Mineral Industry, ed. M. J. Jones and R. Oblatt, I. M. M., London, 1984/265-270.
    [76]Moys, M. H. Slurry rheology—the key to a further advance in grinding mill control, Proc.of SAG 1989Conf.,Vancouver, Canada,1989:713-757.
    [77]Shi,F.Slurry rheology and its effects on grinding, PhD Thesis,JKMRC,The University of Queensland.1994.
    [78]Shi, F. and Napier—Munn, T. J. Effects of slurry rheology on industrial grinding performance, Int. J. Min. Proc.,2002 (65): 125-140.
    [79]谢恒星,张一清,李松仁等.矿浆流变特性对钢球磨损规律的影响.武汉化工学院学报.2001,(1)34-36.
    [80]A. Soberring, G.N.Carlson, CIM. Bulletin 1971. Vol.64,38-42.
    [81]S. G. Malghan, Mining Enginerring 1982, June,684-690.
    [82]李启衡,磨矿过程节能的几个问题,昆明工学院,1983年3月印刷。
    [83]矿冶译文,1983,No.4,40-57.
    [84]Mining Engineering, June,1982,684-690.
    [85]罗丽生,选矿厂破碎磨碎作业的现状及挖潜与改造,第三届全国破碎与磨碎学术会议论文集,1985年。
    [86]程绍良,王宏勋,孙成林,我国新型磨矿介质材质研究,首届全国粉磨介质与耐磨材料技术研讨会论文集,北京:中国选矿科技情报网,1992,1-24。
    [87]段希祥,新型细磨介质的应用研究,昆明理工大学学报(自然科 学版),1998,No.6,11-15。
    [88]段希祥,不规则矿块抗压强度测定的新方法研究, 《有色金属》(季刊),2000,No.3。
    [89]段希祥,球磨机钢球尺寸的理论计算研究,中国科学A辑,1989,No.8。
    [90]段希祥,球径半理论公式的修正研究,中国科学E辑,1997,第27卷第6期。
    [91]石贵明,肖庆飞,罗春梅等,球径精确化对选矿指标的影响研究,金属矿山2007(1):55-57.
    [92]段希祥,小钢球磨矿的工业试验,有色金属(选矿部分),1987,No.6.
    [93]段希祥,小钢段的工业试验报告,昆明工学院科研报告,1988年12月。
    [94]Silliman, J. C., Pit & Quurry, Feb,1982, No.8,86-91.
    [95]Perey, J. J., et al, " Interaction of Corrosion and abrasion on grinding media wear",113th AIME Annual Meeting, Los Angeles, Feb.26-Mar.1,1984.
    [96]D.U.Cloos, World Mining 1983. No10,59.
    [97]彭操,刘江林,降低磨矿能耗技术在选矿厂中的应用剖析,云南化工,2008(2):67.
    [98]段希祥,降低我国粗磨机钢球尺寸的研究,矿山机械,1998,No.1 0.
    [99]段希祥,提高磨矿过程矿物单体解离度及改善磨矿产品质量研究,有色金属(选矿部分),1998,No.3。
    [100]尚福山,段绍甫,2008年主要有色金属矿产资源开发现状及2009年供需形势分析,中国矿业,2009(2):5-7.
    [101]Von Rittinger P R. Lebrbuch der Aufberitungskonde. Berlin, 1867.
    [102]Bond F C. The third theory of comminution. Trans. AIME/SME, 1952(193):484-489.
    [103]Bond F C. Crushing and grinding calculations part Ⅰ. Br. Chem. Eng.,1961(6):378-385.
    [104]Bond F C. Crushing and grinding calculations part Ⅱ. Br. Chem. Eng.,1961 (6):543-548.
    [105]韦鲁滨,边炳鑫,矿物分离过程动力学,中国矿业大学出版社,2002,32.
    [106]中南工学院、东北工学院合编,破碎筛分,中国工业出版社,1961年出版。
    [107]李启衡编, 《粉碎工程》,昆明工学院,1981年印刷。
    [108]刀正超,选矿厂磨矿工,北京:冶金工业出版社,1987:152-153.
    [109]段希祥,降低粗磨机钢球尺寸的研究,矿山机械,1998(10):18-21。
    [110]段希祥,曹亦俊.球磨机介质工作理论语实践.北京:冶金工业出版社,1999,8:30-33。
    [111]段希祥,球磨机钢球尺寸的理论计算研究,中国科学,A辑,1989,19(8):856-863。
    [112]罗春梅,肖庆飞,曾桂忠等,云锡铜矿二段球磨介质尺寸研究,矿山机械,2007(11):88-89。
    [113]杜茂华,(段希祥指导),一段磨精确化装补球方法开发及其破碎机理和应用效果研究,昆明理工大学博士学位论文,2007年7月。
    [114]李启衡主编.碎矿与磨矿.北京:冶金工业出版社,1980,84-191。
    [115]段希祥,周平,潘新潮,球磨机精确化装补球方法,《有色金属》,2004(8):75-78。
    [116]安德烈耶夫C.E.,茨维列维奇B.B.,别洛夫B.A.,有用矿物的破碎、磨碎和筛分,北京矿业学院选矿教研室译,北京:中国工业出版社,1963。
    [117]肖庆飞,两段磨矿精确化装补球方法的开发及应用研究,昆明理工大学博士学位论文,2008年8月.
    [118]E.W.DAVIS, TRANS.AIME;61,1919:250-296。
    [120]郑水林,超细粉碎原理、工艺设备,北京:中国建材出版社,1993,110。
    [121]BELA BEKE, D.S.C.The Process of Fine Grinding, Akademiai Kiado, Budquest 1981,26.
    [122]Kruger FLvon, Don& JD, Drummond MAR, The effect of using concave surfaces as grinding media, Processing of the 21 Intemational Mineral Processing Congress, Rome, July 2000. 86-93.
    [123]Magno Rodrigues Riberiro, Rita Virginia Gadriel da Silva, Camilo Carla da Silva, Survey of optimization of iron ore grinding, Metallurgic & Materials,2002,58(526):51-5。
    [124]K. Brenneck, W. Jocoks, Processing of the 14st International Mineral Processing Congress,1982,10。
    [125]F. Shi. Comparison of grinding media—Cylpebs versus balls Minerals Engineering.2004, (11-12) 1259-1268。
    [1 26]熊瓒恩,耐磨柱状介质在再磨机中的应用,中国矿业,1994,(3):45-48。
    [127]潘新潮,段希祥,选矿厂细磨介质的选择及研究,有色金属设计,2002,(4):26-29。
    [128]霍麟春,佟克己,再论球磨机的动力学分析,天津理工学院学报,1999,(3)62-66。
    [129]中国电力企业联合会,2008年全国电力工业统计快报。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700