液化天然气冷能利用过程中强化换热技术及水平管内气液两相流体激振机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液化天然气(LNG)在使用前,必须经过汽化后以气态输送给用户,汽化过程中会释放数量众多、品质很高的冷能,将这部分冷能有效利用会带来巨大的经济和社会效益。如何有效提高LNG冷能利用效率一直是人们关注的课题。
     本文主要研究了三个方面的内容,首先对LNG冷能利用的热力学理论基础进行了研究。为了最大程度地利用LNG冷能,换热器的换热性能至关重要,本文第二部分对LNG冷能利用过程中的有源强化换热技术进行了理论和试验分析。有源强化技术中的一种通过流体自激振动提供振源使换热壁面振动以达到强化换热目的的新技术目前仍然是一个全新的领域,在LNG冷能利用过程中存在强烈的相变和气液两相流动过程,两相流体流动比单相流体流动更容易产生自激振动,本文最后一部分对水平管内气液两相流体激振的机理进行了理论研究,为下一步将气液两相流体激振和强化换热技术相结合的新技术开发提供了前期的理论支持。
     本文首先对LNG冷能利用过程进行了系统分析、平衡分析、LNG冷能分析以及能级分析。从热力学的角度对LNG冷能利用进行了全面的“量”和“质”的分析,提出了LNG冷能梯级利用需要遵循的热力学原则:冷热流体间温差最小;不同温度段内冷能“支付”和“收益”双方的能级要匹配;不同的温度(包括环境温度、LNG温度、利用方式的温度)下综合利用LNG冷能方案分配要合理;以及综合考虑经济、环境、及设备各因素等。另外,通过能级分析,提出了LNG冷能综合利用方案(包括冷能直接利用和动力利用)分配的判断准则,并为此准则的工程应用总结出了快速判断准则图。
     本文第二部分通过分析认为有源强化换热的本质是边界层厚度的周期性变化导致的边界层导热性能的整体提高。基于此认识,本文建立了周期性边界层重构式强化换热技术的理论模型并进行了数值和试验研究。研究结果表明,周期性边界层重构式换热模型可以较好地解释类如刷壁式、振动强化式等有源强化换热过程的变化规律;周期性边界层重构方式对层流的换热强化效果尤其明显;边界层重构式强化换热技术存在一个特定重构周期,在该周期左右,强化换热效果最佳。
     本文第三部分是基于通过流体自激振动可以达到强化换热目的的认识,对LNG冷能释放过程中的气液两相流体激振(不稳定性)进行了研究。采用确定振荡流场的振荡流体力学原理和快速求解复杂流动的参数多项式法对水平直管、渐扩管、渐缩管内的气液两相流体激振过程进行了理论研究。研究结果表明,相对于截面直管,渐扩管可以起到强化从入口到出口的压力波动的效果,但会使得进出口压差减小,而渐缩管恰恰相反,它会使得进出口压差增大,却弱化从入口到出口的压力波动;压力波动的振幅和气相密度波动的振幅都是随着流量的增大而减小;水平管内气液两相流体激振的发生和压差——流量的性能曲线的位置无关。
     本文这三部分内容都是为了更好地提高LNG冷能利用率,为实现节能的目的服务,同时第二和第三部分的内容对强化换热技术的发展和气液两相流体激振的研究提供了一个新的研究思路。
Liquefied natural gas (LNG) must be vaporized to gas for delivery to the user, and releases a great deal of high-quality cold energy during its vaporization process. The effective utilization of the cold energy will bring enormous economic and social benefits. How to effectively improve the efficiency of LNG cold energy utilization has become a hot topic.
     In this paper, the thermodynamic theory of LNG cold energy utilization firstly is explored. In order to maximize the utilization of LNG cold energy, one of the most important equipments is the heat exchanger. So the second part pays attention to the theoretical and experimental study of the active enhanced heat transfer technique in the process of LNG cold energy utilization. Enhanced heat transfer by the fluid’s self-excited vibration, which makes the heat transfer surface vibrate, is still a new field. There exists strong phase transition and gas-liquid two-phase flow in the process of LNG cold energy utilization, and the two-phase flow is more prone to self-excitedly vibrate than the single-phase fluid flow. The third part studies the mechanism of the two-phase self-excited vibration in horizontal in-tube. The later two parts provide a pre-theoretical support to the new enhanced heat transfer technique by the gas-liquid two-phase self-excited vibration.
     In the first part, the system exergy analysis, exergy balance analysis, LNG cold exergy analysis and energy levels analysis have been presented in the utilization process of LNG cold energy. This work is an overall thermodynamic analysis of LNG cold energy utilization in terms of the "quantity" and "quality" of the energy. And then the thermodynamics principles of the cascade utilization of LNG cold energy is drawn: the temperature difference between hot and cold fluids should be as small as possible; the cold energy level of the "payment"should matches the " income" level; the comprehensive utilization of LNG cold energy distribution must be reasonably arranged under different temperatures (including ambient temperature, LNG temperature, and the user’s temperature); and the economy, the environment, and the equipment should be also overall considered; and so on. In addition, the arrangement criterion of the comprehensive utilization of LNG cold energy (including the direct cold energy utilization and power utilization) was proposed after the level analysis of LNG cold energy and a figure is presented to quickly ensure the comprehensive utilization scheme. .
     In the second part, the essence of active enhanced heat transfer is analyzed and it is considered that the enhanced heat transfer is caused by the periodic change of the boundary layer’s thickness. Based on the analysis, a numerical theoretical model of periodic renewing boundary layer is built to study the properties of enhanced heat transfer and then it is verified by a test and others’references. The results show that the periodic renewing boundary layer model can reflect well the rules of active enhanced heat transfer such as by brushing surface or the surface vibrating. The conclusion is gotten that periodic renewing boundary layer affects more obviously heat transfer in laminar flow than in turbulence flow and around a typical period heat transfer is most enhanced.
     The third part is based on the understanding of heat transfer can be enhanced by the self-excited vibration of the fluid. The gas-liquid two-phase vibration during the process of LNG vaporization is studied by Oscillation fluid dynamics and the parameter polynomial method in horizontal in-tube (including straight, increasing, and reducing cross-section tubes). The results show that, compared to straight tube, increasing tube can strengthen the pressure oscillation from the inlet to the outlet, but the pressure drop between them decreased; on the contrary, the reducing tube can make the pressure drop increase, but the pressure oscillation decrease. Both of amplitudes of the pressure oscillation and the gas density oscillation decrease with the increase of the mass flow. And the vibration of the two-phase flow in horizontal pipe has nothing to do with the location of pressure drop curve, which is different with the vertical tube.
     These three parts of this paper is to improve the utilization of LNG cold energy and the research results have great signifacance to save energy. In additional, the second and third parts of the research provide a new idea for the study of the enhanced heat transfer technique and the vibration of two-phase flow.
引文
[1]宋克农,罗贤成,浅析我国天然气现状和进口前景,城市燃气,2009(9):23~26;
    [2]杨占玄,徐力飞,我国天然气勘探开发现状与前景分析,企业改革与发展,2010(9):160~162;
    [3]贺红明、林文胜,基于LNG冷能的发电技术,低温技术,2006,34(6):432~436;
    [4] ZhangN, CaiR. Ana1ytical solutions and typical characteristics of part-load performance of single shaft gas turbine and its cogeneration. Proceedings of ECOS9' 9, Tokyo, Japan, 1999;
    [5]王强,厉严忠,陈曦.一种基于低品位热源的LNG冷能回收低温动力系统.热能动力工程,2003,18(3): 245-247;
    [6]程文龙,伊藤猛宏,陈则韶.一种回收液化天然气冷能的低温动力系统.中国科学技术大学学报, 1999, 29(6): 671-676;
    [7] Liu Hongtan, You Lixin. Characteristic and applications of the cold heat exergy of liquefied natural gas,Energy conversion& management,1999,40:1515-1525;
    [8]刘蔚蔚,张娜,蔡睿贤.利用液化天然气冷的燃气轮机热力系统的研究.硕士学位论文,北京:中国科学院工程热物理研究所, 2003;
    [9] Ken’ichiKaneko, KiyoshiOhtan,i YoshiharuTsujikawa, eta. Utilization of the cryogenic exergy ofLNG by amirrorgas-turbine,Applied Energy, 2004,79:355-369;
    [10]顾安忠,鲁雪生,汪荣顺等,液化天然气技术,北京:机械工业出版社, 2004;
    [11] MiyazakiT, KangY T, AkisawaA, eta. A combined power cycle using refuse incineration and LNG cold energy. Energy,2000,25(7): 639-655;
    [12] HisazumiY,YamasakiY, Sugiyama S. Proposal for a high efficiency LNG power-generation system utilizing waste heat from the combined cycle. Applied Energy, 1998, 60(3): 169-182;
    [13]王威,蔡睿贤. LNG冷能利用动力系统和微型燃气轮机系统的研究.博士学位论文,北京:中国科学院工程热物理研究所,2003;
    [14] ZhangNa,Naom Lior. Proposal and analysis of a novel zero CO2emission cycle with liquid natural gas cryogenic exergy utilization. Journal of Engineering for Gas Turbines and Power, 2005, 127: 1-11;
    [15] ZhangNa, Naom Lior. Configuration analysis of a novel aero CO2 emision cyclewith LNG cryogenic exergy utilization. 2003 ASME International Mechanical Engineering Congress &Exposition Washington, D.C., 2003, 11: 16-21;
    [16] Nagamura T, Y am ashita N. Air Separating Method Using External Cold Source[P], US:5220798, 1993-06-22;
    [17] Nakaiwa M, Akiya T, Owa M, etal Evaluation of an energy supply system with air separation [J]. Energy Supply System,1996,37(3):295—301;
    [18]陈则韶,程文龙,胡芃.一种利用LNG冷能的空气分离装置新流程[J].工程热物理学报, 2004, 25(6): 913—916;
    [19]金滔,胡建军等.利用液化天然气冷能的新型空分流程及其性能,浙江大学学报,2007(5):836~839;
    [20]燕娜厉彦忠,采用液化天然气冷量的空分系统新流程,化学工程,2007(9):58~61;
    [21]董瑞连.冷库制冷系统节能措施,节能技术,2002,20(2):41~42;
    [22]张君瑛,章学来,李品友,LNG蓄冷及其冷能的应用,低温与特气.2005,23(5):7~9;
    [23]盛青青,章学来等,利用LNG冷能的冷冻冷藏库设计,能源技术,2007(12):322~324;
    [24]张树龙,焦琳等,利用LNG气化站冷能的冷库系统研究,煤气与热力,2007(12):15~17;
    [25]葛轶群,章学来等,LNG冷能的梯级利用,制冷技术,2006(3):14~16;
    [26]徐文东,华贲等,LNG冷量优化集成利用技术,天然气工业,2006,26(7):127~129;
    [27]尤海英,马国光等,LNG冷能梯级利用方案,天然气技术,2007(7):65~68;
    [28] Hongyu Si,Ning Mei,etal,Optimized Utilization of LNG Cold Energy,Proceedings of the International Heat Transfer Conference(IHTC-14),Washington D.C.,2010;
    [29]敬加强、梁光川、蒋宏业,液化天然气技术问答,北京,化学工业出版社,2007;
    [30]王强、历彦忠、张朝昌,LNG汽车冷能回收在低温冷藏车中的应用,制冷与空调,2002(12):38~40;
    [31]谭宏博,LNG低温冷藏车在我国的发展优势,世界油气,2007(8):30~31;
    [32]徐国想,邓先和,张亚君等,强化传热技术及其在硫酸系统中的应用进展,化工业进展,2001,18(11):23~27;
    [33]崔海亭、姚仲鹏、王瑞君,强化型管壳式换热器的研究现状与发展,化工机械,1999,26(3):168~170
    [34]崔海亭,彭培英,强化传热新技术及其应用,北京:化学工业出版社,2006;
    [35] Marco S M, Velkoff H R. Effect of Electrostatic Fields on Free Convection Heat Transferfrom Flat Plates[R]. ASME, No. 63-HT-9;
    [36]周明霞,国内外换热器技术进展,压力容器,1995(1):19~23;
    [37]陈志静,电场强化气体对流传热研究进展与场协同原理,石油化工设备,2010,39(5):48~52;
    [38]过增元,对流换热的物理机制及控制,科学通报,2001,45(19):2118-2122;
    [39] Velkoff H R, Godfrey R. Low-velocity Heat Transfer to a Flat Plate in the Presence of a Corona Discharge in Air[J]. J. Heat Transfer, 1979,101: 157-163.;
    [40] Windishmann H. Investigation of Corona-discharge Cooling (CDC) of a Horizontal Plate under Free Convection. Heat Transfer Research and Design,AIChE, 1974,70(Symp. Series 138):23-30.;
    [41] O’brien R J, Shine A J. Some Effects of an Electric Field on Heat Transfer from a Vertical Plate in Free Convection. J. Heat Transfer, 1967,89: 114-116.;
    [42] Franke M E, Hogue L E. Electrostatic Cooling of a Horizontal Cylinder[J]. J. Heat Transfer, 1991,113:544-448.;
    [43] Ohadi M M, Nelson D A, Zia S. Heat Transfer Enhancement of Laminar and Turbulent Pipe Flow Via Corona Discharge[J]. International Journal of Heat and Mass Transfer, 1991,34: 1175-1187;
    [44] Bhattacharyya, Souvik, Peterson. Corona Wind-augmented Natural Convection part 1: Single Electrode Studies[J]. Journal of Enhanced Heat Transfer, 2002,9(5-6): 209-219;
    [45] Bhattacharyya, Souvik, Peterson, et al. Corona Wind-augmented Natural Convection part 2: Multiple Electrode and Flow Visualization Studies[J]. Journal of Enhanced Heat Transfer, 2002, 9(5-6): 221-228;
    [46] Shine A J. Heat transfer from a vibrating plate,ASME Paper,59-HT-27, 1959;
    [47]程林、田茂诚等,流体诱导振动复合强化传热的理论分析,工程热物理学报,2002,23(3):329~331;
    [48]程林、田茂诚,流体诱导振动复合强化传热的实验研究,工程热物理学报,2002,23(4):485~487;
    [49]田茂诚、林颐清、程林等,汽-水换热器内流体诱导振动强化传热试验,化工学报,2001,52(3):257~261;
    [50]王一平、卢艳华等,振动平板的传热性能实验,天津大学学报,2010,43(6):549~552;
    [51]周静伟、杨兴贤,非稳态冲击射流强化传热试验研究,机械工程学报,2010,46(6):144~148;
    [52]罗毓珊,陈凤云等,不同倾角射流时近壁区流动与传热特性研究,核动力工程,2010,31(4):41~47;
    [53]张晓杰、朱彦雷等,多孔球层内沸腾现象与传热特性研究,核动力工程,2009,30(1):45~49;
    [54]徐鹏、林清宇等,多孔管管内流动沸腾传热实验,化工进展,2010,29(增刊):625~629;
    [55]王元荪、陈黎,摆动式直接布料明胶刮面换热成型机,明胶科学与技术,2006,26(4):188~192;
    [56]梅宁、司洪宇等,一种圆柱板污水换热器,中国专利,200810138675.7,2008-07;
    [57]钱颂文,扭曲管与混合管束换热器,化工设备与管道,2000(4):12~15;
    [58] Carborundum Co.Enhance you heat exchanger with Hexoloy Sic.Chemical Processing,1999,62(6):78;
    [59]张立强、张及瑞等,高效传热设备发展现状,无机盐工业,2003,35(6):12~14;
    [60]车得福,多项流及其应用,西安:西安交通大学出版社,2007;
    [61] Ledinegg M. Instability of Flow During Natural and Forced Circulation. Die Warme, 1938, 61:891~898;
    [62] Stenning A H,et al. Flow Oscillation Models in Forced Convection Boiling. Proc Heat Transfer and Fluid Mech Inst, Stanford Univ Press, 1965, 301~316;
    [63] Stenning A H, Veziroglu T N,et al, Press-Drop Oscillations in Forced Convection Flow with Boiling. EURATOM Symp on Dynamics and Two-Phase Flows,1967;
    [64] Maulbetsch J S, Griffith P P. Prediction of the Onset of System-Induced Instabilities in Subcooling Boiling .EURATOM Symp. On Dynamics and Two-Phase Flows,1967;
    [65] Lee S S, Veziroglu T N, Kakac S. Sustained and Transient Boiling Flow Instabilities in Two Parallel Channel Systems. Two-Phase Flows and Heat Transfer, 1977,1:467~510;
    [66] Kakac, S. Boiling Flow Instabilities in Multi-channel Upflow System. Two-Phase Flows and Heat Transfer, 1977, 1:511~547;
    [67] Ozawa M, et al. Flow Instabilities in Boiling Channel, Part 1, Pressure-Drop Oscillation.Bulletin of JSME, 1979, 22(77):1113~1118;
    [68] Yildirm O T, et al. The Analysis of Two-Phase Flow Instabilities in a Horizontal Single Channel. Thermal Sci Pro of 16th S E Seminar, 1982, p761;
    [69] Widmann F, et al. The Effect of Inlet Subcooling on Two-Phase Flow Instabilities in a Horizontal in–Tube Flow Boiling System. 3rd Int Symp on Multiphase Flow and Heat Transfer, Xi’an China, Sept 19-21,1994, 1:429;
    [70] Bergles A E, et al. Acoustic Oscillation in a High Pressure Single Channel Boiling System. EURATOM Report, Proc Symp On Two-Phase Flow Dynamics, Einhoven, 1967 EUR 4288e:535~550;
    [71] Maulbetsch J S, Griffith P P. Prediction of the Onset System-Induced Instabilities in Subcooling Boiling. EUTATOM Symp. On Dynamics and Two-Phase Flows,1967;
    [72] Abdelmessih A H.An Experimental Investigation on Incipient Boiling Oscillation of Freon-11 in Forced Convection Vertical Upflow. Two-Phase Transport and Reactor Safety, 1976, 2:713~737;
    [73] Tsuchiya T, et al. Hydrodynamic Stability Tests for LMFBR Sodium Heated Steam Generators. (in Two-Phase Flow Dynamics, Edited by Bergles and Ishgai),HPC,1977;
    [74] Aritomi M, et al. Instabilities in Parallel Channel of Forced Convection Boiling Upflow System(IV), J Nucl Sci & Tech, 1981, 18(5):324;
    [75] Quandt E, et al. Analysis and Measurement of Flow Oscillations. Chem Eng Progress Symp, Ser.32, 1961, 57:111~126;
    [76] Zhou Kun Ying, et al. On the Stability and Flow Reversal of Pressure Driven Flow in an Asymmetrically Heated U-shaped Tube . Trans. ASME, J of Heat Transfer, Ser C, 1985,107:112~118;
    [77]毕勤成.电加热垂直U型管内气液两相流不稳定性的研究.西安交通大学硕士论文,1988;
    [78]张旭,水平U型管中气液两相流动的研究.西安交通大学硕士学位论文,1987;
    [79]杨瑞昌.垂直U型管内气液两相不稳定流动的研究.清华大学博士学位论文,1986;
    [1]葛轶群,章学来等,LNG冷能的梯级利用,制冷技术,2006(3):14~16;
    [2]徐文东,华贲等,LNG冷量优化集成利用技术,天然气工业,2006,26(7):127~129;
    [3]尤海英,马国光等,LNG冷能梯级利用方案,天然气技术,2007(7):65~68;
    [4]顾安忠,液化天然气技术,北京:机械工业出版社,2008;
    [5]刑静忠、王永岗,ANSYS 7.0分析实例与工程应用,北京:机械工业出版社,2004;
    [6]贺红明、林文胜、顾安忠,LNG物理及其回收利用,低温工程,2006(6):59~66;
    [7]杨东华,分析和能级分析,北京:科学出版社,1986;
    [8]江克忠、杨学军等,LNG冷能综合利用研究,低温与特气,2008,26(2):1~5;
    [9]高从堦陈国华,海水淡化技术与工程,北京:化学工业出版社,2004;
    [10] WANG Fujing, Coal for Power Generation Cost of Thermal Power Plant and Study Coping Strategies[D], Beijing:North China Electric Power University, China, 2009;
    [11]程林、田茂诚等,流体诱导动强化热的理论分析,工程热物理学报,2002,23(3):330~332;
    [1]林宗虎强化传热及工程应用北京:机械工业出版社1987;
    [2]崔海亭,姚仲鹏等,强化型管壳式换热器的研究现状与发展,化工机械,1999,26(3):168~170;
    [3]周明霞国内外换热器技术进展,压力容器,1995,(1):19~23;
    [4]张平亮,新型高效换热器的技术进展及其应用,压力容器,1997(2):146~152;
    [5]钱伯章,无相变液-液换热设备的优化设计和强化技术( I ),化工机械,1996(2):110~115;
    [6]李向明,叶国兴,邓颂九,高效换热原件—螺旋槽管的研究及应用,化工学报,1982,33(4):359~367;
    [7]吉富英明,大场一马,有马芳雄,螺旋管的传热与压力损失,火力原子力发电,1976,27(2):171~182;
    [8]章熙民传热学北京:中国建筑工业出版社2002;
    [9] B. E. Launder, D. B. Spalding, Lecture in Mathematical Model of Turbulence, Academic Press, London, 1972;
    [10]北京飞箭软件有限公司基于FEPG的有限元方法(电子版) 2003北京;
    [11]梁国平,有限元语言,北京:科学出版社,2009;
    [12]陶文铨,数值传热学,西安:西安交通大学出版社,2009;
    [13]王一平、卢艳华等,振动平板的传热性能实验,天津大学学报,2010,43(6):549~552;
    [14]程雪玲、胡非,周期性扰动对湍流边界层层次结构的影响,北京大学学报,2005,41(5):688~694;
    [1]崔海亭、彭培英,强化传热新技术及其应用,北京:化学工业出版社,2006;
    [2]陈佐一,流体激振,北京:清华大学出版社,1998;
    [3]冯叔初、郭撰常、王学敏,油气集输,东营:石油大学出版社,1988;
    [4]陈家琅,石油气液两相管流,北京:石油工业出版社,1989;
    [5]李晓平、宫敬,气液两相流瞬态数值模拟,油气储运,2006,25(8):11~14;
    [6] Taitel Y、Barnea D,Simplified Transient Simulation of Two Phase Flow Using Quai-Equilibrium Momentum Balances,Int. J. Multi Phase Flow,1997,23(3);
    [7] Wallis G. U., One-dimensional Two-Phase Flow,MeGraw-Hill,NewYork,1969. Wallis G. B., Annular Two-Phase Flow,Part I: A SimpleTheory,J.of Basie Engineering,1970(59);
    [8] Wallis G. U., One-dimensional Two-Phase Flow,MeGraw-Hill,NewYork,1969. Wallis G. B., Annular Two-Phase Flow,Part I: A SimpleTheory,J.of Basie Engineering,1970(59);
    [9]李德忠,海洋环境下的输液管道流体激振研究,[博士学位论文],青岛:中国海洋大学工程学院,2003;
    [10]同济大学应用数学系,高等数学,北京:高等教育出版社,2005;
    [11]路季平,积分变换及其在物理海洋学中的应用,北京:海洋出版社,1990;
    [12]阎昌琪,气液两相流,哈尔滨:哈尔滨工程大学出版社,2007;
    [13] S.Kakac & B.Bon, A Review of two-phase flow dynamic instabilities in tube boiling systems, International Journal of Heat and Mass Transfer, 51(2008)399~433;
    [14] Y.ding & S.Kakac, Dynamic instabilities of boiling two-phase flow in a single horizontal channel, Experimental thermal and Fluid Sciece,1995,11:327~342;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700