QoS保障的基站节能机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着移动互联网的发展,无线业务出现爆炸性增长。这种增长不仅体现在数据量的增加,也体现在业务种类和QOS需求的多样性变化。为了满足业务需求、提升网络容量,需要从传输技术和网络架构两个方面进行下一代无线网络设计。先进的物理层技术,如OFDM、MIMO,在增大频谱效率的同时,带来了更大的能量开销。未来网络站点密集化、异构化不仅增加站点数目、增加耗能,还提升网络干扰强度,降低了整网的能量效率。为了降低能量开销,减少碳排放,需要在保证业务需求的前提下对基站进行节能设计。
     本文先从业务QOS的表征参数出发,将时延作为最重要的QOS影响因素,并按照业务的时延要求,将业务分为严格时延约束和时延容忍两大类。针对这两类业务,分别从链路级角度设计时延保障的节能调度器,并考虑实际多小区系统,设计分层调度器,在保证时延要求的前提下最小化基站耗能,并协调相邻小区间休眠子帧,以降低网络间干扰。所有的这些研究都是基于实际的功耗模型进行的。由于基站功耗模型非连续,调度问题在多数场景下没有最优解。
     本文研究了严格时延约束业务的高能效调度策略。首先针对AWGN信道,研究如何在给定时间内传输不同时延要求的数据包使得系统所需的能量最小的问题,利用拟凸优化提出了低复杂度最优传输速率和休眠控制策略,在此基础上,提出因果系统的高能效传输调度器设计;进一步需要考虑衰落信道下存在信道估计耗能时的数据包级能效最优传输控制和调度策略,通过联合考虑信道的统计特性、导频耗能和数据包长度,提出包含剩余时间项、信道相关项和能量相关项的次优调度算法进行能效资源调度。
     本文针对时延容忍业务进行能效传输设计,提出两种休眠策略并利用排队论中带休假的M/G/1模型,计算出不同休眠控制策略下的能耗和业务平均时延的闭式表达,利用凸优化理论和拉格朗日乘子法对问题进行迭代求解,并提出给定拉格朗日乘子下的迭代凸搜索的最优功率分配和休眠控制算法;在多用户场景下,分析ARQ对时延影响,依据业务的统计特性建立优化问题,利用组合优化理论进行能效资源分配,在保证业务平均时延要求下最大化系统能效。
     本文最后研究实际多小区中满足用户QoS需求的子帧级协调休眠调度策略,提出两层调度器模型,利用线性控制理论设计上层调度器的等效滤波器,为每帧分配数据以保证QoS,底层进行高能效资源分配;先针对单用户,将活跃子帧连续化,利用拟凸优化证明问题存在最优解,通过迭代搜索求得最优功率和休眠子帧数目;然后考虑多用户系统,利用时间共享条件和拟凸优化可以获得休眠子帧数目,利用边缘自适应算法分配子信道、功率;最后对于多小区,依据单小区的资源分配结果确定各小区在每帧内所需传输数据量,依据上一时隙信道状态和干扰强度分布结果,动态协调休眠子帧,使得强干扰邻小区休眠子帧正交,进而提升网络能量效率。
With the development of mobile Internet, the traffic demands of wireless appli-cations increase explosively. At the same time, the kinds of service and QoS (Qual-ity of Service) requirements become diverse. To satisfy traffic demand and improve the capacity of network, the designment of next generation network should consider the transmission technology and network architecture. Advanced physical technolo-gies such as OFDM and MIMO result in more energy cost while improving the spectral efficiency(SE). Densification deployment requires more number of sites and makes the network interference limited and decrease the energy efficiency(EE). To reduce the en-ergy consumption and carbon emission, BSs need energy saving design.
     This thesis starts from the characterization parameters of QoS and finds that delay is the most important effect factor of QoS. We group the wireless applications into delay constraint traffic and delay tolerant traffic and design energy efficient schedular for these two kinds of traffic with delay providing from link level. In addition, we propose a two-level schedular with QoS guaranteeing and energy saving for the practical cellular networks. When the traffic load is low, BSs can coordinate the micro sleep subframes to minimize interference and improve EE. All these works consider practical power model. There are no optimal solutions for most of the cases because the power function is discontinuous.
     Firstly, we study the energy efficient scheduling policies for delay constraint ser-vice. We focus on how to minimize the total energy consumption when transmit the non-causal independent arriving and delay constraint packets. Using the quasiconvex optimization theory, we propose an optimal rate adaptive and sleep control algorithm with low complexity. Then, based on the results, we propose a heuristic online schedul-ing algorithm for the causal Poisson arriving process. In addition, we consider the scheduling policy for fading channel in which the transmitter should send pilot signal to estimate the channel state and this process is not only time consuming but also energy consuming. The original optimization problem is NP-Hard and we propose a subopti-mal scheduling algorithm consisting three parts:a time-dependent weighted sum of a delay associated term, an opportunistic term and a practical energy consumption related term.
     Then, we also study the energy efficient transmission scheme for delay tolerant traffic. For the single channel, we propose two sleep strategies and deduce the closed form of energy consumption with the M/G/1queueing theory. Then we propose an optimal iterative algorithm using biconvex optimization theory and Lagrangian method. For the multi channel multi user scenario, we deduce the average and variance of user's delay for the ARQ process. With the constraint of average delay, we propose a heuristic resource allocation algorithm based on the traffic statistical information and channel state information.
     In the end, we study the multi BSs cooperative subframe-level sleeping strategy with QoS guaranteeing for the practical cellular networks. We propose a two-level schedular model and use the linear control theory to design the upper level schedu-lar which segments the packets into multiple small ones and transmit each one over different frames. The lower level schedular is used for the energy efficient resource allocation. For the scenario with single BS and single user, we formulate the prob-lem as a mix integer programming problem to minimize the energy consumption while satisfying average data rate requirement. We relax the integer of sleep subframes to a continuous variable and use convex theory to demonstrate the existence of a unique globally optimal resource allocation solution and develop an iterative algorithm to ob-tain it. For the scenario with single BS and multiple users, we use the property of time sharing condition for multiple channel system to obtain the optimal sleep subframes for the BS. Then we allocate the power and subchannel for each user using the traditional Marginal Adaption problem. For the multiple BSs system, each BS allocates the re-source independently based on the channel state and interference level of the last frame. Then the BSs coordinate sleep subframes with each other as orthogonal as possible to reduce interference and improve the energy efficiency of network.
引文
[1]Ghosh A, Ratasuk R, Mondal B, et al. LTE-advanced:next-generation wireless broadband technology [Invited Paper]. Wireless Communications, IEEE,2010,17(3):10-22.
    [2]Yi L, Miao K, Liu A. A comparative study of WiMAX and LTE as the next generation mobile enterprise net-work. Proceedings of Advanced Communication Technology (ICACT),2011 13th International Conference on. IEEE,2011.654-658.
    [3]Chen L, Chen W, Zhang X, et al. Analysis and simulation for spectrum aggregation in LTE-Advanced system. Proceedings of Vehicular Technology Conference Fall (VTC 2009-Fall),2009 IEEE 70th. IEEE,2009.1-6.
    [4]Sesia S, Toufik I, Baker M. LTE:the UMTS long term evolution. Wiley Online Library,2009.
    [5]Rahmatallah Y, Mohan S. Peak-to-average power ratio reduction in OFDM systems:A survey and taxonomy. 2013..
    [6]Fettweis G, Zimmermann E. "ICT energy consumption-trends and challenges". Proceedings of Proceedings of the 11th International Symposium on Wireless Personal Multimedia Communications, volume 2,2008.6.
    [7]Han C, Harrold T, Armour S, et al. Green radio:radio techniques to enable energy-efficient wireless networks. Communications Magazine, IEEE,2011,49(6):46-54.
    [8]3GPP.3GPP TR 32.826, Telecommunication management; Study on Energy Savings Management (ESM), Mar,2010.
    [9]Peng C, Lee S B, Lu S, et al. Traffic-driven power saving in operational 3G cellular networks. Proceedings of Proceedings of the 17th annual international conference on Mobile computing and networking. ACM,2011. 121-132.
    [10]3GPP.3GPP, TR 23.107 V7.4.0, Quality of Service (QoS) Concept and Architecture, June,2009.
    [11]3GPP.3GPP, TR 23.105, Services and Service Capabilities.,2010.
    [12]3GPP Technical Specification 23.203. Policy and charging control architecture, http://www.3gpp.org.
    [13]Saul A, Auer G. Multiuser resource allocation maximizing the perceived quality. EURASIP Journal on Wireless Communications and Networking,2009,2009:6.
    [14]Choi L U, Ivrlac M T, Steinbach E, et al. Sequence-level models for distortion-rate behaviour of compressed video. Proceedings of Image Processing,2005. ICIP 2005. IEEE International Conference on, volume 2. IEEE,2005.Ⅱ-486.
    [15]Chia Y K, Sun S, Zhang R. Energy cooperation in cellular networks with renewable powered base stations. Proceedings of Wireless Communications and Networking Conference (WCNC),2013 IEEE. IEEE,2013. 2542-2547.
    [16]Marsan M A, Chiaraviglio L, Ciullo D, et al. Optimal energy savings in cellular access networks. Proceedings of Communications Workshops,2009. ICC Workshops 2009. IEEE International Conference on. IEEE,2009. 1-5.
    [17]Oh E, Son K, Krishnamachari B. Dynamic base station switching-on/off strategies for green cellular networks. 2013..
    [18]Yu W, Lui R. Dual methods for nonconvex spectrum optimization of multicarrier systems. Communications, IEEE Transactions on,2006,54(7):1310-1322.
    [19]Wong C Y, Cheng R S, Lataief K B, et al. Multiuser OFDM with adaptive subcarrier, bit, and power allocation. Selected Areas in Communications, IEEE Journal on,1999,17(10):1747-1758.
    [20]Holtkamp H, Auer G, Giannini V, et al. A Parameterized Base Station Power Model.2013..
    [21]Deruyck M, Joseph W, Martens L. Power consumption model for macrocell and microcell base stations. Transactions on Emerging Telecommunications Technologies,2012..
    [22]Auer G, Giannini V, Desset C, et al. How much energy is needed to run a wireless network? Wireless Communications, IEEE,2011,18(5):40-49.
    [23]Arnold O, Richter F, Fettweis G, et al. Power consumption modeling of different base station types in hetero-geneous cellular networks. Proceedings of Future Network and Mobile Summit,2010. IEEE,2010.1-8.
    [24]Joung J, Ho C, Sun S. Spectral efficiency and energy efficiency of OFDM systems:Impact of power amplifiers and countermeasures.2014..
    [25]Joung J, Ho C K, Sun S. Green wireless communications:A power amplifier perspective.2012..
    [26]Correia L M, Zeller D, Blume O, et al. Challenges and enabling technologies for energy aware mobile radio networks. Communications Magazine, IEEE,2010,48(11):66-72.
    [27]Kwon H, Birdsall T G. Channel capacity in bits per joule. Oceanic Engineering, IEEE Journal of,1986, 11(1):97-99.
    [28]CODING M. ENERGY LIMITED CHANNELS:CODING, MULTIACCESS, AND SPREAD SPEC-TRUM*.1987..
    [29]Verdu S. On channel capacity per unit cost. Information Theory, IEEE Transactions on,1990, 36(5):1019-1030.
    [30]Verdu S. Spectral efficiency in the wideband regime. Information Theory, IEEE Transactions on,2002, 48(6):1319-1343.
    [31]Rodoplu V, Meng T H. Bits-per-Joule capacity of energy-limited wireless networks. Wireless Communica-tions, IEEE Transactions on,2007,6(3):857-865.
    [32]Meshkati F, Poor H V, Schwartz S C, et al. An energy-efficient approach to power control and receiver design in wireless data networks. Communications, IEEE Transactions on,2005,53(11):1885-1894.
    [33]Goodman D, Mandayam N. Power control for wireless data. Personal Communications, IEEE,2000, 7(2):48-54.
    [34]Saraydar C U, Mandayam N B, Goodman D. Efficient power control via pricing in wireless data networks. Communications, IEEE Transactions on,2002,50(2):291-303.
    [35]Meshkati F, Poor H V, Schwartz S C, et al. Energy-efficient resource allocation in wireless networks with quality-of-service constraints. Communications, IEEE Transactions on,2009,57(11):3406-3414.
    [36]Miao G, Himayat N, Li Y G, et al. Cross-layer optimization for energy-efficient wireless communications:a survey. Wireless Communications and Mobile Computing,2009,9(4):529-542.
    [37]Chen T, Kim H, Yang Y. Energy efficiency metrics for green wireless communications. Proceedings of Wireless Communications and Signal Processing (WCSP),2010 International Conference on. IEEE,2010. 1-6.
    [38]European Telecommunications Standards Institute. Environmental Engineering (EE) Energy Efficiency of Wireless Access Network Equipment,ETSI TS 102 706,v1.1.1, Aug,2009.
    [39]Richter F, Fehske A J, Fettweis G P. Energy efficiency aspects of base station deployment strategies for cellular networks. Proceedings of Vehicular Technology Conference Fall (VTC 2009-Fall),2009 IEEE 70th. IEEE, 2009.1-5.
    [40]Chen Y, Zhang S, Xu S, et al. Fundamental trade-offs on green wireless networks. Communications Magazine, IEEE,2011,49(6):30-37.
    [41]Mogensen P, Na W, Kovacs IZ, et al. LTE capacity compared to the shannon bound. Proceedings of Vehicular Technology Conference,2007. VTC2007-Spring. IEEE 65th. IEEE,2007.1234-1238.
    [42]Goldsmith A J, Chua S G. Variable-rate variable-power MQAM for fading channels. Communications, IEEE Transactions on,1997,45(10):1218-1230.
    [43]Grace D, Chen J, Jiang T, et al. Using cognitive radio to deliver'Green'communications. Proceedings of Cognitive Radio Oriented Wireless Networks and Communications,2009. CROWNCOM'09.4th Interna-tional Conference on. IEEE,2009.1-6.
    [44]Claussen H, Ho L T, Pivit F. Effects of joint macrocell and residential picocell deployment on the network energy efficiency. Proceedings of Personal, Indoor and Mobile Radio Communications,2008. PIMRC 2008. IEEE 19th International Symposium on. IEEE,2008.1-6.
    [45]Fehske A J, Richter F, Fettweis G P. Energy efficiency improvements through micro sites in cellular mobile radio networks. Proceedings of GLOBECOM Workshops,2009 IEEE. IEEE,2009.1-5.
    [46]Richter F, Fehske A J, Marsch P, et al. Traffic demand and energy efficiency in heterogeneous cellular mobile radio networks. Proceedings of Vehicular Technology Conference (VTC 2010-Spring),2010 IEEE 71st. IEEE, 2010.1-6.
    [47]Richter F, Fettweis G. Cellular mobile network densification utilizing micro base stations. Proceedings of Communications (ICC),2010 IEEE International Conference on. IEEE,2010.1-6.
    [48]Ren H, Zhao M, Zhou W, et al. Energy-Efficient Cellular Network Design Based on User's Mobility and Service Characteristics. Proceedings of Vehicular Technology Conference (VTC Spring),2012 IEEE 75th. IEEE,2012.1-5.
    [49]Zhang L, Yang H C, Hasna M O. Generalized area spectral efficiency:An effective performance metric for green wireless communications. Proceedings of Communications (ICC),2013 IEEE International Conference on. IEEE,2013.5376-5380.
    [50]Chen Y, Zhang S, Xu S. Characterizing energy efficiency and deployment efficiency relations for green architecture design. Proceedings of Communications Workshops (ICC),2010 IEEE International Conference on. IEEE,2010.1-5.
    [51]Mobile C. C-RAN:the road towards green RAN. White Paper, ver,2011,2.
    [52]Gambini J, Spagnolini U. Wireless over cable for energy-efficient femtocell systems. Proceedings of GLOBE-COM Workshops (GC Wkshps),2010 IEEE. IEEE,2010.1464-1468.
    [53]Huq K M S, Mumtaz S, Saghezchi F B, et al. Energy efficiency of downlink packet scheduling in CoMP. Transactions on Emerging Telecommunications Technologies,2013..
    [54]Deng N, Zhao M, Zhou W, et al. Lowering Area Power Consumption via Coded Cooperation Assisted by Layered Relays. Proceedings of Vehicular Technology Conference (VTC Spring),2012 IEEE 75th. IEEE, 2012.1-5.
    [55]Radwan A, Hassanein H S. NxgO4-3:Does multi-hop communication extend the battery life of mobile termi-nals? Proceedings of Global Telecommunications Conference,2006. GLOBECOM'06. IEEE. IEEE,2006. 1-5.
    [56]Niu Z, Wu Y, Gong J, et al. Cell zooming for cost-efficient green cellular networks. Communications Maga-zine, IEEE,2010,48(11):74-79.
    [57]Chen T, Yang Y, Zhang H, et al. Network energy saving technologies for green wireless access networks. Wireless Communications, IEEE,2011,18(5):30-38.
    [58]Samdanis K, Taleb T, Kutscher D, et al. Self organized network management functions for energy efficient cellular urban infrastructures. Mobile Networks and Applications,2012,17(1):119-131.
    [59]Zhou S, Gong J, Yang Z, et al. Green mobile access network with dynamic base station energy saving. Pro-ceedings of ACM MobiCom, volume 9,2009.10-12.
    [60]Oh E, Krishnamachari B. Energy savings through dynamic base station switching in cellular wireless access networks. Proceedings of Global Telecommunications Conference (GLOBECOM 2010),2010 IEEE. IEEE, 2010.1-5.
    [61]Weng X, Cao D, Niu Z. Energy-efficient cellular network planning under insufficient cell zooming. Proceed-ings of Vehicular Technology Conference (VTC Spring),2011 IEEE 73rd. IEEE,2011.1-5.
    [62]Kim H, De Veciana G, Yang X, et al. Distributed-optimal user association and cell load balancing in wireless networks. Networking, IEEE/ACM Transactions on,2012,20(1):177-190.
    [63]Son K, Kim H, Yi Y, et al. Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks. Selected Areas in Communications, IEEE Journal on,2011,29(8):1525-1536.
    [64]Conte A, Feki A, Chiaraviglio L, et al. Cell wilting and blossoming for energy efficiency. Wireless Commu-nications, IEEE,2011,18(5):50-57.
    [65]Kim H, De Veciana G, Leveraging dynamic spare capacity in wireless systems to conserve mobile terminals' energy. IEEE/ACM Transactions on Networking (TON),2010,18(3):802-815.
    [66]Isheden C, Chong Z, Jorswieck E, et al. Framework for link-level energy efficiency optimization with informed transmitter. Wireless Communications, IEEE Transactions on,2012, 11(8):2946-2957.
    [67]Holtkamp H, Auer G, Haas H. On minimizing base station power consumption. Proceedings of Vehicular Technology Conference (VTC Fall),2011 IEEE. IEEE,2011.1-5.
    [68]Frenger P, Moberg P, Malmodin J, et al. Reducing energy consumption in LTE with cell DTX. Proceedings of Vehicular Technology Conference (VTC Spring),2011 IEEE 73rd. IEEE,2011.1-5.
    [69]Xu J, Qiu L, Yu C. Improving energy efficiency through multimode transmission in the downlink MIMO systems. EURASIP Journal on Wireless Communications and Networking,2011,2011(1):1-12.
    [70]Marsan M A, Chiaraviglio L, Ciullo D, et al. Switch-off transients in cellular access networks with sleep modes. Proceedings of Communications Workshops (ICC),2011 IEEE International Conference on. IEEE, 2011.1-6.
    [71]Rao J, Fapojuwo A. A Survey of Energy Efficient Resource Management Techniques for Multicell Cellular Networks..
    [72]P Grant M C P. Green radio-the case for more efficient cellular basestations. Proceedings of presented at the Globecom'10.
    [73]EARTH, "Energy aware radio and network technologies project,".
    [74]OPERA-Net, "Optimising power efficiency in mobile radio networks project,".
    [75]Wireless@KTH, "ewin:Energy-efficient wireless networking,".
    [76]Uysal-Biyikoglu E, Prabhakar B, El Gamal A. Energy-efficient packet transmission over a wireless link. IEEE/ACM Transactions on Networking (TON),2002,10(4):487-499.
    [77]Chen W, Neely M J, Mitra U. Energy-efficient transmissions with individual packet delay constraints. Infor-mation Theory, IEEE Transactions on,2008,54(5):2090-2109.
    [78]Zhong X, Xu C Z. Online energy efficient packet scheduling with delay constraints in wireless networks. Proceedings of INFOCOM 2008. The 27th Conference on Computer Communications. IEEE. IEEE,2008.
    [79]Zafer M A, Modiano E. A calculus approach to energy-efficient data transmission with quality-of-service constraints. IEEE/ACM Transactions on Networking (TON),2009,17(3):898-911.
    [80]Lee J, Jindal N. Energy-efficient scheduling of delay constrained traffic over fading channels. Wireless Communications, IEEE Transactions on,2009,8(4):1866-1875.
    [81]Zhao X, Wang J B, Feng M, et al. Energy-efficient scheduling over fading channels with transmission modulation and deadline constraints. AEU-International Journal of Electronics and Communications,2012, 66(6):491-494.
    [82]Boyd S P, Vandenberghe L. "Convex optimization". Cambridge university press,2004.
    [83]Wolfstetter E. "Topics in microeconomics:Industrial organization, auctions, and incentives". Cambridge University Press,1999.
    [84]Peitgen H 0, Saupe D, Haeseler F v. Cay ley's problem and Julia sets. The Mathematical Intelligencer,1984, 6(2):11-20.
    [85]Wu J, Wu Y, Zhou S, et al. Traffic-aware power adaptation and base station sleep control for energy-delay tradeoffs in green cellular networks. Proceedings of Global Communications Conference (GLOBECOM), 2012 IEEE. IEEE,2012.3171-3176.
    [86]Gong J, Zhou S, Niu Z. "Queuing on energy-efficient wireless transmissions with adaptive modulation and coding". Proceedings of Communications (ICC),2011 IEEE International Conference on. IEEE,2011.1-5.
    [87]Park Y, Hwang G, Sung D K. Power saving scheme based on joint control of buffer-threshold and timer in binary exponential sleep mode. IET communications,2012,6(11):1349-1355.
    [88]Xiong C, Li G Y, Zhang S, et al. Energy-efficient resource allocation in OFDMA networks. Communications, IEEE Transactions on,2012,60(12):3767-3778.
    [89]Xu Z, Yang C, Li G Y, et al. Energy-efficient configuration of spatial and frequency resources in MIMO-OFDMA systems. Communications, IEEE Transactions on,2013,61(2):564-575.
    [90]Lee T H. "The design of CMOS radio-frequency integrated circuits". Cambridge university press,2004.
    [91]Cui S, Goldsmith A J, Bahai A. "Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks". Selected Areas in Communications, IEEE Journal on,2004,22(6):1089-1098.
    [92]Cui S, Goldsmith A J, Bahai A. "Energy-constrained modulation optimization". Wireless Communications, IEEE Transactions on,2005,4(5):2349-2360.
    [93]Gorski J, Pfeuffer F, Klamroth K. "Biconvex sets and optimization with biconvex functions:a survey and extensions". Mathematical Methods of Operations Research,2007,66(3):373-407.
    [94]Ericsson. Radio characteristics of the ITU test environments and deployment scenarios.
    [95]Hui DSW, Lau V K, Lam W H. Cross-layer design for OFDMA wireless systems with heterogeneous delay requirements. Wireless Communications, IEEE Transactions on,2007,6(8):2872-2880.
    [96]Wang R, Thompson J, Haas H, et al. Sleep mode design for green base stations. Communications, IET,2011, 5(18):2606-2616.
    [97]Miao G, Himayat N, Li G Y. Energy-efficient link adaptation in frequency-selective channels. Communica-tions, IEEE Transactions on,2010,58(2):545-554.
    [98]Holma H, Toskala A. LTE for UMTS-OFDMA and SC-FDMA based radio access. John Wiley & Sons,2009.
    [99]Papadimitriou C H, Steiglitz K. Combinatorial optimization:algorithms and complexity. Courier Dover Publications,1998.
    [100]Kivanc D, Li G, Liu H. Computationally efficient bandwidth allocation and power control for OFDMA. Wireless Communications, IEEE Transactions on,2003,2(6):1150-1158.
    [101]Assaad M. Reduction of the feedback delay impact on the performance of Scheduling in OFDMA systems. Proceedings of Vehicular Technology Conference Fall (VTC 2009-Fall),2009 IEEE 70th. IEEE,2009.1-4.
    [102]Association G, et al. Community Power-Using Mobile to Extend the Grid,2010.
    [103]Sahni S, Gonzalez T. P-complete approximation problems. Journal of the ACM (JACM),1976, 23(3):555-565.
    [104]Korte B, Vygen J, Korte B, et al. Combinatorial optimization, volume 1. Springer,2002.
    [105]Tsai S, Soong A. Effective-SNR mapping for modeling frame error rates in multiple-state channels.3GPP Standardization Document.3GPP2,2003, (3GPP-C30):20030429-010.
    [106]Alouini M S, Goldsmith A J. Area spectral efficiency of cellular mobile radio systems. Vehicular Technology, IEEE Transactions on,1999,48(4):1047-1066.
    [107]Hanly S, Mathar R. On the optimal base-station density for CDMA cellular networks. Communications, IEEE Transactions on,2002,50(8):1274-1281.
    [108]Badic B, O'Farrrell T, Loskot P, et al. Energy efficient radio access architectures for green radio:large versus small cell size deployment. Proceedings of Vehicular Technology Conference Fall (VTC 2009-Fall),2009 IEEE 70th. IEEE,2009.1-5.
    [109]Cao F, Fan Z. The tradeoff between energy efficiency and system performance of femtocell deployment. Proceedings of Wireless Communication Systems (ISWCS),20107th International Symposium on. IEEE, 2010.315-319.
    [110]Hou Y, Laurenson D I. Energy efficiency of high QoS heterogeneous wireless communication network. Pro-ceedings of Vehicular Technology Conference Fall (VTC 2010-Fall),2010 IEEE 72nd. IEEE,2010.1-5.
    [111]Jada M, Hossain M, Hamalainen J, et al. Impact of Femtocells to the WCDMA network energy efficiency. Proceedings of Broadband Network and Multimedia Technology (IC-BNMT),2010 3rd IEEE International Conference on. IEEE,2010.305-310.
    [112]Ashraf I, Ho L T, Claussen H. Improving energy efficiency of femtocell base stations via user activity detection. Proceedings of Wireless Communications and Networking Conference (WCNC),2010 IEEE. IEEE,2010. 1-5.
    [113]Zhang C, Zhang T, Zeng Z, et al. Optimal locations of remote radio units in comp systems for energy efficiency. Proceedings of Vehicular Technology Conference Fall (VTC 2010-Fall),2010 IEEE 72nd. IEEE,2010.1-5.
    [114]Bae C, Stark W E. End-to-end energy-bandwidth tradeoff in multihop wireless networks. Information Theory, IEEE Transactions on,2009,55(9):4051-4066.
    [115]Debaillie B, Giry A, Gonzalez M J, et al. Opportunities for energy savings in pico/femto-cell base-stations. Proceedings of Future Network & Mobile Summit (FutureNetw),2011. IEEE,2011.1-8.
    [116]"Radio characteristics of the ITU test environments and deployment scenarios". http.//www.3gpp.org/ftp/ tsg_ran/NNG1_RL1/TSGR1_56b/Docs/R1-091320.zip. Accessed:2010-09-30.
    [117]Chen Q, Gursoy M C. Energy-efficient modulation design for reliable communication in wireless networks. Proceedings of Information Sciences and Systems,2009. CISS 2009.43rd Annual Conference on. IEEE,2009. 811-816.
    [118]Zhou Z, Zhou S, Cui J H, et al. Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks. Wireless Communications, IEEE Transactions on,2008, 7(8):3066-3078.
    [119]Bertsekas D P, Gallager R G, Humblet P. "Data networks", volume 2. Prentice-Hall International,1992.
    [120]Francis J, Mehta N. EESM-Based Link Adaptation in Point-to-Point and Multi-Cell OFDM Systems:Mod-eling and Analysis. Wireless Communications, IEEE Transactions on,2014,13(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700