分布式冷热电联供系统全工况特性与主动调控机理及方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式燃气轮机冷热电联供系统是以能的综合梯级利用和冷热电联供为特色的分布式能源,具有良好的节能特性、可靠性、经济性以及环保特性,受到世界各国广泛关注。由于直接面向用户,它总是处于变工况状态,运行节能特性与设计情况相悖问题成为发展应用的瓶颈。本学位论文依托国家重点基础研究发展计划(973计划)和国家自然科学基金等重要项目,以典型分布式燃气轮机冷热电联供系统为研究对象,从用户负荷变化和系统全工况特性关联层面探讨系统内部能量转换与梯级利用机理,深入系统地研究联供系统的全工况特性和相应主动控制方法,旨在为破解发展难题提供一类思路、途径与方法。
     本文主要研究内容和成果如下:
     (1)分布式联供系统全工况模拟。概述了分布式冷热电联供系统全工况特性模拟核心问题,阐述分布式联供系统全工况概念,提出相应的模拟方法和评价准则。构建了基于模块全工况特性的分布式联供系统模拟程序,包括率先构建高精度通用性的全径流微小型燃气轮机全工况模型,还包括建筑用户全年逐小时冷热电负荷模块、烟气型双效溴化锂吸收式制冷机、烟气热水换热器以及追踪冷热电负荷控制模块等全工况模型。全工况模拟软件不仅考虑用户负荷变化对系统性能的影响,也考虑单元模块变工况特性对系统性能的影响,为研究分布式冷热电联供系统全工况性能和主动调控方法奠定了基础。
     (2)分布式联供系统全工况特性。研究了典型分布式燃气轮机冷热电联供系统的全工况特性与变工况运行性能下降机理。分析了用户日负荷变工况、全年制冷期逐小时运行特性和典型分布式燃气轮机冷热电联供系统配置及全工况特性规律。探索了冷热电联供系统性能的变化规律和与组成模块之间的关联关系,以及系统输出与用户负荷之间的匹配变化规律,凝练了冷热电联供系统高效变工况运行的调控要求。运用(?)与能量品位分析法剖析燃气轮机联供系统全工况能量平衡与能量品位的变化以及(?)损失特性规律,探讨造成冷热电系统变工况运行性能下降的本质原因和提升的潜力,从科学用能高度揭示分布式联供系统全工况能量转换与梯级利用机制。
     (3)分布式联供系统主动调控方法与运行优化。全面论述燃气轮机联供系统主动调控概念、机制与方法。针对传统调控方式下变工况运行时燃气轮机透平入口温度下降而导致联供系统性能大幅度恶化的问题,提出组合式主动调控思路与方法。尝试两种改善系统变工况性能的主动调控新思路:一是压气机入口空气调控,另是燃气轮机排气回注调控。通过全工况模拟,探讨了主动调控方法对分布式联供系统能量转换过程的影响和对联供系统变工况特性强化机理。理论研究表明,与传统调控方法相比,主动调控方法能显著改善冷热电联供系统变工况运行的节能性能,其中压气机入口空气调控将平均系统相对节能率由9.63%提高到17.75%。
     (4)典型分布式联供系统概念性设计研究。基于全工况特性概念和主动调控方法,研究提出两类新型燃气轮机冷热电联供系统,分析探讨了联供系统中动力循环与吸收式制冷循环之间的能量品位匹配问题,开展典型联供系统概念性设计。第一类新型系统为应用正逆耦合循环概念的分布式冷热电联供系统;第二类新型系统为太阳能化石能源互补的分布式冷热电联供系统。对两类新型系统进行联供系统流程设计和系统模拟以及联供系统节能机理分析等,研究表明,在分布式冷热电联供系统中应用正拟耦合循环概念,可以提升联供系统热力性能,相对节能率从23.1%提高到30.89%;应用太阳能化石能源品位互补机理,新型系统不仅提高了燃气轮机烟气余热的梯级利用程度,而且降低了太阳能系统的运行温度。
Combined Cooling, Heating and Power (CCHP) system based on small-scale gas turbine is featured by the cascade utilization of energy and the simultaneous generation of cooling, heating and power. It has attracted worldwide growing attention due to its characteristics of energy saving, reliability and environmental protection. CCHP system operates in off-design conditions in most cases, which goes against its energy saving features. Therefore, this dissertation made a deep investigation of the gas turbine CCHP system in the view of the connection between the typical users'load variation and the system performance, with the purpose of providing some useful methods to this problem. In this dissertation, the system energy conversion and cascade utilization mechanism of energy were discussed, and the system all-operation region performance features and the corresponding active control methods were investigated.
     This study mainly includes the following contents:
     (1) Model of the CCHP system in all-operation region was developed. The key problems of the CCHP system running in all-operation region were summarized, and the simulation method and evaluation criteria were proposed. The performance simulation model for the gas turbine CCHP system under all-operation region was developed, which includes small-scale gas turbine, flue gas-double effect Lithium Bromide (LiBr) absorption chiller, domestic hot water exchanger and the control module tracing the user's load. The effects of the fluctuation of the user's load and the off-design performance of the equipment unit on the system performance were taken into consideration in this model. This model laid a solid foundation for the research of the all-operation region performance of the CCHP system and the corresponding active control methods.
     (2) The all-operation region performance and the performance deterioration mechanism of the CCHP system were investigated. This study was carried out by considering an hour-by-hour CCHP simulation for a typical day and a whole cooling period. In addition, the off-design performance of the CCHP system itself was simulated and analyzed. The requirements for a high performance control method of the CCHP system under off-design condition were obtained from the all-operation region simulation results, the effect of the off-design characteristics of equipment on each other, the relationships between the CCHP output and the user's load. The mechanism of the performance deterioration of the CCHP system was explored through the exergy analysis and energy level analysis of the main equipment of the CCHP system under off-design condition. The main factors leading to the CCHP system performance deterioration were revealed and the potential for improving the system performance were illustrated.
     (3) The active control methods and the optimizing operation modes were proposed. The mechanism and method of the active control of the gas turbine CCHP system were illustrated comprehensively. On the basis of the analysis of the decrease of the turbine inlet temperature in the conventional control method, two types of active control methods were proposed to enhancing the system performance. The first is the control of the compressor inlet air pressure, and the second is the recirculation of the turbine exhaust gas. The effects of these active control methods on the energy conversion processes and the mechanism of the CCHP system under off-design condition were investigated through the all-operation region simulation. The results demonstrated that both the two active control methods can enhance the off-design performance of the CCHP system effectively. The average PES is enhanced from9.63%to17.75%by active control method of the control of the compressor inlet air pressure.
     (4) The concept design research of novel CCHP system was carried out. Based on the all-operation region performance characteristic and the active control methods, two types of new gas turbine CCHP systems were proposed to utilize the energy level between the Bryaton cycle and the absorption cycle. The first type system integrated with Ammonia Water Rankine Cycle (AMRC), and the second type system integrated with direct steam generating system (DSG). The thermodynamic analysis and the effects of the key parameters on the system performance are carried out. Performance analysis results show that the PES of the fist type system is improved from23.1%to30.89%. The energy level analysis results show that the cascade utilization of the energy in the two novel CCHP systems are both improved.
引文
[1]BP. BP Statistical Review of World Energ [M].2012.
    [2]IEA. World Energy Outlook Special Report [M/OL]. Redrawing_Energy_Climate_Map, 2013 [http://www.iea.org/media/freepublications/2013pubs/WEO2013_Climate_Excerpt_ES_WEB.pdf.
    [3]中华人民共和国国家统计局.中国统计年鉴[M].中国统计出版社,2013.
    [4]蔡伟光.中国建筑能耗影响因素分析模型与实证研究[D];重庆大学,2011.
    [5]SBCI U. Buildings and Climate Change:a Summary for Decision-Makers-2009 [M]. Paris, France,2009.
    [6]DOE U. Buildings energy data book [J]. Energy Efficiency & Renewable Energy Department,2011,
    [7]中华人民共和国国务院.国家新型城镇化规划(2014—2020年)[M].北京;人民出版社.2013.
    [8]中国电力企业联合会http://www.cec.org.cn/guihuayutongji/tongjxinxi/[M].2014.
    [9]徐建中.分布式供电和冷热电联产的前景[J].节能与环保,2002,(03):10-14.
    [10]国务院.能源发展“十二五”规划[M].2013.
    [11]林汝谋,金红光,蔡睿贤.新一代能源动力系统的研究方向与进展[J].动力工程,2003,23(3):2370-2376.
    [12]徐建中.科学用能是我国能源战略的核心[J].中国石油企业,2007,(09):18-19.
    [13]隋军,金红光,林汝谋,等.分布式供能及其系统集成[J].科技导报,2007,25(24):58-62.
    [14]徐建中.科学用能与分布式能源系统[J].中国能源,2005,27(08):10-13.
    [15]金红光,郑丹星,徐建中.分布式冷热电联产系统装置及应用[M].中国电力出版社,2010.
    [16]Zeng Z, Zhao R, Yang H, et al. Policies and demonstrations of micro-grids in China:A review [J]. Renewable and Sustainable Energy Reviews,2014,29:701-718.
    [17]Chen Q, Wang W, Lu J, et al. An overview of the political, technical and economical aspects of gas-fired distributed energy system in China [J]. Applied Thermal Engineering, 2013,52(2):531-537.
    [18]金红光,林汝谋.能的综合梯级利用与燃气轮机总能系统[M].科学出版社,2008.
    [19]郑剑娇.分布式供能中的吸收式制冷机变工况研究[D];中国科学院研究生院(工程热物理研究所),2012.
    [20]Jradi M, Riffat S. Tri-generation systems:Energy policies, prime movers, cooling technologies, configurations and operation strategies [J]. Renewable and Sustainable Energy Reviews,2014,32(396-415.
    [21]朱成章.美国冷热电联产纲领及启示[J].中国电力,2000,33(9):91-94.
    [22]吴大为.分布式冷热电联产系统的多目标热力学优化理论与应用研究[D],2008.
    [23]Conti J, Holtberg P, Beamon J, et al. Annual Energy Outlook 2011 [J]. US Energy information Administration, Washington, DC,2011,
    [24]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006—2020年)[M].2006.
    [25]中华人民共和国国务院.中国的能源政策(2012)[M].北京.2012.
    [26]Al-Sulaiman F A, Hamdullahpur F, Dincer I. Trigeneration:A comprehensive review based on prime movers [J]. Int J Energ Res,2011,35(3):233-258.
    [27]Chicco G, Mancarefla P. Distributed multi-generation:A comprehensive view [J]. Renew Sust Energ Rev,2009,13(3):535-551.
    [28]Wu D W, Wang R Z. Combined cooling, heating and power:A review [J]. Prog Energy Combust Sci,2006,32(5-6):459-495.
    [29]Deng J, Wang R Z, Han G Y. A review of thermally activated cooling technologies for combined cooling, heating and power systems [J]. Prog Energy Combust Sci,2011,37(2): 172-203.
    [30]Cardona E, Piacentino A. A methodology for sizing a trigeneration plant in mediterranean areas [J]. Applied Thermal Engineering,2003,23(13):1665-1680.
    [31]Martinez-Lera S, Ballester J. A novel method for the design of CHCP (combined heat, cooling and power) systems for buildings [J]. Energy,2010,35(7):2972-2984.
    [32]Ortiga J, Bruno J C, Coronas A. Selection of typical days for the characterisation of energy demand in cogeneration and trigeneration optimisation models for buildings [J]. Energy Conversion and Management,2011,52(4):1934-1942.
    [33]Cardona E, Piacentino A. A new approach to exergoeconomic analysis and design of variable demand energy systems [J]. Energy,2006,31(4):490-515.
    [34]Cardona E, Piacentino A. Optimal design of CHCP plants in the civil sector by thermoeconomics [J]. Applied Energy,2007,84(7-8):729-748.
    [35]Piacentino A, Cardona F. On thermoeconomics of energy systems at variable load conditions:Integrated optimization of plant design and operation [J]. Energy Conversion and Management,2007,48(8):2341-2355.
    [36]Rong A Y, Lahdelma R. An efficient linear programming model and optimization algorithm for trigeneration [J]. Applied Energy,2005,82(1):40-63.
    [37]Rong A Y, Lahdelma R, Luh P B. Lagrangian relaxation based algorithm for trigeneration planning with storages [J]. European Journal of Operational Research,2008,188(1): 240-257.
    [38]Arcuri P, Florio G, Firagiacomo P. A mixed integer programming model for optimal design of trigeneration in a hospital complex [J]. Energy,2007,32(8):1430-1447.
    [39]Mehleri E D, Sarimveis H, Markatos N C, et al. A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level [J]. Energy, 2012,
    [40]Beihong Z, Weiding L. An optimal sizing method for cogeneration plants [J]. Energy and Buildings,2006,38(3):189-195.
    [41]Wang J J, Jing Y Y, Zhang C F. Optimization of capacity and operation for CCHP system by genetic algorithm [J]. Applied Energy,2010,87(4):1325-1335.
    [42]Wang J J, Zhai Z Q, Jing Y Y, et al. Optimization design of BCHP system to maximize to save energy and reduce environmental impact [J]. Energy,2010,35(8):3388-3398.
    [43]Rezvan A T, Gharneh N S, Gharehpetian G B. Optimization of distributed generation capacities in buildings under uncertainty in load demand [J]. Energy and Buildings,2013, 57(0):58-64.
    [44]Fumo N, Mago P J, Jacobs K. Design considerations for combined cooling, heating, and power systems at altitude [J]. Energy Conversion and Management,2011,52(2): 1459-1469.
    [45]Carvalho M, Serra L M, Lozano M A. Geographic evaluation of trigeneration systems in the tertiary sector. Effect of climatic and electricity supply conditions [J]. Energy,2011, 36(4):1931-1939.
    [46]Wang J J, Zhang C F, Jing Y Y. Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China [J]. Applied Energy,2010,87(4): 1247-1259.
    [47]Wang J J, Zhai Z Q, Jing Y Y, et al. Influence analysis of building types and climate zones on energetic, economic and environmental performances of BCHP systems [J]. Applied Energy,2011,88(9):3097-3112.
    [48]Meybodi M A, Behnia M. Impact of carbon tax on internal combustion engine size selection in a medium scale CHP system [J]. Applied Energy,2011,88(12):5153-5163.
    [49]Carvalho M, Serra L M, Lozano M A. Optimal synthesis of trigeneration systems subject to environmental constraints [J]. Energy,2011,36(6):3779-3790.
    [50]Piacentino A, Cardona F. An original multi-objective criterion for the design of small-scale polygeneration systems based on realistic operating conditions [J]. Applied Thermal Engineering,2008,28(17-18):2391-2404.
    [51]Wang J J, Jing Y Y, Zhang C F, et al. A fuzzy multi-criteria decision-making model for trigeneration system [J]. Energy Policy,2008,36(10):3823-3832.
    [52]Nieto-Morote A, Ruz-Vila F. A FUZZY AHP MULTI-CRITERIA DECISION-MAKING APPROACH APPLIED TO COMBINED COOLING, HEATING, AND POWER PRODUCTION SYSTEMS [J]. International Journal of Information Technology & Decision Making,2011,10(3):497-517.
    [53]Abdollahi G, Meratizaman M. Multi-objective approach in thermoenvironomic optimization of a small-scale distributed CCHP system with risk analysis [J]. Energy and Buildings,2011,43(11):3144-3153.
    [54]Zhou Z, Liu P, Li Z, et al. An engineering approach to the optimal design of distributed energy systems in China [J]. Applied Thermal Engineering,2012,
    [55]Morvay Z, Gvozdenac D. Applied industrial energy and environmental management [M]. John Wiley & Sons,2008.
    [56]冯志兵.燃气轮机冷热电联产系统集成理论与特性规律[D];中国科学院工程热物理研究所,2006.
    [57]Li H, Fu L, Geng K C, et al. Energy utilization evaluation of CCHP systems [J]. Energy and Buildings,2006,38(3):253-257.
    [58]Chicco G, Mancarella P. Trigeneration primary energy saving evaluation for energy planning and policy development [J]. Energy Policy,2007,35(12):6132-6144.
    [59]Chicco G, Mancarella P. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I:Models and indicators [J]. Energy,2008,33(3): 410-417.
    [60]Mancarella P, Chicco G. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II:Analysis techniques and application cases [J]. Energy, 2008,33(3):418-430.
    [61]Mancarella P, Chicco G. Global and local emission impact assessment of distributed cogeneration systems with partial-load models [J]. Applied Energy,2009,86(10): 2096-2106.
    [62]王江江.楼宇级冷热电联供系统优化及多属性综合评价方法研究[D];华北电力大学,2012.
    [63]Mago P J, Fumo N, Chamra L M. Performance analysis of CCHP and CHP systems operating following the thermal and electric load [J]. Int J Energ Res,2009,33(9): 852-864.
    [64]Wang J J, Jing Y Y, Zhang C F, et al. Performance comparison of combined cooling heating and power system in different operation modes [J]. Applied Energy,2011,88(12): 4621-4631.
    [65]Mago P J, Chamra L M. Analysis and optimization of CCHP systems based on energy, economical, and environmental considerations [J]. Energy and Buildings,2009,41(10): 1099-1106.
    [66]Fumo N, Mago P J, Smith A D. Analysis of combined cooling, heating, and power systems operating following the electric load and following the thermal load strategies with no electricity export [J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,2011,225(A8):1016-1025.
    [67]Harrod J, Mago P J. Performance analysis of a combined cooling, heating, and power system driven by a waste biomass fired Stirling engine [J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2011, 225(C2):420-428.
    [68]李政义.动态负荷下天然气冷热电联供系统运行优化[D];大连理工大学,2011.
    [69]Cho H J, Mago P J, Luck R, et al. Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme [J]. Applied Energy,2009,86(12):2540-2549.
    [70]Mago P J, Hueffed A K. Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies [J]. Energy and Buildings,2010,42(10): 1628-1636.
    [71]Espirito Santo D B. Energy and exergy efficiency of a building internal combustion engine trigeneration system under two different operational strategies [J]. Energy and Buildings,2012,53(0):28-38.
    [72]Fang F, Wei L, Liu J, et al. Complementary configuration and operation of a CCHP-ORC system [J]. Energy,2012,46(1):211-220.
    [73]Mago P J, Hueffed A, Chamra L M. Analysis and optimization of the use of CHP-ORC systems for small commercial buildings [J]. Energy and Buildings,2010,42(9): 1491-1498.
    [74]Wang J J, Zhai Z Q, Jing Y Y, et al. Sensitivity analysis of optimal model on building cooling heating and power system [J]. Applied Energy,2011,88(12):5143-5152.
    [75]Smith A, Luck R, Mago P J. Analysis of a combined cooling, heating, and power system model under different operating strategies with input and model data uncertainty [J]. Energy and Buildings,2010,42(11):2231-2240.
    [76]Gupta K K, Rehman A, Sarviya R M. Bio-fuels for the gas turbine:A review [J]. Renewable and Sustainable Energy Reviews,2010,14(9):2946-2955.
    [77]Pilavachi P A. Mini-and micro-gas turbines for combined heat and power [J]. Applied Thermal Engineering,2002,22(18):2003-2014.
    [78]李孝堂,侯凌云,杨敏,等.现代燃气轮机技术[M].航空工业出版社,2006.
    [79]Poullikkas A. An overview of current and future sustainable gas turbine technologies [J]. Renew Sust Energ Rev,2005,9(5):409-443.
    [80]Walsh P P, Fletcher P. Gas turbine performance [M]. John Wiley & Sons,2004.
    [81]杜建一,王云,徐建中.分布式能源系统与微型燃气轮机的发展与应用[J].工程热物理学报,2004,25(05):786-788.
    [82]沈岑.适用于分布式能源系统的小型燃气轮机通用模型研究[D];浙江工业大学,2012.
    [83]朱丹书,蒋文静.小型燃气轮机的发展前景[J].上海汽轮机,2000,(04):51-56.
    [84]曾飞.燃气轮机冷热电联产系统多目标优化配置与运行策略研究[D];华南理工大学,2013.
    [85]闫晓娟.燃气轮机冷热电联供系统性能及运行优化研究[D];东华大学,2012.
    [86]Bassols J, Kuckelkorn B, Langreck J, et al. Trigeneration in the food industry [J]. Applied Thermal Engineering,2002,22(6):595-602.
    [87]Colonna P, Gabrielli S. Industrial trigeneration using ammonia-water absorption refrigeration systems (AAR) [J]. Applied Thermal Engineering,2003,23(4):381-396.
    [88]Minciuc E, Le Corre O, Athanasovici V, et al. Thermodynamic analysis of tri-generation with absorption chilling machine [J]. Applied Thermal Engineering,2003,23(11): 1391-1405.
    [89]Hernandez-Santoyo J, Sanchez-Cifuentes A. Trigeneration: an alternative for energy savings [J]. Applied Energy,2003,76(1-3):219-227.
    [90]Calva E T, Nunez M P, Toral M A R. Thermal integration of trigeneration systems [J]. Applied Thermal Engineering,2005,25(7):973-984.
    [91]Ghaebi H, Amidpour M, Karimkashi S, et al. Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover [J]. Int J Energ Res,2011,35(8):697-709.
    [92]Ahmadi P, Rosen M A, Dincer I. Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system [J]. International Journal of Greenhouse Gas Control,2011,5(6):1540-1549.
    [93]Popli S, Rodgers P, Eveloy V. Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization [J]. Applied Energy,2012,93(624-636.
    [94]Ahmadi P, Dincer I, Rosen M A. Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system [J]. Energy Conversion and Management,2013,76(0):282-300.
    [95]Kong X Q, Wang R Z, Huang X H. Energy optimization model for a CCHP system with available gas turbines [J]. Applied Thermal Engineering,2005,25(2-3):377-391.
    [96]Ziher D, Poredos A. Economics of a trigeneration system in a hospital [J]. Applied Thermal Engineering,2006,26(7):680-687.
    [97]Khaliq A. Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration [J]. International Journal of Refrigeration-Revue Internationale Du Froid,2009,32(3):534-545.
    [98]Khaliq A, Choudhary K, Dincer I. Exergy analysis of a gas turbine trigeneration system using the Brayton refrigeration cycle for inlet air cooling [J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,2010,224(A4): 449-461.
    [99]Salehzadeh A, Khoshbakhti Saray R, JalaliVahid D. Investigating the effect of several thermodynamic parameters on exergy destruction in components of a tri-generation cycle [J]. Energy,2013,52(96-109.
    [100]Thornton A, Rodriguez Monroy C. Distributed power generation in the United States [J]. Renew Sust Energ Rev,2011,15(9):4809-4817.
    [101]Zaltash A, Petrov A Y, Rizy D T, et al. Laboratory R&D on integrated energy systems (IES) [J]. Applied Thermal Engineering,2006,26(1):28-35.
    [102]Romier A. Small gas turbine technology [J]. Applied Thermal Engineering,2004, 24(11-12):1709-1723.
    [103]李政,王德慧,徐大懋.微型燃气轮机变工况运行方式研究[J].汽轮机技术,2005,47(2):114-117.
    [104]和彬彬,杨勇平,段立强.微型燃气轮机冷热电联供系统变工况性能研究[J].热能动力工程,2009,23(6):615-619.
    [105]Carles Bruno J, Valero A, Coronas A. Performance analysis of combined microgas turbines and gas fired water/LiBr absorption chillers with post-combustion [J]. Applied Thermal Engineering,2005,25(1):87-99.
    [106]Huicochea A, Rivera W, Gutierrez-Urueta G, et al. Thermodynamic analysis of a trigeneration system consisting of a micro gas turbine and a double effect absorption chiller [J]. Applied Thermal Engineering,2011,31(16):3347-3353.
    [107]Sun Z-G, Xie N-L. Experimental studying of a small combined cold and power system driven by a micro gas turbine [J]. Applied Thermal Engineering,2010,30(10): 1242-1246.
    [108]Basrawi F, Yamada T, Obara S y. Theoretical analysis of performance of a micro gas turbine co/trigeneration system for residential buildings in a tropical region [J]. Energy and Buildings,2013,67(108-117.
    [109]Bruno J C, Ortega-Lopez V, Coronas A. Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas:Case study of a sewage treatment plant [J]. Applied Energy,2009,86(6):837-847.
    [110]Tassou S A, Chaer I, Sugiartha N, et al. Application of tri-generation systems to the food retail industry [J]. Energy Conversion and Management,2007,48(11):2988-2995.
    [111]Ge Y T, Tassou S A, Chaer I, et al. Performance evaluation of a tri-generation system with simulation and experiment [J]. Applied Energy,2009,86(11):2317-2326.
    [112]Rocha M S, Andreos R, Simoes-Moreira J R. Performance tests of two small trigeneration pilot plants [J]. Applied Thermal Engineering,2012,41(84-91.
    [113]Moya M, Bruno J C, Eguia P, et al. Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia-water absorption chiller [J]. Applied Energy,2011,88(12):4424-4440.
    [114]Badami M, Ferrero M, Portoraro A. Experimental tests of a small-scale microturbine with a liquid desiccant cooling system [J]. Int J Energ Res,2013,37(9):1069-1078.
    [115]Tse L K C, Wilkins S, McGlashan N, et al. Solid oxide fuel cell/gas turbine trigeneration system for marine applications [J]. Journal of Power Sources,2011,196(6):3149-3162.
    [116]Bakalis D P, Stamatis A G. Performance Simulation of a Hybrid Micro Gas Turbine Fuel Cell System Based on Existing Components [J]. ASME Conference Proceedings,2011, 2011(54648):171-179.
    [117]和彬彬.以微型燃气轮机为核心的先进能量系统研究[D];华北电力大学,2010.
    [118]Ma S L, Wang J F, Yan Z Q, et al. Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia-water mixture [J]. Journal of Power Sources,2011,196(20):8463-8471.
    [119]Ahmadi P, Dincer I, Rosen M A. Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration [J]. Energy Conversion and Management,2012,64(0): 447-453.
    [120]Hueffed A K. Analysis and optmization of CHP, CCHP, CHP-ORC, and CCHP-ORC systems. [D]; Mississippi State University,2010.
    [121]Invernizzi C, Iora P, Silva P. Bottoming micro-Rankine cycles for micro-gas turbines [J]. Applied Thermal Engineering,2007,27(1):100-110.
    [122]Malinowski L, Lewandowska M. Analytical model-based energy and exergy analysis of a gas microturbine at part-load operation [J]. Applied Thermal Engineering,2013,57(1-2): 125-132.
    [123]Wang W, Cai R X, Zhang N. General characteristics of single shaft microturbine set at variable speed operation and its optimization [J]. Applied Thermal Engineering,2004, 24(13):1851-1863.
    [124]Zhang N, Cai R X. Analytical solutions and typical characteristics of part-load performances of single shaft gas turbine and its cogeneration [J]. Energy Conversion and Management,2002,43(9-12):1323-1337.
    [125]刘志刚,刘咸定,赵冠春.工质热物理性质计算程序的编制及应用[M].北京:科学出版社,1992.
    [126]Al-Hamdan Q Z, Ebaid M S Y. Modeling and simulation of a gas turbine engine for power generation [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme,2006,128(2):302-311.
    [127]OPRA. http://www.opra.nl/en/OPRA-WEB---Products---Products/Product-sheets/Product-sheets/ [M].2014.
    [128]Gomri R, Hakimi R. Second law analysis of double effect vapour absorption cooler system [J]. Energy Conversion and Management,2008,49(11):3343-3348.
    [129]Jin H, Ishida M. Graphical exergy analysis of complex cycles [J]. Energy,1993,18(6): 615-625.
    [130]赵士杭.联合循环机组合理的变工况运行方式[J].动力工程,1995,15(3):28-33.
    [131]陈雷,张忠孝,李振中,等.200MW级IGCC系统变工况特性研究[J].洁净煤技术,2008,14(5):59-63.
    [132]陈晓利,张东晓,吴少华,等.燃气轮机调节方式对IGCC系统变工况性能的影响[J].燃气轮机技术,2011,24(1):1-5.
    [133]王颖,邱朋华,吴少华,等.基于燃气轮机变工况的IGCC系统特性研究[J].燃气 轮机技术,2009,22(3):25-28.
    [134]陈晓利,吴少华,李振中,等.整体煤气化联合循环系统中燃气轮机的变工况特性[J].动力工程学报,2010,30(03):230-234.
    [135]焦树建.燃气轮机与燃气—蒸汽联合循环装置[M].北京:中国电力出版社,2007.
    [136]段建东,孙东阳,吴凤江,等.微燃机效率优化运行及全工况状态反馈控制[J].电机与控制学报,2013,17(11):47-54.
    [137]尹娟,翁一武,李明.贫燃催化燃烧燃气轮机部分负荷特性分析[J].中国电机工程学报,2010,30(23):1-7.
    [138]deBiasi V. Air injection restores gas turbine power lost to hot day operation [J]. Gas Turbine World,2013,43(6):14-19.
    [139]戴永庆.溴化锂吸收式制冷空调技术实用手册[M].北京:机械工业出版社,1999.
    [140]林康立.直燃型溴化锂吸收式冷热水机组的现状[J].石油化工设计,1997,14(2):1-6.
    [141]李茂德.直燃型溴化锂制冷机燃烧加热器的设计研究[J].能源研究与信息,1997,13(3):25-29.
    [142]Abedin A. Integrated Combined Cycle Power Plant Design covering Conditioning of Gas Turbine inlet Air for Part-load Enhancement Coupled with inlet Air Cooling for Increase in Peak Summer Capacity and Efficiency; proceedings of the International Conference on Energy Research and Development, Kuwait, F November 1998 [C].
    [143]Variny M, Mierka O. Improvement of part load efficiency of a combined cycle power plant provisioning ancillary services [J]. Applied Energy,2009,86(6):888-894.
    [144]Jimenez-Espadafor Aguilar F, Garcia M T, Trujillo E C, et al. Prediction of performance, energy savings and increase in profitability of two gas turbine steam generator cogeneration plant, based on experimental data [J]. Energy,2011,36(2):742-754.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700