太阳能辅助二氧化碳热泵性能和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能热驱动制冷技术,可转化夏季建筑物立面所接受的太阳辐射为所需冷量,在能源转换与利用层面具有合理性。然而,太阳能能流密度低且不稳定,以太阳能驱动的小型制冷机制取的冷冻水温度较高,不适宜直接输入室内末端,进行供冷。另一方面,太阳能辅助热泵进行供暖和生活热水联合供给的技术已经相对成熟,此类系统不能以高效节能的形式满足建筑制冷需求,且夏季太阳能集热环路存在过热。因此,集成太阳能制冷技术,最终形成在全年尺度内满足建筑制冷、供暖和生活热水综合需求的设备,是一个重要的研究方向。针对以上问题,本研究尝试开发一种太阳能辅助过冷的二氧化碳混合热泵(冷热兼供型),其通过太阳能驱动小型吸收机对二氧化碳机组进行过冷却,从而强化其制冷性能,使整机的冷热输出与建筑负荷更为匹配。
     本研究首先建立了太阳能辅助二氧化碳跨临界制冷循环的数学模型,明确了过冷却热力过程在超临界循环中的特性,比较了过冷在二氧化碳超临界循环和合成制冷剂亚临界循环中的异同,且通过稳态模拟量化节能率,明确过冷却对性能的促进。其后,从空调工况应用角度,分析了通过太阳能制冷实现过冷强化的可行性并预测了太阳能吸收式制冷与常规二氧化碳压缩式制冷两项技术结合后的整机性能。模拟结果显示,当环境温度为28oC时,过冷过程的增加可使循环COP达到4.0,相较原基本循环,制冷性能可以提升45.5%。此外,如果以太阳能吸收式制冷来实现过冷却过程,则当驱动温度为90oC时,可再生能源转化的辅助冷量占总冷量的比例为22%,当驱动温度为94oC时,该比例可升至33%。
     在热力学分析的基础上,开发了试验样机并分别搭建了制冷和供暖试验系统,进行了现场性能测试。实验测量了开发机组在制冷工况下,分别采用混合模式(含太阳能辅助过冷)和独立模式(普通二氧化碳制冷)的机组性能。结果显示,混合模式下,室外温度约为28.0oC时,制冷COP约为2.32。主机供暖性能测试结果显示,室外温度为10.4oC时,制热COP为2.60。
     因机组集成了太阳能集热和储存环路等,故影响整机性能的参数较常规热泵机组更多,特别是需考虑太阳能辐照强度等因素对机组性能的影响。故在单机性能研究的基础上,对太阳能辅助二氧化碳压缩式制冷系统进行了性能分析。研究从单一针对开发机组,扩展到包含有太阳能集热器、水箱、主机和建筑的供能系统。研究基于经过试验验证的系统模型,通过动态模拟,对影响系统性能的参数进行了分析并量化了影响程度,同时通过模拟比较了设计的制冷系统与常规制冷系统的性能。
     在供热工况下,太阳能辅助设备与压缩式主机的结合方式与制冷工况下不同,并非采用机内集成模式,而是作为双热源并联供给至室内末端。因此,结合供暖系统的形式,对系统重要参数,如集热器面积、水箱体积、室内负荷和控制条件等分别进行了单参数(变量)的影响程度分析。在此基础上,通过敏感性分析,确定了不同影响参数的权重,据此,选取了主要影响参数进行了以成本为目标函数的多参数同步优化模拟。并通过太阳能保证率、主机性能等性能指标对优化后的系统进行了性能分析与评价。
     最后,以零能耗为核心设计和评价目标,结合一栋实际建筑,讨论了以开发主机为核心的建筑能源系统实际应用。该能源系统可在全年尺度内满足90m2公寓内的制冷、采暖和生活热水需求,同时,通过太阳能光伏发电补充实现年净能耗为零。在对设计要素进行阐述的基础上,进行了能源系统整体性能分析,该分析不仅量化了含建筑在内的整体系统各部分能耗,而且比较了供需以验证设计目标。除零能耗设计指标外,对系统在舒适性等指标也进行了评价。
Solar-thermal-driven cooling technology can realize a reasonable energy conversion from theexcess solar radiation on building envelope to the cooling supply in summer. However, lowenergy flux and unstable supply of solar radiation limitation technology application. Forexample, chilled water from solar-driven absorption chiller is commonly in a highertemperature range than that produced by common electricity driven chiller. Thus, it isunavailable for a direct application for indoor terminal unit due to disability indehumidification. On the other hand, solar-assisted heat pump is a high-efficiency technologywhich has already been applied in demonstration projects. However, this kind of systemcannot meet cooling demand of building in a reasonable technology solution, like what itoperates in heating mode. Meanwhile, overheat problems in the solar collector loop andstorage devices increase potential risks during the summer operation. So developing anintegration device which combines solar-assisted and heat pump technologies for acomprehensive demand of building, such as cooling, heating and domestic hot water, becomean important research direction. For this purpose, a solar-assisted sub-cooling carbon dioxideheat pump was studied in this research. The cooling supplied by solar-thermal-drivenabsorption chiller was employed to sub-cooling carbon dioxide heat pump in cooling mode. Inthis way, cooling efficiency of heat pump can be increased and meanwhile match performancebetween device and building comes into a better state.
     The numerical module was firstly built for CO2transcritical baseline cycle as a primarypreparing for thermodynamic analysis. The subcooling process was analyzed and the difference of subcooling concept between subcritiacal cycle of synthetic refrigerants and CO2transcritical cycle was compared. With an assistance of steady state simulation, theperformance improvement of updated cycle process was proved in terms of energy-saving.Furthermore, the feasibility of solar energy integration was discussed for enhanced subcoolingin air-conditioning application. The simulated results show that cooling COP of proposedcycle process can achieve4.0when ambient temperature is28oC which is45.5higher thanthat of baseline cycle. Moreover, when solar-driven temperature is90oC, the percentage ofassisted cooling from renewable energy to the total cooling capacity is22%, and it can reach33%when solar driven temperature is94oC.
     Based on the thermodynamic analysis, a prototype with the proposed cycle process wasdeveloped and on-site test systems for cooling and heating performance was built respectively.The cooling test contains two stages for hybrid mode and independent mode. The differencebetween these two modes is assisted subcooling. The test shows that cooling COP ofprototype in hybrid mode is2.32when ambient temperature is28.0oC. The heating test wascarried out as well and result shows that heating COP is2.60when ambient temperature is10.4oC.
     Because of integration with solar energy utilization device, amount of parameter whichinfluences the prototype performance is more than that of a conventional CO2HP. Hence,research object is transfer from the prototype to the entire system due to more externalconditions. One system module, which contains solar collector, tank, developed HP andbuilding, was estiblished for the whole year dynamic simulation. The influences from weatherconditions, indoor load and DHW load was analyzed and quantified. The comparison betweenproposed cooling system and conventional synthetic refrigerant HP was carried out as well.The integration solution for solar utilization and CO2HP in heating supply is different to thatin cooling supply. The latter solution applied the in-shell integration while the former schemechooses solar collector array and CO2HP as two thermal sources in parallel connection for heating supply. In this case, the system module was updated and performance influence fromsingle parameter, such as: solar collector area, tank volume, indoor load and controlconditions, was obtained through simulation. Based on the single parameter analysis,influence weight can be got for sensitivity analysis in order to conduct multi-parametersoptimization. The optimized system was evaluated in terms of solar fraction, deviceperformance, etc.
     Finally, the developed CO2HP was applied in an energy system as the core device for a netzero energy building (NZEB). The entire energy system can meet the year round demands ofcooling, heating and DHW of90m2demonstration apartment and meanwhile the net energyconsumption per year is zero. An overview about all components in NZEB, such as: passivedesign, HVAC&DHW system, indoor terminal units and renewable power system was present.The annual performance for the entire system was analyzed. Not only the consumption ofevery section in building, but also the comparison between renewable power generation andmaintenance consumption were obtained based on simulation. Besides energy balances for netzero energy aim, indoor comfort performance was also discussed in evaluation.
引文
[1]王如竹,代彦军.太阳能制冷.北京:化学工业出版社,2007.
    [2] Duffie JA, Beckman WA. Solar engineering of thermal processes (3rdEdition). New York:Wiley,2006.
    [3] Eicker U. Solar technologies for buildings. London: Wiley,2003.
    [4] Pearson A. Carbon dioxide-new uses for an old refrigerant. International Journal ofRefrigeration,2005,28(8):1140-1148.
    [5] Lorentzen G, Pettersen J. A new, efficient and environmentally benign system for carair-conditioning. International Journal of Refrigeration,1993,16(1):4-12.
    [6] Lorentzen G, Pettersen J. Trans-critical vapor compression cycle device. Patent WO,90/07683,1990.
    [7] Lorentzen G. Revival of carbon-dioxide as a refrigerant. International Journal ofRefrigeration,1994,17(5):292-301.
    [8] Pettersen J, Neksa P, Nesje OM, Schiefloe PA, Rekstad H. Recent advances in CO2Refrigeration.19th International Congress of Refrigeration, Paris,1995,4B:961-968.
    [9] Kaygusuz K, Ayhan T. Experimental and theoretical investigation of combined solar heatpump system for residential heating. Energy Conversion Management,1999,40:1377–96.
    [10]Hawlader MNA, Chou SK, Jahangeer KA, Rahman SMA, Eugene Lau KW. Solarassisted heat-pump dryer and water heater. Applied Energy,2003,74:185–93.
    [11]Trilliant-Berdal V, Souyri B, Fraise G. Experimental study of ground-coupled heat pumpcombined with thermal solar collectors. Energy and Buildings,2006,38:1477–84.
    [12] evik S, Akta M, Do an H, Ko ak S. Mushroom drying with solar assisted heat pumpsystem. Energy Conversion and Management,2013,72:171-178
    [13]Hepbasli A, Kalinci Y. A review of heat pump water heating systems. Renewable andSustainable Energy Reviews,2009,13(6-7):1211-1229.
    [14]Sakai I, Terakawa MT, Ohue J. Solar space heating and cooling with bi-heat source heatpump and hot water supply system. Solar Energy,1976,18:525–32.
    [15]Chen PYS, Helwer WA, Roen HN, Barton DJ. Experimental solar dehumidifer kiln forlumber drying. Forest Products Journal.1982,32(9):35–41.
    [16]Best R, Soto W, Pilatowsky I, Gutierrez LJ. Evaluation of a rice drying system using asolar assisted heat pump. Renewable Energy,1994,5(1–4):465–8.
    [17]Chaturvedi SK, Chen DT, Kheireddne A. Thermal performance of a variable capacitydirect expansion solar-assisted heat pump. Energy Conversion Management,1998,39(3/4):181–91.
    [18]Chyng JP, Lee CP, Huang BJ. Performance analysis of a solar-assisted heat pump waterheater. Solar Energy,2003:33–44.
    [19]Kuang YH, Sumathy K, Wang RZ. Study on a direct-expansion solar-assisted heat pumpwater heating system. International Journal of Energy Research,2003,27:531–48.
    [20]Huang BJ, Lee JP, Chyng JP. Heat-pipe enhanced solar-assisted heat pump water heater.Solar Energy,2005,78:375–81.
    [21]Guoying X, Xiaosong Z, Shiming D. A simulation study on the operating performance ofa solar-air source heat pump water heater. Applied Thermal Engineering,2006,26:1257–65.
    [22]Li YW, Wang RZ, Wu JY, Xu YX. Experimental performance analysis on a directexpansion solar-assisted heat pump water heater. Applied Thermal Engineering,2007,27:2858–68.
    [23]Li H, Dai Y, Dai J, Wang X, Wei L. A solar assisted heat pump drying system for grainin-store drying. Frontiers of Energy and Power Engineering in China,2010,4(3):386–91.
    [24]TRNSYS. A TRaNsient SYstems Simulation Program. http://sel.me.wisc.edu/trnsys/.[accessed:01.12.2013]
    [25]EnergyPlus, http://apps1.eere.energy.gov/buildings/energyplus/.[accessed:01.12.2013]
    [26]Beckman WA, Klein, SA. Engineering Equation Solver. Version8.http://www.mhhe.com/engcs/mech/ees/.[accessed:01.12.2013]
    [27]Matlab, http://www.mathworks.cn/.[accessed:01.12.2013]
    [28]孙兆虎,王国梁,姜培学,慕弦.太阳能辅助CO2热泵与制冷系统实验研究.工程热物理学报,2008,29,381-384.
    [29]Kim W, Oh J, Park C, Cho H. Study on solar hybrid heat pump system using carbondioxide. In:23rd International Conference of Refrigeration, Aug,21-26,2011, Prague,Czech Republic.
    [30]Chaichana C, Aye L, Charters W. Natural working fluids for solar-boosted heat pumps.International Journal of Refrigeration2003,26(6),637-643.
    [31]Radermacher R, Yang B, Hwang Y. Integrating alternative and conventional coolingtechnologies. ASHRAE Journal2007;49(10):28–35.
    [32]Schoenfeld JM. Integration of a thermoelectric subcooler into a carbon dioxidetranscritical vapor compression cycle refrigeration system. Ph.D Thesis, University ofMaryland,2008.
    [33]Schoenfeld J, Hwang Y, Radermacher R. CO2transcritical vapor compression cycle withthermoelectric subcooler. HVAC&R Research,2012,18,297-311.
    [34]Sarkar J. Performance optimization of transcrtical CO2refrigeration cycle withthermoelectric subcooler. International Journal of Energy Research,2013,37:121-128.
    [35]张艳丽,张后雷,时红臣.融冰过冷二氧化碳空调循环高压参数分析.建筑热能通风空调,2007,26(3):6-9.
    [36]Huang M, Chen B, Hsiao M, Chen Sih. Application of thermal battery in the ice storageair-conditioning system as a subcooler. International Journal of Refrigeration,2007,30,245-253.
    [37]Hsiao M, Cheng C, Huang M, Chen Sih, Performance enhancement of a subcooled coldstorage air conditioning system. Energy Conversion and Management,2009,50,2992–2998
    [38]Dong J, Jiang Y, Deng S, Yao Y, Qu M. Improving reverse cycle defrosting performanceof air source heat pumps using thermal storage-based refrigerant sub-cooling energy.Building Services Engineering Research and Technology,2012,33,223-236.
    [39]Pottker G, Hrnjak P. Effect of condenser subcooling of the performance of vaporcompression systems: Experimental and numerical investigation. Internationalrefrigeration and air conditioning conference at Purdue, July16-19,2012.
    [40]Lorentzen G, Pettersen J. A new, efficient and environmentally benign system for carair-conditioning. International Journal of Refrigeration,1993,16(1):4-12.
    [41]Hwang Y. Comprehensive investigation of carbon dioxide refrigeration cycle. Doctoraldissertation,1997, University of Maryland.
    [42]Fartaj A, Ting DS, Yang, WW. Second law analysis of the transcritical CO2refrigerationcycle.2004, Energy Conversion and Management,45(13-14):2269-2281.
    [43]Beaver AC, Yin JM, Bullard CW, Hrnjak PS. An experimental investigation oftranscritical carbon dioxide systems for residential air conditioning.https://www.ideals.illinois.edu/bitstream/handle/2142/13325/CR018.pdf?sequence=2
    [44]Cutler B, Hwang Y, Bogdanic L, Radermacher R. Development of a transcritcal carbondioxide environmental control unit. Proceeding of the4thIIR-Gustav LorentzenConference on Natural Working Fluids, West Lafayette,2000,91-98.
    [45]Preissner M. Carbon dioxide vapor compression cycle improvements with focus on scrollexpanders. Doctoral dissertation,2001, University of Maryland.
    [46]Girotto S, Minetto S, Neksa P. Commercial refrigeration system using CO2as therefrigerant. International Journal of Refrigeration,2004,27:717-723.
    [47]Rigola J, Raush G, Perez-Segarra, CD, Oliva A. Numerical simulation and experimentalvalidation of vapor compression refrigeration systems. Special emphasis on CO2trans-critical cycles. International Journal of Refrigeration,2005,28:1225-1237.
    [48]Cavallini A, Cecchinato L, Corradi M, Fornasieri E, Zilio C. Two-stage transcriticalcarbon dioxide cycle optimization: A theoretical and experimental analysis. InternationalJournal of Refrigeration,2005,28:1274-1283.
    [49]Cho H, Lee MY, Kim Y. Numerical evaluation on the performance of advanced CO2cycles in the cooling mode operation. Applied Thermal Engineering,2009,29:1485-1492.
    [50]Xie YB, Liu YF, Tang JC, Sun GL. Proceedings of the ASME2009InternationalMechanical Engineering Congress and Exposition,2009, USA,1061-1066.
    [51]Cecchinato L, Chiarello M, Corradi M. Design and experimental analysis of a carbondioxide transcritical chiller for commercial refrigeration. Applied Energy,2010,87:2095-2101.
    [52]Neksa P, Rekstad H, Zakeri GR, Schiefloe PA. CO2-heat pump water heater:Characteristics, system design and experimental results. International Journal ofRefrigeration,1998,21:172-179
    [53]Richter MR, Bullard CW, Hrnjak PS. Comparison of R744and R410A for residentialheating and cooling applications. http://www.r744.com/papers/pdf/pdf_751.pdf
    [54]White SD, Yarrall MG, Cleland DJ, Hedley RA. Modeling the performance of atranscritical CO2heat pump for high temperature heating. International Journal ofRefrigeration,2002,25(4):479-486.
    [55]Stene J. Residential CO2heat pump system for combined space heating and hot waterheating. International Journal of Refrigeration,2005,28(8):1259-1265.
    [56]王侃宏,王景刚,侯立泉,马一太,魏东,洪芳军. CO2跨临界水——水热泵循环系统的实验研究.暖通空调,2001,31(3):1-4.
    [57]刘圣春,马一太,刘秋菊. CO2热泵热水器实验研究.天津大学学报,2008,41(2):238-242.
    [58]孙兆虎,王国梁,姜培学,邓建强.跨临界CO2热泵热水系统试验研究.制冷与空调,2008,8(2):75-78.
    [59]谢英柏,孙刚磊,赵争辉,刘迎福.环保型CO2热泵系统的理论分析与性能测试.可再生能源,2009,27(5):82-85.
    [60]林钰淞,姜培学,张富珍,祝银海.土壤源跨临界CO2循环热泵系统供暖的实验研究.工程热物理学报,2011,32(11):1829-1832.
    [61]Cho H, Lee H, Jang Y, Kim Y. Experimental study on the heating performance of avariable speed CO2heat pump with a variation of operating conditions. Transactions ofthe Korean Society of Mechanical Engineers B,2007,32(8),694-701(in Korean).
    [62]Baek CH, Heo JH, Kang H, Kim Y. Performance characteristics of a CO2water heaterunder various operating conditions. The23rd IIR International congress of refrigeration,2011, Prague, ID:240.
    [63]Fernandez N, Hwang Y, Radermacher R. Comparison of CO2heat pump water heaterperformance with baseline cycle and two high COP cycles. International Journal ofRefrigeration,2010,33(3):635-644.
    [64]Li D HW, Yang L, Lam CJ. Zero energy buildings and sustainable developmentimplications-A review. Energy. DOI: http://dx.doi.org/10.1016/j.energy.2013.01.070.
    [65]Norton P, Christensen C. A cold-climate case study for affordable zero energy homes. In:Proceedings of solar energy,2006,585–590.
    [66]Steinbock J, Eijadi D, McDougall T. Net zero energy building case study: science house,ASHRAE Transitions2006;113,26-35.
    [67]Biaou A, Bernier M, Yan F. Simulation of zero net energy homes. http://perso.univ-lr.fr/fcherqui/IBPSAmars2006/12_MBernier.pdf [accessed21.06.2010].
    [68]Siddiqui O, Fung A, Tse H, Zhang DH, Modeling of the net zero energy town house inToronto using TRNSYS, and an analysis of the impact using thermal mass. In:Proceedings of Energy Sustainability,2008. p.297-304.
    [69]Wang LP, Gwilliam J, Jones P, Case study of zero energy house design in UK. Energyand buildings2009,41(11),1215-1222.
    [70]Higuchi Y, Udagawa M, Sato M, Design and performance prediction of a zero energyhouse. In: Conference of Renewable Energy,2010. No. O-AT-2-5.
    [71]Stene, J. CO2Heat Pump System for Space Heating and Hot Water Heating inLow-Energy Houses and Passive Houses. http://www.annex32.net/pdf/articles/STENE_CO2HP_PassiveH_paper.pdf
    [72]Byrne P, Miriel J, Lenat Y. Design and simulation of a heat pump for simultaneousheating and cooling using HFC or CO2as a working fluid. International Journal ofRefrigeration,2009,32:1711-1723
    [73]Sarkar J, Bhattacharyya S, Gopal MR. Optimization of a transcritical CO2heat pumpcycle for simultaneous cooling and heating applications. International Journal ofRefrigeration,2004,27:830-838.
    [74]Adriansyah W. Combined air conditioning and tap water heating plant using CO2asrefrigerant. Energy and Buildings,2004,36:690–695.
    [75]黄冬平,丁国良,张春路.不同跨临界二氧化碳制冷循环的性能比较.上海交通大学学报,2003,37(7):1094-1097.
    [76]Groll EA, Kim, J. Review of recent advances toward transcritical CO2cycle technology.HVAC&R Research,2007,13:499-520.
    [77]Liao SM, Zhao TS, Jakobsen A. A correlation of optimal heat rejection pressures intranscritical carbon dioxide cycles. Applied thermal engineering,2000,20:831-841.
    [78]Kauf F. Determination of the optimum high pressure for transcritical CO2-refrigerationcycles. International Journal of Thermal Sciences,1999,38:325-330.
    [79]Cecchinato L, Corradi M, Minetto S. A critical approach to the determination of optimalheat rejection pressure in transcritical systems. Applied Thermal Engineering,2010,30,1812-1823.
    [80]Sarkar J, Bhattacharyya S, Gopal MR. Optimization of a transcritical CO2heat pumpcycle for simultaneous cooling and heating applications. International Journal ofRefrigeration,2004,27:830-838.
    [81]Austin BT, Sumathy K. Transcritical carbon dioxide heat pump systems: A review.Renewable and Sustainable Energy Reviews,2010,15(8):4013-4029.
    [82]Duddumpudi, V.S.. Transcritical CO2Air Source Heat Pump for Average UK DomesticHousing with High Temperature Hydronic Heat Distribution system.2010, Department ofMechanical Engineering, University of strathclyde engineering. Master Thesis.
    [83]Oritz TM, Li D, Groll EA. Evaluation of the performance potential of CO2as arefrigerant in air-to-air air conditioners and heat pumps: system modeling and analysis.Final Report, ARTI-21CR/610-10030-01. http://www.ahrinet.org/technical+results.aspx
    [accessed11.03.2011].
    [84]Sarkar J, Bhattacharyya S, Ram Gopal, M. Transcritical CO2heat pump dryer: Part1.Mathematical model and simulation. Drying Technology2006,24,1583–1591.
    [85]Lin GP, Gu Zl. Performance of super-critical CO2refrigeration cycle. Journal of Xi’anJiao Tong University,1998,32(8):35-38,76.
    [86]Span R, Wagner W. A New Equation of State for Carbon Dioxide Covering the FluidRegion from the Triple Point Temperature to1100K at Pressures up to800MPa. Journalof Physical and Chemical Reference Data,1996,25(6):1509-1596.
    [87]Hwang Y. Comprehensive investigation of carbon dioxide refrigeration cycle.Dissertation, University of Maryland,1997.
    [88]Li C, Wu JH, Cui XL, et al. CO2pressure drop and heat transfer characteristics inMicro-Channel gas cooler (in Chinese). Journal of Xi’an Jiao Tong University44(9)201048-53.
    [89]Li M, Chen X, Zhang H. Numerical simulation of micro-channel gas cooler for CO2heatpump water heater (in Chinese). Journal of Chemical Industry and Engineering (China)59(2)2008143-147.
    [90]Robinson DM, Groll EA. Efficiencies of transcritical CO2cycles with and without anexpansion turbine. International Journal of Refrigeration,1998,21(7):577-589.
    [91]Srinivasan K, Lim YK, Ho, JC, Wijeysundera NE. Exergetic analysis of carbon dioxidevapour compression refrigeration cycle using the new fundamental equation of state.2003, Energy Conversion and Management,44(20):3267-3278.
    [92]Yang WW, Fartaj A, T DS. Exergy analysis of advanced transcritical CO2airconditioning cycles. Internationnal Journal of Exergy,2008,5(2).
    [93]Fartaj A, Ting DS, Yang, WW. Second law analysis of the transcritical CO2refrigerationcycle.2004, Energy Conversion and Management,45(13-14):2269-2281.
    [94]马一太,田华,刘春涛等.制冷与热泵产品的能效标准研究和循环热力学完善度的分析,北京:科学出版社,2012.
    [95]杨俊兰,马一太,李敏霞,管海清. CO2跨临界制冷循环系统性能评价及分析,2004,流体机械,32(3):34-38.
    [96]Tao YB, He YL, Tao WQ. Exergetic analysis of transcritical CO2residentialair-conditioning system based on experimental data. Applied Energy,2010,87(10):3065-3072.
    [97]Sarkar J, Bhattacharyya S, Ram Gopal M. Transcritical CO2heat pump systems: exergyanalysis including heat transfer and fluid flow effects.2005, Energy Conversion andManagement46(13-14):2053-2067.
    [98]Agrawal N, Bhattacharyya S. Exergy assessment of an optimized capillary tube-basedtranscritical CO2heat pump system. International Journal of Energy Research,2009,33(14):1278-1289.
    [99]章文斌.空冷溴化锂吸收式制冷机的研究.杭州:浙江大学,2001.
    [100] Yin YL, Zhai XQ, Wang RZ. Experimental investigation and performance analysis of amini-type solar absorption cooling system. Applied Thermal Engineering,2013,59(1-2):267-277.
    [101]张晴原,Joe Huang.中国建筑用标准气象数据库.中国机械工业出版社,北京,Beijing,2008.
    [102] ASHRAE, International Weather for Energy Calculations (IWEC Weather Files) User’sManual, ASHRAE, Atlanta,2001.
    [103] Standard TMY Data, http://sel.me.wisc.edu/trnsys/weather/standard_tmy.htm.
    [accessed01.12.2012]
    [104]中华人民共和国住房和城乡建设部.夏热冬冷地区居住建筑节能设计标准(JGJ134-2010),中国建筑工业出版社,北京,2010.
    [105] GenOpt manual. http://simulationresearch.lbl.gov/GO/download.html.[accessed11.03.2011]
    [106] Ellehauge, K.,2002. A report of IEA SHS-Task26solar combisystems: a solarcombisystem based on a heat exchanger between the collector loop and space-heatingloop. http://www.iea-shc.org/publications/downloads/task26-c-combisystems_modelled-appendix1.pdf [accessed08.03.12)]
    [107] Satori I, Napolitano A, Marszal A, Pless S, Torcellini P, Voss K. Criteria for Definitionof Net Zero Energy Buildings. http://www.iea-shc.org/publications/task.aspx?Task=40.[accessed Jan2012].
    [108] Marszal AJ, Hesiselberg P, Bourrelle JS, Musall E, Voss K, Sartori I, Napolitano A.Zero Energy Building–A review of definitions and calculation methodologies. Energyand Buildings2011;43(4):971-979.
    [109] Voss K, Sartori I, Napolitano A, Geier S, Gonzalves H, Hall M, Heiselberg P, Widen J,Candanedo JA, Musall E, Karlsson B and Torcellini P. Load Matching and GridInteraction of Net Zero Energy Buildings,.[accessed May2012].
    [110] Sartori I, Napolitano A, Voss K. Net zero energy buildings: A consistent definitionframework. Energy and Buildings2012;48:220-232.
    [111] Linuo Ritter USA. Collector performance..[accessed Oct2011].
    [112] Jaga. Energy savers..[accessed Jan2012].
    [113]吕光昭.独立光伏系统的研究.上海:上海交通大学.2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700