焦炉煤气与气化煤气基焦炭、化工与动力多联产系统及集成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化工动力多联产系统通过系统集成和过程革新,实现能源的高效、洁净利用,已成为能源可持续发展的核心技术之一。本学位论文依托国家重点基础研究发展规划973计划项目及自然科学基金项目等,针对多联产系统集成和开拓的关键科学问题,开展多联产系统集成理论和节能机理的研究;并依据化学能物理能梯级利用原理,和焦炉煤气的生产特点和利用现状,展开新系统的开拓研究。
     阐明多联产系统中化学能的梯级利用机理。首先,从宏观上分析多联产系统节能的潜力和优势,并阐述多联产系统系统集成的原则和依据。然后,着重研究联产系统化学能梯级利用的节能机理,发现在化工生产过程中,产品的(火用)耗随着转化率的提高,呈非线性增加。对单位产品的(火用)耗分析表明,随着转化率的增加存在着单位产品(火用)耗最小的点。进而采用比较法阐述联产系统相对于分产系统节能的本质原因,即原料的适度转化。最后,揭示了动力岛热(火用)收益与化工岛(火用)损失减少的耦合关系。
     炼焦工艺与焦电联产新系统的研究提出。针对传统炼焦工艺中直接将炼焦副产的焦炉煤气的一半左右回炉燃烧的用能方式,提出采用燃煤替代焦炉煤气燃烧获得炼焦热的新型燃煤焦炉。焦炉煤气是富氢的高品质原料,采用新型炼焦工艺,可以节省更多的焦炉煤气,为后继的系统提供更多的合成气。针对焦炉生产过程中,由于烟气与空气的固有特性使得排烟温度过高的现象,提出了并联型焦电联产系统,进一步同收焦炉排烟的废热,并采用高效的联合循环使气体燃料焦炉煤气得到充分高效的利用。
     双气头整合的多联产系统集成优化。侧重太原理工大学提出的采用焦炉煤气与气化煤气互补制得合成气的双气头多联产系统进行优化分析,集成了无重整的双气头甲醇电力多联产系统。对新系统进行的热力性能及特性分析表明新系统具有优良的热力性能,进而采用(火用)分析的方法进一步揭示系统的节能机制,即重整和变换过程的取消。新系统使流程简化,投资减少,且能够取得更好的节能收益。最后,在此系统的基础上,集成了带CO_2回收的多联产系统,该系统相对于分产系统实现了无能耗分离CO_2。
     焦炭、化工与电力一体化多功能系统的开拓创新与集成优化。本部分首先集成了焦炭、氢、电多功能系统,此系统根据焦炉煤气富氢量的特点,采用PSA的方法分离出氢气,分离出氢气后的弛放气作为联合循环的燃料发电。热力性能分析结果表明在相同的原料输入和相同的炼焦热输出情况下,本系统可以比分产系统多输出65%的氢气。新系统的热效率达到70%,(火用)效率约66%,节能率约12.5%。图像(火用)分析法表明燃煤焦炉实现了煤炭的间接气化是系统节能的最重要因素。该系统在经济性以及减排性能等方面也表现出了很大的优势。最后,将燃煤焦炉与双气头多联产系统相结合,集成了同时生产焦炭、甲醇和电力的多功能系统。
     总之,本研究为多联产系统的集成提供了若干理论依据,为洁净煤技术的发展提供了更多的新方法。
Polygeneration systems belong to cross subjects,which involve chemical field,power generation field,and even metallurgical field.They can achieve highefficiency,low investment and less environmental impact by integration chemicalproduction with power generation and innovation of key processes.They arebecoming the key sustainable development of energy technologies.Supported by theNational Key Project and the National Natural Science Foundation of China,themajor aim of this research is to investigate the principle of polygeneration systemicintegration,to reveal the integration mechanism of polygeneration systems forenergy saving,and to propose some new methods to produce or/and utilize coke ovengas(COG)more efficiently,based on the cascade utilization of physical andchemical energy.
     The internal mechanism of energy saving in polygeneration systems isrevealed.Firstly,this paper investigates the potentials and advantages for energysaving of the polygeneration systems,and illustrates the principle of systemintegration.Then,it studies on the mechanism of energy saving in polygenerationsystems,and finds that the exergy consumption increases nonlinearly,along with theincrease of percent conversion.A lowest exergy consumption for 1 kW of productexisted at a certain percent conversion.The moderate conversion of raw material isthe key factor for energy saving,which was disclosed by comparison method.Finally,it reveals the relationships between the energy earnings in the power side and energydestruction in the chemical side.
     A new kind of coke oven and a polygeneration system producing coke &power are proposed.In a conventional coke oven plant,about half of COG by-produced in the oven is burned to provide coking heat.The new kind of cokeoven burns coal rather than COG,so more COG is saved to supply the followingprocesses.The feature of flue gas and air resulted in high temperature of exhaust gasin the coke oven.And polygeneration system proposed here producing coke andpower resolves that problem,and uses COG more efficiently by combined cycle.
     COG and coal gas based polygeneration system was optimized by systemicintegration.This paper analysed a polygeneration system proposed by TaiyuanUniversity of Technology,and than integrated a polygeneration system based onCOG and coal gas without reforming.The results of thermal energy analyses andfeature analyses show that the new system has better performance.And the exergyanalysis is adopted to reveal reasons for energy saving in the new system,which arethe elimination of shift and reforming reactions.The new system not only simplifiesthe scheme and reduces the investment,but also gains higher energy saving ratio.Finally,based on this system,a polygeneration system with CO_2 recovery wasintegrated,which realizes CO_2 separation without energy consumption as comparedto conventional systems.
     Two multifunctionai systems,which produce coke,chemicals and power,areproposed.On the basis of COG rich in H_2,a multifunctional system is proposed.Inthe new system,COG produced by coal fired coke oven is fed to pressure swingadsorption(PSA)unit to separate H2 firstly,and then the PSA tail gas is fed tocombined cycle for power generation.With the same inputs and the same coking heatoutput,the new system can produce 65% more H_2 than the conventional systems.Itsoverall efficiency is about 70%,exergy efficiency is about 66%,and energy savingratio is about 12.5%.Then the reasons for the energy saving of the system are studiedby EUD method,which are coal-fired coke oven and efficient utilization of COG.The system also has good performance on economics analyses and CO_2 emissionreduction analyses.Moreover,another multifunctional system is integrated,whichcombines a coal fired coke oven and a polygeneration system based on COG andcoal gas as co-feed without reforming reaction,which is another way to use COGand coal efficiently.
     In short,this research provides a theoretical basis of systemic integration for the polygeneration system,and puts forward some valuable choices for the developmentof clean coal technologies.
引文
[1]金红光,林汝谋.能的综合梯级利用与燃气轮机总能系统.北京:科学出版社,2008
    [2]周凤起,王庆一.中国能源五十年.北京:中国电力出版社,2002
    [3]Nexant,Inc.Multi-client Study Prospectus:Polygeneration from Coal Integrated Power,Chemicals and Liquid Fuels.Nexant Report,New York,USA,2006
    [4]Edward S C(段雷,黄永梅译).可持续能源的前景(第一版).北京:清华大学出版社,2002
    [5]中国科学院能源战略研究组.中国能源可持续发展战略专题研究.北京:科学出版社,2006
    [6]中国人民共和国科学技术部、国家自然科学基金委员会.中国基础学科发展报告,北京,2001
    [7]蔡睿贤,金红光,林汝谋.能源利用与环境相容协调的难题.21世纪100个交叉科学难题,北京,2003
    [8]金红光.新一代能源环境动力系统.中国科学基金,2001,15(1):47-50
    [9]国家统计局工业交通统计司,国家发展和改革委员会能源局.2006年中国能源统计年鉴.中国统计出版社,2007
    [10]倪维斗,江宁.中国能源总体形势与科学研究发展方向.动力工程,2002,5(22):1971-1921
    [11]Vision 21 Program Plan-Clean Energy Plants for the 21st Century.U.S.Department of Energy,April 1999
    [12]谢克昌.煤化工发展与规划.北京:化学工业出版社,2005
    [13]Working Group I of the Intergovernmental Panel on Climate Change (IPCC),IPCC's Fourth Assessment Report (AR4):Climate Change 2007 The Physical Science Basis [R].Cambridge,United Kingdom:Cambridge University Press,2007
    [14]金红光.温室气体控制一体化原理.二十一世纪100个科学交叉难题,科学出版社, 2004
    [15]齐国祯,谢在库,钟思青,张成芳,陈庆龄.煤或天然气经甲醇制低碳烯烃工艺研究新进展.现代化工,2005,25(2):9-13
    [16]王太炎.焦炉煤气开发利用的问题与途径.燃料与化工,2004,35(6):1-3
    [17]倪维斗,李政,薛元.以煤气化为核心的多联产系统一资源/能源/环境整体优化与可持续发展.中国工程科学,2000(8):59-68
    [18]金红光,刘泽龙,江丽霞,张娜,林汝谋,蔡睿贤.广义总能系统开拓研究进展.中国 学术期刊文摘(科技快报),2001,7(5):630-632
    [19]金红光,王宝群,刘泽龙,郑丹星.化工与动力广义总能系统的前景.化工学报,2001,52(7):565-57 1
    [20]Longwell J P,Subin E S,Wilson J.Coal:Energy For the Future.Pergamon,1995
    [21]S-863计划软科学研究能源技术领域组.能源技术领域发展战略研究,内部报告,Z96003.1 999
    [22]GEF.Operational Strategy of The Global Environment.Washington DC,1996
    [23]Edward S Cassedy(段雷,黄永梅译).可持续能源的前景.第一版,北京:清华大学出版社,2002,20-21
    [24]Yamashita K,Barreto L.Interim Report “Integrated Energy Systems for the 21st Century:Coal Gasification for Co-producing Hydrogen,Electricity and Liquid Fuels”.IR-03-039,2003
    [25]焦树建.论以“合成气园”为基础的多联产技术.以煤气化为基础的多联产战略研讨会,北京,2000
    [26]倪维斗,郑洪弢,李政,江宁.多联产系统:综合解决我国能源领域五大问题的重要途径.动力工程,2003,23(2):2245-225 1
    [27]林汝谋,蔡睿贤,徐大懋.总能系统新概念与中国火电动力的发展.燃气轮机技术,1994,7(3):1-5
    [28]钟英飞,对各种炼焦工艺及无回收焦炉的评述.燃料与化工,2001,32(2):57-61
    [29]闫小平.JN60-82型焦炉热工测试及评定.煤气与热力,1997,17(4):10-16
    [30]张建平.热回收炼焦工艺技术的清洁生产煤气与热力,2006,26(10):52-54
    [31]郑文华.煤炭专家谈未来的炼焦工业.燃料与化工,2004,31(5):225-228
    [32]吴仲华,张世铮.燃气轮机总能系统.能的梯级利用与燃气轮机总能系统.北京:机械工业出版社,1988
    [33]巩志坚,张永发,谢克昌.连续冶炼冶金焦工艺初探.煤炭转化,1997,20(1):40-44
    [34]李天文,曹永生.甲醇合成工艺进展.现代化工,1999,19(9):8-11
    [35]唐宏青,相宏伟.煤化工工艺技术评述与展望Ⅲ.合成甲醇装置大型化与国产化[J].燃料化学学报,2001,29(3):193-200
    [36]徐士彬.甲醇合成工艺技术分析及选用.石油和化工设备,2008,6:33-38
    [37]倪维斗,靳晖,李政,郑洪弢.二甲醚(DME)经济解决中国能源与环境问题的重大关键.能源与环境,2003,1:9-14
    [38]Roan V,Investigator P,et al.An Investigation of The Feasibility of Coal-Based Methanol for Application in Transportation Fuel Cell Systems.Technical Report,University of Florida Gainesville,Florida,April 2004
    [39]Xin J,Cui J,et al.Biosynthesis of Methanol from CO and CH_4 by Methanotrophic Bacteri.Biotechnology,2004,3(1):67-71
    [40]rutkowski M D,Chen H T,Klett M C,Buchanan T L.Integrated Coal to Transportation Liquids Study.Gilbert/Commonwealth inc.Reading,PA,1989,433-476
    [41]Okazaki K,Kishida T,Ogawa K,Nozaki T.Direct conversion from methane to methanol for high efficiency energy system with exergy regeneration.Energy Conversion and Management,2002,43:1459-1468
    [42]Sorensen A L.Economies of Scale in Biomass Gasification Systems.Interim Report,IR-05-030,April 2005
    [43]Ogawa T,Inoue N,Shikada T,Ohno Y.Direct Dimethyl Ether Synthesis.Journal of Natural Gas Chemistry,2003,12:219-227
    [44]Coxworth E.Pros and Cons,and Stages of Development of Ethanol,Biodiesel and Thermal Depolymerization Oil.Technical Report,April 2003
    [45]Mirjanakijevcanin,Djordjevic B,et al.Energy and economy savings in the process of methanol synthesis using Pinch technology.Journal of the Serbian Chemical Society,2004,69 (10):827-837
    [46]Martchal F,Heyen G,Kalitventzeff B,Energy Savings in Methanol Synthesis:Use of Heat Integration Techniques and Simulation Tools.Computers chem.Energy,1997,21 (Supply):511-516
    [47]Marvin L.Assessment of Advanced Process concepts for Liquefaction of low H2:CO Ratio Synthesis Gas Based on The Kolbel slurry Reactor and The Mobil-Gasoline Process.ORNL-5635,1980
    [48]Kingsport T.Commercial-scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process,US Parents cleared by Chicago,2000
    [49]Ohno Y,Inoue N,Ogawa T,et al.Slurry Phase Synthesis and Utilization of Dim ethyl Ether.NKK Technical Review,2001,85:23-28
    [50]Air Products and Chemicals.Inc.Liquid Phase Methanol LaPorte PDU:Modification,Operation,and Support Studies,Final Report to DOE,Contract NO.DE-AC22-87PC90005,1991
    [51]Alwyn P.Energy Process in Methanol Synthesis.United States Patent 4309359
    [52]Jean P.Methanol Synthesis:A Short Review of Technology Improvements Catalysis Today.2001,64:3-8
    [53]Larson E D,Ren T.Synthetic Fuels Production by Indirect Coal Liquefaction.Proceedings Workshop on Coal Gasification for Clean and Secure Energy for China,2003,177-206
    [54]President's Committee of Advisors on Science and Technology.Report to the President on Federal Energy Research and Development for the Challenges of the Twenty-first Century,Panel on Energy Research and Development,Nov,1997.
    [55]Steynberg A P,Nel H G.Clean coal conversion options using Fischer-Tropsch technology.Fuel,2004,83:765-770
    [56]Rutkowski M D,Delallo M R,Klett M Get al.Coal processing plants for hydrogen production with CO_2 capture.Technology:Journal of the Franklin Institute,2002,8:149-158
    [57]Mednick,R L,Romeo,J P.Design and Evaluation of Liquid Phase Methanol Synthesis Technology,Proceedings of U.S DOE/FE Indirect Liquefaction Contractor's Review Meeting,1988,15-17
    [58]Dong Y,Steinberg M.Hynol-an Economical Process for Methanol Production from Biomass and Natural Gas with REUDced CO_2 Emission.Int.J.Hydrogen Energy,1997,22(10,11):971-977
    [59]Li K,Jiang D.Methanol Synthesis from Syngas in the Homogeneous System.Journal of Molecular Catalysis A:Chemical,1999,147:125-130
    [60]宋维端,肖任坚,房鼎业.甲醇工学.北京:化学工业出版社,1991
    [61]赵家乐,李好管.甲醇工业进展评述.上海化工,2001,2:32-35
    [62]王桂轮,李成岳.甲醇合成路线及其进展.现代化工,2000,20(8):25-27
    [63]张学仲.我国第一套20万t/a甲醇国产化装置设计特点.化工设计,1996,2:11-15
    [64]霍华林.国产化20万t/a低压合成甲醇装置的特点.天然气化工,1996,21(5):30-33
    [65]高俊文,张勇,霍尚义.国内外合成甲醇催化剂研究进展.工业催化,1999,5:9-17
    [66]王发利.甲醇催化剂现状及其发展趋势.天然气化工,1992,12(2):75-80
    [67]杨福升,齐淑芳.甲醇生产工艺与操作.北京:石油化学工业出版社,1976
    [68]冯静,倪维斗,黄河、李政.采用串联液相甲醇合成的多联产系统变负荷性能的分析.动力工程,2008,28(2):327-332
    [69]林汝谋,金红光.热力循环-工程热力学的一个永恒研究方向.燃气轮机技术,2002,15(4):1-8
    [70]林汝谋,蔡睿贤,金红光,段立强.燃气轮机总能系统技术及在我国发展问题.燃气轮机发电技术,2002,4(1):2-6
    [71]蔡睿贤,林汝谋.IGCC是中国发展高效率、低污染、少用水燃煤电站的一项高新技术.中美专家关于整体煤气化联合循环(IGCC)技术报告,DOE/FE-0357,1 996,73-80
    [72]焦树建.论IGCC技术在石化企业中的应用.燃气轮机技术,1999,12(4):8-14
    [73]段立强,林汝谋等.新型IGCC系统研究与概念设计.工程热物理学报,2002,23(2):139-143
    [74]Stambler I.Advanced Technology Gas Turbines are Good Match for IGCC Operation.Gas Turbine World,2000,30(1):36-39
    [75]Corman J C,Todd D M.Technology Considerations for Optimization IGCC Plant Performance [A].ASME Paper,93-GT-358,1993.1-9
    [76]徐刚,林汝谋,金红光.IGCC系统多目标性能统一量化评价准则.工程热物理学报,2005,26(4):545-548
    [77]焦树建.IGCC技术发展的回顾与展望.电力建设,2009,(30)1:1-7
    [78]Harry Jaeger.What it takes to equip IGCC and PC plants for CO_2 capture and storage.Gas Turbine World,2007,37(2):11-21.
    [79]焦树建.有关我国发展IGCC技术的再思考.华电技术,2008.30(4):1-9
    [80]焦树建.IGCC某些工作系统的设计经验.燃气轮机技术2007,20(1):1-8
    [81]段立强.IGCC系统全工况特性与设计优化以及新系统开拓研究.中国科学院研究生院博士学位论文,2002
    [82]江丽霞.整体煤气化联合循环系统特性及其蒸汽系统综合优化的研究.中国科学院研究生院博士学位论文,2000
    [83]Tomlinson L O,Rose R S.Combined Cycle Repowering for Steam Plant Efficiency Improvement.GER- 3410,1984
    [84]林汝谋,蔡睿贤.燃煤联合循环发电技术.能源部特邀综合研究报告,1992
    [85]林汝谋,金红光,蔡睿贤,邓世敏.整体煤气化联合循环系统研究方向与进展.燃气轮机技术,2002
    [86]Corman J C,Todd D M,Technology Considerations For Optimization IGCC Plant Performance,ASME paper,93-GT-358, 1993
    [87]Sarabchi K,Polley G T.Thermodynamical Optimization of A Combined Cycle Plant Performance,ASME paper,94-GT-304,1994
    [88]DOE/USA.Clean Coal Technology Demonstration Program.1993
    [89]Benjamin,Hsieh C B.Overview of Clean Technology in the United States.The United States of America and the People's Republic of China Experts Report on Integrated Gasification Combined-Cycle Technology (IGCC),1996
    [90]焦树建.烧煤的燃气-蒸汽联合循环装置.北京:清华大学出版社,1994
    [91]焦树建.论IGCC系统的发展现状和趋势.燃气轮机技术,1995,8(1):1-8,39
    [92]林汝谋,蔡睿贤,肖云汉.整体煤气化联合循环-燃煤联合循环发电技术之一.燃气轮机技术,1993,6(4):1-8
    [93]许世森,危师让,董卫国.中国IGCC技术的研究利发展.中美清洁能源技术论坛,Ⅱ-13-Ⅱ192:13-19
    [94]林公舒.清洁煤技术在我国的进展与启示.燃气轮机技术,1999,12(1):7-11
    [95]毛建雄,毛健全,赵树民.煤的清洁燃烧.北京:科学出版社,1998
    [96]Cai R,Lin R,Xiao Y,Xu D.Coal-Fired Combined Cycle Power Generation Technology with High Efficiency,Low Pollution,and Low Water Consumption.UNESCO.Senior Conference of Cleaning Coal-Fired Technology in China,Beijing,1993
    [97]焦树建.对目前世界上五座IGCC电站技术的评估.燃气轮机技术,1999,12(2):1-15
    [98]江哲生.中国洁净煤发电技术的展望.中华人民共和国国家电力公司科技教育局,1997
    [99]林汝谋,蔡睿贤,肖云汉,徐大懋.先进的燃煤联合循环发电技术.动力工程,1994,14(4):1-6
    [100]林汝谋,蔡睿贤,整体煤气化联合循环发电技术的综合研究.中国科学院能源委员会1996年年会特邀报告,太原,1996;发电设备,1998,134(2):31-37
    [101]焦树建.整体煤气化燃气—蒸汽联合循环(IGCC).北京:中国电力出版社,1996
    [102]中国科学院工程热物理研究所,美国杜兰大学.中美专家关于整体煤气化联合循环(IGCC)技术报告,DOE/FE-0357,1996
    [103]Jin H,and Ishida M.A New Advanced IGCC Power Plant with Chemical-Looping Combustion[C].Beijing:Proc.of TAIES'97,1997.548-553
    [104]Paolo C,Givanni L.CO2 Emission Abatement in IGCC Power Plants by Semi-closed Cycles,Part A:With Oxygen-blown Combustion.ASME Paper,98-GT-384,1998
    [105]中国科学院工程热物理研究所,美国杜兰大学.中美专家关于整体煤气化联合循环(IGCC)技术报告,DOE/FE-03 57,1996
    [106]中国IGCC示范项目可行性研究课题组.整体煤气化联合循环(IGCC)发电示范项目技术可行性研究.内部报告,1998
    [107]Destec Energy Inc.IGCC Pre-Feasibility Study for Chinese IGCC Team,1994
    [108]刘泽龙,金红光,高林,郝少军,蔡睿贤.水煤浆与干粉给料方式两种IGCC系统的分析,工程热物理学报.2003,24(1):1-4
    [109]李政,王天骄,韩志明,郑洪韬,倪维斗.Fexaco煤气化炉模型研究(2)—计算结果及分析.动力工程,21(4):1316-1319
    [110]Jackson,R G.Polygeneration System for Power and Methanol Based on Coal Gasification.Coal Conversion,1989,3:60-64
    [111]Wen H.Mohammed-zadeh Y.Economics of gasification integrated power-chemical co-production plants.In International Exhibition & Conference for the Power Generation Industries - Power-Gen,1997,92
    [112]Carapellucci R,Cau G,Cocco D.Performance of Integrated Gasification Combined Cycle Power Plants Integrated with Methanol Synthesis Processes.Proc Instn Mech Engrs,2001,215 (Part A):347-356
    [113]Chiantore P,Del B R.Integrated Residue/Orimulsion Gasification for Coproduction of Methanol and Electricity.In Thirteenth EPRI Conference on Gasification Power Plants.San Francisco,California,1994,23-25
    [114]Weber W H,Mednik R L,Bradshaw D T.Methanol Coproduction:Strategies for Effective Use of IGCC Power Plants.In Proceedings of the American Power Conference,1988,50:288-293.
    [115]Tsuruno S,Kaneko Y,Fujimoto S.Gas Turbine Cycle with Decomposing Methanol.Proceedings and Communications of VI International Symposium on Alcohol Fuels Technology,1984,385-390.
    [116]Klaeyle MM S,Laurent R,Nandjee F.New Cycles for Methanol-Fuels Gas Turbines.ASME Paper 83-GT-60,1983.
    [117]Karpuk M E,Schell D J.Testing of a Small Combustion Turbine Burning Reformed Methanol.Proceedings and Communications of VI International Symposium on Alcohol Fuels Technology,1984,236-241
    [118]Carapellucci R,Risalvato V,Burno C.Performance and Emissions of CRGT Power Generation Systems with Reformed Methanol.Proc.IECEC 1996,2:707-712.
    [119]Carapellucci R,Cau G,Cipollone R.Improving Gas Turbine System Performances Through Waste Heat Reformed Methanol Fuelling.The Second Inter.Conference of Energy and Environment toward the year 2000,Capri,June 3-5
    [120]Cocco D,Tola V,Cau G.Performance Evaluation of DME Fuelled Gas Turbines with Thermochemical Recuperation.Proceedings of The Inter.Conference ECOS 2003,Copenhagen,Denmark,2003.957-964
    [121]Air Products and Chemicals,Inc.Liquid Phase Methanol LaPorte PDU:Reaserch and Engineering Study.Final Report to DOE,Contract NO.DE-AC22-81PC30019,1991
    [122]Muramatsu A,Sato H.et al.Methanol Synthesis from Blast Furnace Off Gas.ISIJ International,1993.33 (11):1144-1149
    [123]Spath P L,Dayton D C.Preliminary Screening-Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.Technical report.2003
    [124]Brown W R,Moore RB.Flexible Electric Power Generation—The Integrated Gasification/Liquid Phase Methanol (LPMEOH Demonstration Project.Third Annual Clean Coal Technology Conference,Chicago.Illinois,1994,September 6-8,
    [125]Frenduto F S,Osterstock E R,Snyder G D.(Air Products and Chemicals,Inc.). Cost-Effective Dispatchable Power from a Gasification Combined-Cycle System:Liquid-Phase Methanol Energy Storage.Proceedings of the Sixth International Conference and Exhibition for the Power Generating Industries (Book Ⅳ,Volume Ⅹ),Dallas,Texas,1993
    [126]Brown W R,Fenduto F S,(Air Products and Chemicals,Inc.).Fuel and Power Coproduction-The Integrated Gasification/Liquid-Phase Methanol (LPMEOH Demonstration Project.First Annual Clean Coal Technology Conference,Cleveland,Ohio,1992
    [127]Williams R H,Larson E D.A comparison of direct and indirect liquefaction technologies for making fluid fuels from coal.Energy for Sustainable Development 1,2003,7(41):103-129
    [128]Kei Yamashita,Leonardo Barreto.Energyplexes for the 21st Century:Coal Gasification for Co-producing Hydrogen,Electricity and Liquid Fuels.
    [129]麻林巍.以煤气化为核心的甲醇、电的多联产系统研究.博士学位论文.2003
    [130]Jin H,Han W,Gao L.Multi-functional Energy System (MES) with Multi Fossil Fuels and Multi Products.ASME Trans.J.Engineering for Gas Turbine and Power,2007,129(2):331-337
    [131]林汝谋,金红光,高林.化工动力多联产系统及其集成优化机理.热能动力工程,2006,21(4):331-337
    [132]倪维斗,李政.以煤气化为核心的多联产能源系统.煤化工,2003,1:3-10
    [133]高林.煤基化工—动力多联产系统开拓研究[D].中国科学院工程热物理研究所,2005
    [134]韩巍.多能源互补的多功能能源系统及其集成机理[D].中国科学院工程热物理研究所,2006
    [135]倪维斗,郑洪弢,李政,江宁.多联产能源系统.中国能源,2003,2:7-10
    [136]倪维斗,郑洪弢,李政.以多联产为支撑点的“合成气城市”规划—煤炭城市的可持续发展.中国人口资源与环境,2003,13(1):39-43
    [137]Gao L.,Jin H.,and Liu Z..Exergy Analysis of Coal-Based Polygeneration System for Power and Chemical Production,Energy - The International Journal,2004,29:2359-2371
    [138]张斌,倪维斗,李政.考虑减排二氧化碳的几种大规模制氢系统的技术经济性分析(上).天然气工业,2004,24(1):101-106
    [139]张斌,倪维斗,李政.考虑减排二氧化碳的几种大规模制氢系统的技术经济性分析(下).天然气工业,2004,24(2):104-108
    [140]倪维斗,张斌,李政,吕俊复.煤基强化石油开采的多联产方案研究.煤炭转化,2004,27(1):1-8
    [141]Jin H,Hong H,Wang B,Han W,Lin R.A New Principle of Synthetic Cascade Utilization of Chemical energy and Physical energy.Science in China Ser Engineerging & Materrical Science,2005,48(2):163-179
    [142]金红光,王宝群.化学能梯级利用机理探讨.工程热物理学报,2004,25(2):181-184
    [143]Jin H,Ishida M.A Novel Gas Turbine Cycle With Hydrogen-Fueled Chemical-Looping Combustion.Int.J.Hydrogen Energy,2000,25:1209-1215.
    [144]Ishida M.Thermodynamics Made Comprehensible.Nova Science Publishers,Inc.New York,2002
    [145]Jin H,Ishida M.Graphical Exergy Analysis of Complex Cycles.Int.J.Energy,1993,18(6):615-625
    [146]Jin H,Ishida M,Kobayashi M,Nunokawa M.Exergy Evaluation of Two Current Advanced Power Plants:Supercritical Steam Turbine and Combined Cycle.ASME J.of Energy Resources Technology,1997,119:250-256
    [147]Jin H,Ishida M.Graphical Exergy Analysis of a New Type of Advanced Cycle with Saturated Air.Heat Recovery Systems & CHP,1994,14(2):105-1 16
    [148]Ishida M,Kawamura K.Energy and Exergy Analysis of a Chemical Process System with Distributed Parameters Based on the Energy-direction Factor Diagram.Industrial Engineering and Chemistry Process Design & Development,1982,21:690-702
    [149]Jin H,and Ishida M.Graphical Exergy Analysis of Complex Cycles.Energy-The International Journal,1993,18:615-625
    [150]姚昭章,郑明东.炼焦学.北京:冶金出版社,2005.
    [151]Lozza G,Chiesa P.Natural Gas Decarbonization to Reduce CO_2 Emission from Combined Cycles-part Ⅱ:Steam-methane Reforming.ASME Trans.,Journal of Engineering for Gas Turbines and Power,2002,124:89-95.
    [152]Chiesa P,Lozza G,Mazzocchi L.Using Hydrogen as Gas Turbine Fuel.ASME Trans.,Journal of Engineering for Gas Turbines and Power,2005,127:73-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700