无线多跳中继网络协作资源分配与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下一代无线通信网络中,正交频分多址接入(orthogonal frequency division multiple access, OFDMA)技术把信道分成若干正交的子载波,将高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输,从而有效避免符号间的干扰,已经成为B3G和未来4G网络的主流多址接入技术。中继的引入不仅能够扩大小区覆盖面积,而且能够改善小区边缘用户的服务质量以提高系统吞吐量,与基站链路质量较差的移动站可以选择通过中继站(Relay Station, RS)转发与基站通信,以提高频谱和能量的使用效率。组建OFDMA无线多跳中继网络的各种关键技术成为近年来的研究热点。另外,应对全球气候变化正在成为关乎各国经济和社会发展的重大议题,低碳经济和节能减排已经成为全世界的关注焦点。过去对通信技术的研究很少关注节能这一目标,因此,针对基于OFDMA的无线多跳中继网络,本文围绕系统节能这一中心目标,开展频谱资源和功率资源的协作与优化方法研究。
     首先,传统OFDMA无线网络引入中继后,全部频谱资源不仅供基站到移动站的直传链路使用,还必须留有一部分供基站到中继站链路和中继站到移动站链路使用。频谱在小区内需要重新规划以使其在三种链路上能够有效使用。现有的动态频谱规划策略都是根据链路负载需求或干扰情况等以提高系统吞吐量为目标进行频谱规划。本文综合考虑用户的速率需求、信道质量和干扰情况,以能效为优化目标提出一种基于能效的动态频谱规划策略。基于实际系统中离散的自适应调制编码(Adaptive modulation and coding scheme, AMC)建立了能效最优化频谱规划模型,并采用最优化理论中的整数规划对模型进行求解。分析结果表明,该方案在保证用户速率需求的情况能够降低总发射能量,提高能量使用效率,并且对用户不均匀分布场景有较强的适应性。
     接着,针对负载失衡或热点覆盖多跳中继网络,提出一种基于负载均衡的自适应中继选择和频谱转移联合优化策略。定义一种衡量一个站点对周围同频站点干扰程度的干扰量,为某站点对其他站点的干扰提供了量化分析指标。当用户申请接入时,首先根据各条链路的信道状况选择首选接入站点和备选接入站点,当首选接入站点负载过重而无足够资源使其接入时,综合比较接入备选站点和从同扇区的其他站点向首选站点进行频谱转移的系统性能,从而选择一种维持系统性能较好的方式接入。分析结果表明,该算法在中心小区的频谱效率和阻塞率都优于单一的基于负载均衡的中继选择策略和单一的基于负载均衡的频谱转移策略,并且平均干扰量也最低,对周围小区的系统性能影响较小。
     随后,针对非满负荷业务,在保证用户服务质量的情况下,以节能为目标为OFDMA多跳中继网络具体的资源分配建立一般化的模型,即动态分配时域资源、频域资源和功率资源,所建模型具有很强的灵活性和适应性,不仅适用于固定时域分配系统,也适用于非固定时域分配系统,使用拉格朗日乘数法对模型求解。考虑到算法复杂度,应用指派问题中的匈牙利算法设计出一种简化的资源分配策略。理论和仿真结果表明,最优节能资源分配算法能够得到能效的最大化,而简化节能资源分配算法与最优节能资源分配算法在能效上的差距不足5%,但算法复杂度得到了显著降低。而且,动态分配时域资源比固定时域分配对用户分布不均或链路分布不均有更强的适应性。
     另外,与现有资源分配方法中大都直接为用户分配资源不同,在资源分配前首先执行调度策略,把用户信息转换成数据包的优先级队列,以保证公平性和较高的吞吐量。以节约能量消耗为目标,为OFDMA中继网络建立离散型的时域、子载波、比特和功率联合分配模型,并给出最优化求解方法,同时,通过把原始问题分解成三个子问题,提出一种基于分解的简化次优算法。在功率受限系统中,当用户数较少而资源充足时,队列中的所有数据包都能够在一个资源分配周期传输,此时所提节能算法可以尽可能的降低系统能量消耗。当用户数较多而资源不足时,系统将使用最大功率尽可能的服务更多的数据包,用户调度算法将在使用最大功率时保证公平性及吞吐量。分析结果表明,所提的简化次优算法所消耗的能量接近最优算法。另外,由于所提的资源分配策略是基于数据包的优先级队列,所以本文也提出了一种考虑了中继选择结果和用户服务类型的调度策略,结果表明,所提调度算法的公平因子与传统比例公平算法接近,并且吞吐量要优于传统比例公平算法。
     最后,针对上行方向研究两个单天线的用户与一个双天线的基站组成2*2虚拟MIMO的情况,将虚拟MIMO用户配对策略与调度算法结合考虑,提出一种基于信噪比门限的虚拟MIMO部分用户配对算法。该策略中,接入系统的用户并非全部采用配对策略,作为吞吐量和公平性的折中考虑,根据其信干噪比值决定其是否采用配对传输。信道条件较好的用户采用配对传输而不会降低其服务质量,信道条件较差的用户采用直传方式从而保证其服务质量。分析结果表明,所提配对算法与比例公平调度联合时的吞吐量最高。另外,通过改变信干噪比门限值可以调节以配对方式传输的用户数量,在实际系统中,可以根据系统资源的使用情况动态的调节信干噪比门限,以获得吞吐量和用户服务质量的均衡。
In the next-generation wireless communication networks, orthogonal frequency division multiplex access (OFDMA) has been the main multiple access technology for B3G and4G networks for providing high spectral efficiency through dividing the band into a number of orthogonal subcarriers. This is due to the fact that OFDMA has the ability to combat frequency-selective fading so as to avoid inter-symbol interference (ISI). Relay technology is able to provide high data rate and extend the high data rate coverage to the edge of cell. The users under unfavorable channel conditions can select a relay station (RS) for forwarding their data information to the base station (BS) to maintain the quality of service (QoS). The key technologies to support OFDMA wireless relay networks become researce hotspot in recent years. Besides, the response to the global climate change is becoming a major issue related to the national economic and social development, low carbon economy, and the energy conservation has become the focus attention of the world. The research for wireless communication technology in the past years pay little attention to the goal of energy saving, therefore, for OFDMA wireless relay networks, this dissertation investgates the cooperation and optimization of spectrum resource and power resource for the key goal of system energy saving.
     Firstly, in relay-enhanced OFDMA networks, the sub-carriers are not only allocated to the link from BS to MS, but also to the link from BS to relay station (RS) and from RS to MS. The spectrum needs to be reorganized to make it effectively used on the three links.The optimization goal of related work is throughput maximization according to link load and interference situation. To maximize energy-efficiency, we propose an energy-efficiency spectrum planning scheme, which considers the users'data rate requirement, the channel quality and interference situation. The energy-efficiency spectrum planning problem is formulated in OFDMA relay networks based on the discrete adaptive modulation and coding scheme (AMC) in practice system, which is solved by integer programming of optimization theory. The results of the analysis show that the proposed scheme consumes less energy than other spectrum planning scheme to transmit the same bits, and has strong adaptability to the scene with non-uniform user distribution.
     Secondly, for load imbalance or hotspot coverage wireless relay network, we propose an adaptive load balance based relay selection and spectrum transition joint scheme. We propose an interference capacity of the stations, which reflects the interference to the surrounding co-channel stations. The interference capacity provides a quantitative interference metric to the surrounding stations on the capacity of the system. When a user is required to access the system, the system chooses a preferred access station and an alternative access station for the user according to the channel quality. If the preferred access station is overloaded and does not have enough resources for the user, we compare the performance between accessing to the alternative station and accessing to the preferred station with spectrum transition from other stations in the same sector, and choose a better way to maintain the good system performance. The results of the analysis show that the spectrum efficiency and blocking probability of the proposed scheme in the center cell are superior to that of the independent relay selection scheme and the independent load balance based spectrum transition scheme, and the average interference capacity of the proposed scheme is the lowest, which has less impact on the performance of the surrounding stations.
     Thirdly, for non-full-buffer traffic, to ensure the users'quality of service, a generalized model for energy saving resource allocation issue, which dynamically allocates time-domain, frequency-domain resources and power resource, is established. Due to the strong flexibility and adaptability, the model may apply to not only the fixed time-domain allocation system, but also the non-fixed time-domain allocation system, which is sovled by using the Lagrange multiplier algorithm. Taking into account the complexity of the algorithm, a simplified resource allocation strategy is proposed by using the Hungarian method. The theory and simulation results show that the optimal algorithm can get the energy-efficiency maximization, and the energy-efficiency difference between the simplified algorithm and the optimal algorithm is less than5%, however, the complexity has been significantly reduced. Moreover, the dynamic time-domain allocation has more adaptive in uneven user distribution or link distribution than fixed time-domain allocation.
     Fourthly, different from allocating resources for users in recent works, before resource allocation a scheduling scheme is carried out to assign different priorities to the packets in the queue to guarantee the fairness and better system throughput. To minimize the energy consumption, the time domain, sub-carriers, bit and power resource allocation problem is formulated in OFDMA relay networks, while the optimal solution is given in this paper. However, an simplified efficient algorithm is proposed based on decomposing the original optimization problem into three subproblems. In power constraint system, when the number of users is less and the resources are sufficient, all the packets in the queue can be transmitted in a resource allocation time cycle, and the proposed energy saving resource allocation algorithm may reduce the system energy. When the number of users is lager and the resources are not sufficient, the system will serve for the packets as much as possible using the maximum transmission power, the scheduling scheme can guarantee the fairness and better system throughput with power constraint. The results of the analysis show that the energy consumption of proposed scheme is quite close to that of optimal algorithm. Because the proposed resource allocation algorithm is based on the packets queue, we also propose a novel user scheduling scheme, which considers the relay selection results and the service types. Simulation results show that the system throughput of proposed scheduling scheme is larger than that of PF, while its fairness index is close to that of PF.
     Lastly, this dissertation investigates the virtual MIMO pairing scheduling scheme which groups two user equipments (UEs) with individual antenna to construct a2×2VMIMO channel communicating with a base station (BS) with two receive antennas simultaneously in the uplink, and proposes a novel partly user pairing scheduling based on the SINR threshold combined with the system packet scheduling scheme, in which not all the active users are served with pairing transmission mode, as a trade-off consideration between high spectral efficiency and good quality of service, the proposed scheme determines a user whether or not using pairing transmission mode according to its SINR. The users with good channel condition can communicate with the BS using pairing transmission mode while do not decline the quality of service, while the users with poor channel condition communicate with the BS using the direct transmission mode to ensure the quality of service. The results of the analysis show that the proposed scheme combined with the Proportional Fair (PF) packet scheduling is able to reach greater system throughput. Moreover, the number of users using pairing transmission mode can be controlled by adjusting the SINR threshold, in real system, we can adjust the SINR threshold according to the usage of system resources to obtain the trade-off between the throughput and the quality of service.
引文
[1]沈嘉等.3GPP长期演进(LTE)技术原理与系统设计[M].北京:人民邮电出版社,2008.
    [2]Pabst R, Walke B, Schultz D, et al.. Relay-based deployment concepts for wireless and mobile broadband cellular radio [J]. IEEE Communications Magazine,2004,42(9):80-89.
    [3]向征.下一代无线多跳中继网络资源分配与组网技术研究[D].[博士论文].西南交通大学,2011.
    [4]Fotheringham V, Sharma C.Wideband 3G to Broadband 4G:Collision and Convergence of Standards. Wireless Broadband:Conflict and Convergence,2008:167-189.
    [5]杜滢,方惠英,刘扬.IEEE 802.16m宽带无线技术与系统设计[M].北京:人民邮电出版社,2010:12-15.
    [6]郭梯云等.移动通信[M].西安:西安电子科技大学出版社,2000.
    [7]Hu Hui-ning, Yanikomeroglu H, Falconer D, et al.. Range Extension without Capacity Penalty in Cellular Networks with Digital Fixed Relays [C].2004 IEEE Global Telecommunications Conference (GLOBECOM'04),2004:3053-3057.
    [8]Khan F. Capacity and Range Analysis of Multi-Hop Relay Wireless Networks [C].2006 IEEE 64th Vehicular Technology Conference (VTC-2006 Fall), Montreal,2006:1-5.
    [9]Salem M, Adinoyi A, Rahman M, et al.. An overview of Radio Resource Management in Relay-Enhanced OFDMA-Based Networks [J]. IEEE Communications Survey & Tutorials, 2010,12(3):422-438.
    [10]Balakrishnan R, Yang X, Venkatachalam M, et al.. Mobile relay and group mobility for 4G WiMAX networks [C].2011 IEEE Wireless Communications and Networking Conference (WCNC'll), Cancun,2011:1224-1229.
    [11]Raman C, Foschini G, Valenzuela R, et al.. Half-Duplex Relaying in Downlink Cellular Systems [J]. IEEE Transactions on Wireless Communications,2011,10(5):1396-1404.
    [12]Ng D.W.K, Schober R.Cross-Layer Scheduling for OFDMA Amplify-and-Forward Relay Networks [J]. IEEE Transactions on Vehicular Technology,2010,59(3):1443-1458.
    [13]Fareed M.M, Uysal M. On Relay Selection for Decode-and-Forward Relaying [J].IEEE Transactions on Wireless Communications,2009,8(7):3341-3346.
    [14]IEEE 802.16m-08/003r7, IEEE 802.16m System Description Document (SDD) [S], 2009.
    [15]刘辉等.基于OFDM的无限宽带网络:设计与优化[M].西安:西安交通大学出版社,2008.
    [16]I-Kang Fu, Yih-Shen Chen, Paul Cheng, et al.. Multicarrier technology for 4G WiMax system [WiMAX/LTE Update] [J].IEEECommunications Magazine,2010,48(8):50-58.
    [17]Ghosh A, Ratasuk R, Mondal B, et al.. LTE-advanced:next-generation wireless broadband technology [J]. IEEE Wireless Communications,2010,17(3):10-22.
    [18]Mokari N, Javan M.R, Navaie K. Cross-Layer Resource Allocation in OFDMA Systems for Heterogeneous Traffic with Imperfect CSI[J].IEEE Transactions on Vehicular Technology, 2010,59(2):1011-1017.
    [19]Sampath H, Talwar S, Tellado J, et al.. A Fourth-generation MIMO-OFDM Broadband Wireless System:Design, Performance, and Field Trial Results [J]. IEEE Communications Magazine,2002,40(9):143-149.
    [20]Salem M, Adinoyi A, Yanikomeroglu H, et al.. Opportunities and Challenges in OFDMA-Based Cellular Relay Networks:A Radio Resource Management Perspective [J]. IEEE Transactions on Vehicular Technology,2010,59(5):2496-2510.
    [21]方旭明等.下一代无线因特网技术:无线mesh网络[M].北京:人民邮电出版社,2006:8-9.
    [22]华为技术有限公司.基于OFDMA-FDD的无线中转通信系统及方法[P].中国,200510117477.9,2005年10月。
    [23]FUJITSU CO LTD [JP], Bandwidth Reuse in a Multi-hop Mobile Relay System, EP1919142 (A2), May 2008.
    [24]Zhao Yue, Fang Xu-ming, and Zhao Zheng-guang. Interference Coordination in Compact Frequency Reuse for Multihop Cellular Networks [J].IEICE Transactions on Fundamentals,2010, E93-A(11):2312-2319.
    [25]Li Ping, Rong Meng-tian, Liu Tao, et al.. Reuse Partitioning Based Frequency Planning for Cellular Networks with Two-hop Fixed Relay Nodes [C].2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'06). Helsinki: IEEE,2006:1-5.
    [26]Zhao Yue, Fang Xu-ming, Hu Xiao-peng, et al.. Fractional Frequency Reuse Schemes and Performance Evaluation for OFDMA Multi-hop Cellular Networks [C]. IEEE International Conference on Testbeds and Research Infrastructures for the Development of Networks & Communities and Workshops, Washington DC USA,2009:1-5.
    [27]Lee W, Nguyen M V, Jeong J, et al.. An Orthogonal Resource Allocation Algorithm to Improve the Performance of OFDMA Based Cellular Wireless Systems Using Relays [C]. IEEE Consumer Communications and Networking Conference,2008:917-921.
    [28]Li Ping, Rong Meng-tian, Xue Yi-sheng, et al.. Spectrum Partition and Relay Positioning for Cellular System Enhanced with Two-Hop Fixed Relay Nodes [J]. IEICE Transactions on Communications.2007, E90-B(11):3181-3188.
    [29]Pei Yu-shan, Tian Hui, Wu Tong, et al.. Frequency Planning Scheme Based on Interference Coordination for OFDM-Relay Systems [J]. IEEE Communications Letters, 2011,15(1):13-15.
    [30]Ma Zhang-chao, Xiang Wei, Long Hang, et al.. Proportional Fair Resource Partition for LTE-Advanced Networks with Type I Relay Nodes [C].2011 IEEE International Conference on Communications (ICC 11), Kyoto:IEEE,2011:1-5.
    [31]张天魁,曹禄,栗忠峰,等.用于中继蜂窝网络的动态频率规划算法[J].北京邮电大学学报,2011,34(1):16-20.
    [32]Liang Jian, Yin Hui, Chen Hao-kai, et al.. A Novel Dynamic Full Frequency Reuse Scheme in OFDMA Cellular Relay Networks [C].2011 IEEE Vehicular Technology Conference (VTC Fall 2011), San Francisco:IEEE,2011:1-5.
    [33]Hansa M O, Alouini M S. End-to-End Performance of Transmission System with Relays over Rayleigh-Fading Channels [J]. IEEE Transactions on Wireless Communications, 2003,2(6):1126-1131.
    [34]Bletsas A, Khisti A, Reed D P, et al..A Simple Cooperative Diversity Method Based on Network Path Selection[J]. IEEE Journal on Selected Areas Communications,2006, 24(3):659-672.
    [35]Krikidis I, Thompson J S, Mclaughlin S, et al.. Max-Min Selection for Legacy Amplify-and-Forward Systems with Interference [J]. IEEE Transactions on Wireless Communications,2009,8(6):3016-3027.
    [36]Ryu H S, Lee J S, and Kang C G. Relay Selection Scheme for Orthogonal Amplify-and-Forword Relay-enhanced Cellular System in a Multi-cell Environment [C]. 2010 IEEE 71st Vehicular Technology Conference (VTC Spring 2010), Taipei:IEEE, 2010:1-5.
    [37]Lee D, Lee J H. Outage Probability for Opportunistic Relaying on Multicell Environment [C].2009 IEEE 69th Vehicular Technology Conference (VTC Spring 2009), Barcelona:IEEE,2009:1-5.
    [38]Negi A, Singh S. Power saving approaches in 2-hop relaying cellular networks[C]. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2005). Berlin,2005:1616-1620 Vol.3.
    [39]Wang Beibei, Han Zhu, Liu K.J.R. Distributed Relay Selection and Power Control for Multiuser Cooperative Communication Networks Using Buyer/Seller Game[C]. IEEE 26th International Conference on Computer Communications (INFOCOM 2007), Barcelona:IEEE, 2007:544-552.
    [40]Jiang Fan, Wang Ben-chao. A Load Balancing Relay Selection Algorithm for Relay Based Cellular Networks [C].2011 IEEE International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2011), Wuhan,2011:1-5.
    [41]Lin Xiao, Cuthbert L. Load Based Relay Selection Algorithm for Fairness in Relay Based OFDMA Cellular Systems [C].2009 IEEE Wireless Communications and Networking Conference (WCNC'09), Budapest:IEEE,2009:1-6.
    [42]Shih K P, Wang S S, Lien C Y. A High Spectral Efficiency and Load-aware Metric for Path Selection in IEEE 802.16j Multi-hop Relay Networks [C].2009 IEEE Symposium on Computers and Communications (ISCC 2009), Sousse,2009:61-66.
    [43]Neely M, Modiano E, and Rohrs C E. Dynamic Power Allocation and Routing for Time-varying Wireless Networks[J]. IEEE Journal on Selected Areas in Communications, 2005,23(1):89-103.
    [44]Salem M, Adinoyi A, Rahman M, et al.. Fairness-aware Radio Resource Management in Downlink OFDMA Cellular Relay Networks[J]. IEEE Transactions on Wireless Communications,2010,9(5):1628-1639.
    [45]黄晓燕,吴凡.下一代无线网络跨层资源管理[M].北京:国防工业出版社,2011.
    [46]Rhee W, Cioffi J. Increase in Capacity of Multiuser OFDM System using Dynamic Sub-channel Allocation [C].2000 IEEE 51st Vehicular Technology Conference (VTC 2000-Spring), Tokyo,2000:1085-1089.
    [47]Jang J, Lee K. Transmit Power Adaptation for Multiuser OFDM Systems[J]. IEEE Journal on Selected Areas in Communications,2003,21(2):171-178.
    [48]Shen Zu-kang, Andrews J, Evans B. Adaptive Resource Allocation in Multiuser OFDM Systems with Proportional Rate Constraints [J]. IEEE Transactions on Wireless Communications,2005,4(6):2726-2737.
    [49]Wong I, Shen Zu-kang, Evans B, et al.. A Low Complexity Algorithm for Proportional Resource Allocation in OFDMA Systems [C].2004 IEEE Workshop on Signal Processing Systems Workshop (SIPS 2004),2004:1-6.
    [50]Wong C Y, Cheng R S, Lataief K B, et al.. Multiuser OFDM with adaptive subcarrier, bit, and power allocation [J]. IEEE Journal on Selected Areas in Communications,1999, 17(10):1747-1758.
    [51]Kim I, Park I, and Lee Y. Use of linear programming for dynamic subcarrier and bit allocation in multiuser OFDM [J]. IEEE Transactions on Vehicular Technology,2006, 55(4):1195-1207.
    [52]Wang W Y, Yan S F, Yang S Y. Optimally joint subcarrier matching and power allocation in OFDM multihop system [J]. Eurasip Journal on Advances in Signal Processing, 2008:1-8.
    [53]Fallgren M. An optimization approach to joint cell, channel and power allocation in multicell relay networks [J]. IEEE Transactions on Wireless Communications,2012, 11(8):2868-2875.
    [54]Tang M W, Wang X X, Wang Y L, et al.. Dynamic resource allocation with threshold in OFDMA-based relay networks [C].2010 IEEE Vehicular Technology Conference Spring (VTC 2010-Spring), Taipei,2010:1-5.
    [55]陈瑾平,何世文,杨绿溪.多小区OFDMA解码转发中继通信系统的分布式资源分配算法[J].电子与信息学报,2012,34(4):787-794.
    [56]Park C W, Lee H J, and Lim J T. Fair semi-distributed resource allocation scheme over relay-enhanced OFDMA networks [J]. IEEE Communications Letters,2012, 16(8):1188一1191.
    [57]黄高飞,郑晖,严一尔,等.OFDMA中继系统资源分配算法研究[J].广州大学学报(自然科学版),2012,11(2):59-64.
    [58]Joung J, and Sun S. Power efficient resource allocation for downlink OFDMA relay cellular networks [J]. IEEE Transactions on Signal Processing,2012,60(5):2447-2459.
    [59]Lin Xiao, and Cuthbert L. Adaptive power allocation scheme for energy efficient OFDMA relay networks[C].200811th IEEE Singapore International Conference on Communication Systems (ICCS'2008), Guangzhou,2008:637-641.
    [60]Chu Feng-Seng, and Chen Kwang-Cheng. Energy efficient OFDMA:Trade-off between computation and transmission energy [C].201122nd IEEE International Symposium on Personal Indoor and Mobile Radio Communications(PIMRC2011), Toronto,2011:96-101.
    [61]Chi eh Yuan Ho, and Ching-Yao Huang. Energy Efficient Subcarrier-Power Allocation and Relay Selection Scheme for OFDMA-Based Cooperative Relay Networks[C].2011 IEEE International Conference on Communications (ICC'2011),Kyoto,2011:1-6.
    [62]Jiang Yun, Zhang Jianhua, Li Xiao fan, et al.. Energy-Efficient Resource Optimization for Relay-Aided Uplink OFDMA Systems[C].2012 IEEE 75th Vehicular Technology Conference (VTC'2012 Spring), Yokohama,2012:1-5.
    [63]Zhang Dan, Ileri O, and Mandayam N. Bandwidth exchange as an incentive for relaying [C].2008 IEEE 42nd Annual Conference on Information Sciences and Systems (CISS'08), Princeton:IEEE,2008:749-754.
    [64]Zhang Dan, Shinkuma R, and Mandayam N. Bandwidth Exchange:An Energy Conserving Incentive Mechanism for Cooperation [J]. IEEE Transactions on Wireless Communications,2010,9(6):2055-2065.
    [65]Krishnan N, Yates R D, Mandayam N, et al. Bandwidth Sharing for Relaying in Cellular Systems [J]. IEEE Transactions on Wireless Communications,2012,11 (1):117-129.
    [66]Kim B G, Lee J W. Joint Opportunistic Subchannel and Power Scheduling for Relay-Based OFDMA Networks with Scheduling at Relay Stations[J]. IEEE Transactions on Vehicular Technology,2010,59(5):2138-2148.
    [67]康桂华.MIMO无线通信原理及应用[M].北京:电子工业出版社,2009.
    [68]GJ.Foschini and M.J.Gans. On limits of wireless communication in a fading environment when using multiple antennas[J]. Wireless Personal Communication,1998, 6:311-335.
    [69]Telatar E. Capacity of multi-antenna Gaussian channels[J]. European Transactions on Telecommunication,1999,10(6):585-595.
    [70]A.Paulraj, R.Nabar, and D.Gore, "Introduction to space-time wireless communications", Cambridge University Press,2003
    [71]Jayaweera S K. Virtual MIMO-based cooperative communication for energy-constrained wireless sensor networks [J]. IEEE Transactions on Information Wireless Communications,2006,5(5):984-989.
    [72]钱雨.3GLTE上行无线资源管理关键技术的研究[D].[博士论文],北京邮电大学,2007.
    [73]3Gpp, "UL Virtual MIMO Transmission for E-UTRA," Nortel, Rl-0501162, San Diego, USA,10th-14th, Oct.2005
    [74]陈旭彬,杨大成.多用户MIMO下一代移动通信关键技术[J].移动通信,2007,10:101-104.
    [75]Pauli V, Lampe L, and Huber J. Differential Space-Frequency Modulation and Fast 2-D Multiple-Symbol Differential Detection for MIMO-OFDM[J]. IEEE Transaction on Vehicular Technology,2008,57(1):297-310.
    [76]赵宸.MIMO-OFDM系统中的盲多用户检测研究[D].[博士论文].吉林大学,2008.
    [77]3Gpp TSG-RAN1 Meeting#42bis."UL Virtual MIMO Transmission forE-UTRA.' R1-051162, San Diego, USA, October 2005
    [78]3Gpp TSG-RAN1 Meeting#43."UL Virtual MIMO Scheduling." R1-051423,Seoul, Korea,November,2005
    [79]3Gpp TSG-RAN1 WG1#43."UL Virtual MIMO System Level Performance Evaluation for E-UTRA." Rl-051422,Seoul,Korea,7th-11th November,2005
    [80]3Gpp TSG-RAN#45, "Uplink adaptive transmission with TP",R1-061235, Shanghai, China,8th-12th May,2006.
    [81]3GPPTSG-RAN1 WG1#43bis, "UL Virtual MIMO System Level Performance Evaluation for E-UTRA", Rl-051422, Seoul, Korea,7th-11th November,2005
    [82]Yang Chao, Fan Bin, Qian Yu, et al.. Adjustable Determinant Pairing Scheduling for Virtual MIMO System[C].2007 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2007), Xiamen,2007:626-629.
    [83]Chen Xia, Hu Hong-lin, Wang Hai-feng, et al.. Double proportional fair user pairing algorithm for uplink virtual MIMO systems[J]. IEEE Transactions onWireless Communications,2008,7(7):2425-2429.
    [84]Li Yong, Wang Wen-bo, Zhang Xiang, et al. Combined Proportional Fair and Maximum Rate Scheduling for Virtual MIMO [C].2008 IEEE 68th Vehicular Technology Conference (VTC-2008 Fall), Calgary,2008:1-4.
    [85]林意如,郭佳,罗汉文,等.基于中继的蜂窝系统频率规划[J].上海交通大学学报,2011,45(3):336-339.
    [86]Zhao Zheng-guang, Fang Xu-ming, Zhu Yue, et al. Two Frequency Reuse Schemes in OFDMA-TDD Based Two-hop Relay Networks [C].2010 IEEE Wireless Communications and Networking Conference (WCNC'10). Sydney:IEEE,2010:1-6.
    [87]Oyman O. Opportunistic Scheduling and Spectrum Reuse in Relay-Based Cellular Networks [J]. IEEE Transactions on Wireless Communications,2010,9(3):1074-1085.
    [88]陈宝林.最优化理论与算法(第2版)[M].北京:清华大学出版社,2005:434-443.
    [89]IEEE 802.16 Working Group.IEEE 802.16j-06/013r3.Multi-hop Relay System Evaluation Methodology(Channel Model and Performance Metric) [S]. New York:IEEE Press,2007.
    [90]Zhang Yan. Handoff Performance in Wireless Mobile Networks with Unreliable Fading Channel[J]. IEEE Transactions on Mobile Computing,2010,9(2):188-200
    [91]Hussain S, Zaidi S.R, Dorsinville R, et al.. Handoff in mobile WiMAX:Forced handoff scheme with load balancing in mobile WiMAX networks[C].2012 IEEE 37th Conference on Local Computer Networks Workshops (LCN Workshops), Clearwater,2012:666-672.
    [92]赵越,方旭明,黄博,等.基于负载均衡的OFDMA多跳中继网络资源分配策略[J].西南交通大学学报,2013,48(2):94-101.
    [93]Wang Ben-xu, Wen Xiang-ming, Su Dong-ming, et al. User Satisfaction Based Resource Allocation for OFDMA Relay Networks in the Resource-constrained System [C].2010 IEEE Second International Conference on Future Networks (ICFN"10), Sanya, 2010:304-308.
    [94]3GPP TR36.814 v9.0.0.Further Advancements for E-UTRA Physical Layer Aspects (Release 9) [S]. March 2010.
    [95]Nassar K, Pascal B, Philippe C, et al. Resource Allocation for Downlink Cellular OFDMA Systems-Part I:Optimal Allocation [J]. IEEE Transactions on Signal Processing, 2010,58(2),720-734.
    [96]Xiong Cong, Li G Y, Zhang Shun-qing, et al. Energy-and Spectral-Efficiency Tradeoff in Downlink OFDMA Networks [J]. IEEE Transactions on Wireless Communications,2011, 10(11):3874-3886.
    [97]Dang Wenbing, Tao Meixia, Mu Hua, et al.. Subcarrier-Pair Based Resource Allocation for Cooperative Multi-Relay OFDM Systems[J]. IEEE Transactions on Wireless Communications,2010,9(5):1640-1649.
    [98]Fathi M, Taheri H. Utility-based resource allocation in orthogonal frequency division multiple access networks[J]. The Institution of Engineering and Technology,2010, 4(12):1463-1470.
    [99]Huang Ya-nan, Fang Xu-ming, and Zhao Yue. An Energy Saving Scheduling Scheme for OFDMA Two-hop Relay Systems[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences,2010, E94-A(11):2320-2326.
    [100]Ralf Lrmer. Next Generation Mobile Networks Radio Access Performance Evalution Methodology. June 2007.
    [101]Kim H, Kim K, Han Y, et al. A proportional fair scheduling for multicarrier transmission systems[J]. IEEE Communications Letters,1997,9(3):210-212.
    [102]3Gpp, "UL Virtual MIMO System Level Performance Evaluation for E-UTRA," Nortel, Rl-051422, Seoul, Korea,7th-11th, November.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700