移动WiMAX中VoIP上行链路调度和资源管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动WiMAX是一项前途无量的无线宽带技术。近几年来,随着各种VoIP编解码器CODECs技术的发展,VoIP已成为最有前景的互联网应用之一。移动WiMAX和VoIP都大大节省了成本。因此,两者的完美结合具有广阔应用前景。但是,上行链路调度和资源管理仍然是一个会严重影响移动WiMAX VoIP部署的主要问题。上行链路调度和资源管理是服务基站(BS)的MAC层对可分配传输资源进行有效管理的调度操作,涉及调度业务、功率节省等操作,以达到最佳的资源利用率,提高系统性能。对于VoIP业务,IEEE 802.16e标准只定义了MAC层上行链路调度功能模块和资源管理,以及基本内容和模块的实施细则,但没有提出任何具体可行的计划或实施算法。因此,解决最常用的移动WiMAX VoIP编解码器的上行链路调度和资源管理方面的问题,具有非常重要的学术意义和实用价值。
     本文对IEEE 802.16e移动WiMAX标准、VoIP的编解码器技术进行了系统的分析,对移动WiMAX VoIP编解码器的上行链路调度算法和资源管理策略进行了深入的研究。论文的主要工作与贡献如下:
     1.针对多种移动WiMAX VoIP编解码器,设计了一种新型的综合动态上行链路调度方案CDUSP。论文通过研究802.16e标准定义的三个传统的上行链路调度业务算法以及最常用的VoIP编解码器CODECs,并根据VoIP编解码器的主要特点,将其分为单模和多模两个主要类别。对于单模和多模类别,分别根据每一类编解码器的静音压缩特性,提出了相应的新的上行链路调度算法。基于提出的这些上行链路调度算法,设计了一种新型综合动态上行链路调度方案CDUSP,该方案可以动态整合、管理在移动WiMAX的QoS调度架构内所有上行链路调度算法。它极大地优化了移动WiMAX,能有效地支持VoIP编解码器的上行传输。仿真结果和数值验证表明,与传统的算法相比,新算法不仅能有效提高资源利用率,增加总吞吐量和减少分组传输延迟,而且可以大大提升系统的容量和支持更多的语音用户。
     2.基于多VoIP用户共存的资源管理优化问题的研究,本文提出了一些新的资源分配算法。根据多种影响因素,如不同的语音用户静音期间、不同的CODEC的帧期间、不同的用户优先级等,预先对用户设置了不同的类型,进而采用不同的资源分配算法。影响因素值不同,用户分类和相应的资源分配算法也不同。仿真结果和数值验证证明在资源利用、总吞吐量、系统容量的增加等方面,所提出的算法更有效率。
     3.通过研究分析由802.16e协议定义的三个功率节省类:PSCI,PSCII,PSCIII,本文提出了两个新的功率节省改进算法,使之更适合于不同的VoIP CODECs静音压缩。第一个算法是间隔灵活型PSCII功率节省算法,它在相互静音期间利用了指数增加方法,更适合于长帧期间VolP CODECs。第二种算法是多种终止休眠方式功率节省算法,算法的基本思路是在talk-spurt期间采用PSCII,而在静音期间采用PSCI的两种不同的终止休眠方式。数值分析和仿真结果表明,所提出的算法有效地降低了在静音期间的功耗,同时满足端到端允许的最大延迟和VoIP服务质量(QoS)的低丢包率的要求。
Mobile WiMAX is a promising broadband wireless technology. In recent years VoIP has emerged as one of the promising applications on the Internet with rapidly development of various VoIP CODECs technologies, both Mobile WiMAX and VoIP they share One key benefit of great cost savings due to lower deployment, implementation, maintenance and up gradation cost. Therefore, VoIP over Mobile WiMAX will play a critic role in the deployment of Mobile WiMAX networks. But, the uplink scheduling and resource management remain as a major problem that may seriously impact the deployment of VoIP over Mobile WiMAX. The uplink Scheduling and Resource Management refers to operation of serving BS (Base Station) MAC layer to effectively manage the transmission of allocable resources, which covers Scheduling Services, power saving, Handover etc., to achieve optimal resource utilization and enhanced system performance. Regarding the VoIP services the IEEE 802.16e specifications only defines the MAC layer functions modules of uplink Scheduling and Resource Management, as well as the basic content and implementation rules of these modules, but does not specifically propose any feasible schemes or implementing algorithms. Therefore, in this thesis we have concentrated our efforts on enhancing the uplink scheduling and resource management performance of the most common used VoIP CODECs over Mobile WiMAX. This thesis gives an overview of the IEEE 802.16e Mobile WiMAX standard as well as the VoIP CODECs technologies. Through this introduction we address the main challenges that affect the VoIP CODECs over Mobile WiMAX transmission. The main purposes of this thesis could be summarizes as follows:
     1. We designed a novel comprehensive dynamic uplink scheduling proposal (CDUSP) for all major VoIP CODECs over Mobile WiMAX. Through investigating the standard defined three conventional uplink scheduling service algorithms as well as the most common used VoIP CODECs. The CODECs have been classified into two main categories based on their characteristics and it’s silence compression performance, several novel uplink scheduling algorithms are proposed. Furthermore, our designed (CDUSP) proposal with proper modification to the uplink scheduling framework structure and procedure is planned, the CDUSP is significantly capable of dynamically integrate and manage all our proposed uplink scheduling algorithms within the Mobile WiMAX QoS scheduling framework. Besides, it greatly optimizes the Mobile WiMAX for efficiently support the VoIP CODECs uplink transmission. Through the simulation results and numerical validations, all proposed algorithms performs efficiently than the conventional algorithms over enhancement of resource utilization, total throughput, and reduction of packet transmission delay.
     2. Thirdly, the coexisting of multiple VoIP users resource management enhancement is investigated, through proposing different scheduling algorithms with applying multiple of our novel several grant interval schemes, to different preconfigured classified categories based on capturing several factors, based on these different factors the users classification and corresponding resource allocation schemes will be different, performance comparisons between the conventional algorithms and the proposed algorithm is given. Further, simulation result and numerical validations has proved the efficiency of the proposed algorithm over enhancement of resource utilization, total throughput, increment of system capacity, and number of voice users supported.
     3. Through investigating and analyzing the three power saving classes defined by 806.16e standard , we propose a new two improved power saving algorithm that greatly suitable for different VoIP CODECs with silence compression, the first algorithm is interval-flexible PSCII power saving algorithm that utilize the exponential increment scheme during the mutual silence period , this algorithm is suitable to the long frame duration , the second algorithm is called multiple termination schemes power saving algorithm , this algorithm through integrating both power saving calass (PSC) I and PSCII ,with concern to the PSCI two different mechanisms of sleep mode activation . Our proposed algorithm basically follows PSCII during talk-spurt periods, but uses the two different wake up schemes of of PSCI during silent periods. The analysis and simulation results show that our proposal reduces power consumption effectively during silent periods while satisfying the maximum allowable end-to-end delay and low packet drop probability constraints with respect to the QoS of VoIP.
引文
[1] IEEE 802.16 Working Group, "IEEE Standard for Local and Metropolitan Area Networks---Part 16: Air Interface for Fixed Broadband Wireless Access Systems," IEEE Std. 802.16-2004, October 2004.
    [2] IEEE 802.16e-2oo5,“IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems - Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1”, Feb. 28, 2006.
    [3] D.Zhao and X.Shen,“Performance of packet voice transmission using IEEE 802.16 protocol,”IEEE Wireless Communications ,vol.13,pp.44-51,Feb.2007.
    [4] S.Sengupta,M.chatterjee,and S.Ganguly ,”Improving Quality of VoIP Stream over WiMAX,”IEEE Transaction on computers, vol.57,pp.145-156 ,Feb.2008.
    [5] M.Fong,R.Novak,S.McBeach,and.Srinivasan,“Improved VoIP Capacity in Mobile WiMAX Systems Using Persistent Resource Allocation,”IEEE Communication Magazine ,pp.50-57, October 2008.
    [6] The nine issues towards WiMAX http://www.ccidcom.com/Technology/Expert/200607/13136.html
    [7] E. Haghani and N. Ansari,“VoIP Traffic Scheduling in WiMAX Networks”, pp:1-5, Nov. 2008.
    [8] Allied Telesyn Inc,“WLAN Basics: A Primer on Wireless Networking”, Jul 8, 2004,Rev. B, http://www.alliedtelesyn.com
    [9] WiMAX Forum, Mobile WiMAX– Part I: A Technical Overview and Performance Evaluation, August 2006
    [10] WiMAX Forum, Mobile WiMAX– Part II: A Comparative Analysis,
    [11] August 2006G.A.Eriksson,B.Olin,K.Svanbro and D.turina,“The challenges of voice over-IP-over-wireless ,”Ericsson Review No.1,2000.
    [12] ITU-T Rec. G.729, Annex B,”A Silence Compression Scheme for G.729 Optimized for Terminals Conforming to ITU-T V 70.
    [13] Liang Xiao, Shidong Zhou, Yan Yao, Qos-Oriented Scheduling Algorithm for Mobile Multimedia in OFDM, IEEE Communication Society, Proceedings ofPersonal, Indoor and Mobile Radio Communications, Piscataway, NJ08855-1331, USA: IEEE, 2003, 545~549.
    [14] Patrick Svedman, Sarah Kate Wilson, Leonard J., et al, A Simplified Opportunistic Feedback and Scheduling Scheme for OFDM, IEEE, Proceedingsof Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE,2004, 1878-1882.
    [15] Ying Jun Zhang, Khaled Ben Letaief, Adaptive Resource Allocation and Scheduling for Multiuser Packet-based OFDM Networks, IEEE Communication Society, Proceedings of International Confernce on Communictaions,Piscataway, NJ 08855-1331, USA: IEEE, 2004, 2949-2953.
    [16] Lei Li, Zhisheng Niu, An Integrated Subchannel Scheduling Algorithm forAdpative Modulation and Coding (AMC) MIMO-OFDM Wireless Systems,IEEE, Proceedings of Joint Conference of the 10th Asia-Pacific Confernce on Communications and the 5th International Symposium on Multi-DimensionalMobile Communications, NY 10016-5997, USA: IEEE, 2004, 90-94.
    [17] Jun Cai, Xuemin Shen, Jon W. Mark, Downlink Resource Management with Adaptive Modulation and Dynamic Scheduling for OFDM Wireless Communication Systems, IEEE, Proceedings of Wireless Communications and Networking Conference, New York, NY 10016-5997, USA: IEEE, 2004,2143-2147.
    [18] Ying Jun Zhang, Soung Chang Liew, Link-Adaptive Largest-Weighted-Throughput Packet Scheduling for Real-Time Traffics in Wireless OFDM Networks, IEEE, Proceedings of Global Telecommunications Conference, New York, NY 10016-5997, USA: IEEE, 2005, 2490-2494.
    [19] Zhi Zhang, Ying He, Edwin K. P. Chong, Opportunistic Downlink Scheduling for Multiuser OFDM Systems, IEEE, Proceedings of Wireless Communications and Networking Conference, New York, NY 10016-5997, USA: IEEE, 2005, 1206-1212.
    [20] Antoni Morell, Antonio PASCUAL-Iserte, Ana I. Perez-Neira, et al, Robust Scheduling in MIMO-OFDM Multi-user Systems Based on Convex Optimization, IEEE Signal Processing Society, Proceedings of First International Workshop on Computitional Advances in Multi-Snsor Adaptive Processing, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2005, 113-116.
    [21] Mohanmed Ali Regaeig, Noureddine Hamdi, Mohamed-Slim Alouini, Switched-Based Reduced Feedback OFDM Multi-user Opportunistic Scheduling, IEEE, Proceedings of International Symposium on Personal, Indoor and Mobile Radio Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2005, 2495-2499.
    [14] Patrick Svedman, Sarah Kate Wilson, Leonard J., et al, A Simplified Opportunistic Feedback and Scheduling Scheme for OFDM, IEEE, Proceedingsof Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE,2004, 1878-1882.
    [15] Ying Jun Zhang, Khaled Ben Letaief, Adaptive Resource Allocation and Scheduling for Multiuser Packet-based OFDM Networks, IEEE Communication Society, Proceedings of International Confernce on Communictaions,Piscataway, NJ 08855-1331, USA: IEEE, 2004, 2949-2953.
    [16] Lei Li, Zhisheng Niu, An Integrated Subchannel Scheduling Algorithm forAdpative Modulation and Coding (AMC) MIMO-OFDM Wireless Systems,IEEE, Proceedings of Joint Conference of the 10th Asia-Pacific Confernce on Communications and the 5th International Symposium on Multi-DimensionalMobile Communications, NY 10016-5997, USA: IEEE, 2004, 90-94.
    [17] Jun Cai, Xuemin Shen, Jon W. Mark, Downlink Resource Management with Adaptive Modulation and Dynamic Scheduling for OFDM Wireless Communication Systems, IEEE, Proceedings of Wireless Communications and Networking Conference, New York, NY 10016-5997, USA: IEEE, 2004,2143-2147.
    [18] Ying Jun Zhang, Soung Chang Liew, Link-Adaptive Largest-Weighted-Throughput Packet Scheduling for Real-Time Traffics in Wireless OFDM Networks, IEEE, Proceedings of Global Telecommunications Conference, New York, NY 10016-5997, USA: IEEE, 2005, 2490-2494.
    [19] Zhi Zhang, Ying He, Edwin K. P. Chong, Opportunistic Downlink Scheduling for Multiuser OFDM Systems, IEEE, Proceedings of Wireless Communications and Networking Conference, New York, NY 10016-5997, USA: IEEE, 2005, 1206-1212.
    [20] Antoni Morell, Antonio PASCUAL-Iserte, Ana I. Perez-Neira, et al, Robust Scheduling in MIMO-OFDM Multi-user Systems Based on Convex Optimization, IEEE Signal Processing Society, Proceedings of First International Workshop on Computitional Advances in Multi-Snsor Adaptive Processing, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2005, 113-116.
    [21] Mohanmed Ali Regaeig, Noureddine Hamdi, Mohamed-Slim Alouini, Switched-Based Reduced Feedback OFDM Multi-user Opportunistic Scheduling, IEEE, Proceedings of International Symposium on Personal, Indoor and Mobile Radio Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2005, 2495-2499.
    [32] A. Jajali, R. Padovani, R. Pankaj, Data Throughput of CDMA-HDR a High Efficiency-High Data Rate Personal Communication Wireless System, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331,USA: IEEE, 2000, 1854-1858.
    [33] Anchun Wang, Xiaoming She, Shidong Zhou, et al, Asymptotic Analysis of FairScheduling in the OFDM Systems, IEEE Communication Society, InternationalSymposium on Personal, Indoor and Mobile Radio Communications, Piscataway,NJ 08855-1331, USA: IEEE, 2003, 1186-1191.
    [34] Changho Suh, seunghoon Park, Youngkwon Cho, Efficient Algorithm for Proportional Fairness Scheduling in Multicast OFDM Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2005, 1880~1884.
    [35] Guanding Yu, Zhaoyang Zhang, Peiliang Qiu, Fair Resource Scheduling Algorithm for Wireless OFDM Systems, IEEE, Proceedings of International Conference on Communications, Circuits and Systems, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2005, 374-377.
    [36] Haiying, Julei Zhu, Roshdy H. M. Hafez, Novel Scheduling Algorithms for Multimedia Service in OFDM Broadband Wireless Systems, IEEE Communication Society, Proceedings of International Conference on Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 772-777.
    [37] Hanbyul Seo, Byeong Gi Lee, Proportional-Fair Power Allocation with CDF-Based Scheduling for Efficient Multiuser OFDM Systems, IEEE Transactions on Wireless Communication, 2006, 5(5): 978-983.
    [38] Zhen Kong, Jiangzhou Wang, Yukwong Kwok, A New Cross Layer Approach to Qos-Aware Proportional Fairness Packet Scheduling in Downlink of OFDM Wireless Systems, IEEE, Proceedings of International Conference on Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 5695-5700.
    [39] Daehyon Kim, Aura Ganz, Fair and Efficient Multihop Scheduling Algorithm for IEEE 802.16 BWA Systems, IEEE, Proceedings of International Conference on Broadband Networks, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2005, 895-901.
    [40] Vandana Singh, Vinod Sharma, Efficient and Fair Scheduling of Uplink and Downlink in IEEE 802.16 OFDMA Networks, IEEE, Proceedings of Wireless Communications and Networking Conference, New York, NY 10016-5997, USA: IEEE, 2006, 984-990.
    [41] Seungwoon Kim and Ikjun Yeom, TCP-Aware Uplink Scheduling for IEEE 802.16, IEEE Communications Letters, 2007, 11(2): 146-148.
    [42] Jonny Sun, Yanling Yao, Hongfei Zhu, Quality of Service Scheduling for 802.16 Broadband Wireless Access Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1221-1225.
    [43] Harish Shetiya, Vinod Sharma, Algorithms for Routing and Centralized Scheduling in IEEE 802.16 Mesh Networks, IEEE, Proceedings of Wireless Communications and Networking Conference, New York, NY 10016-5997, USA: IEEE, 2006, 147-152.
    [44] Nararat Ruangchaijatupon, Yushen Ji, Adaptive with Firness in IEEE 802.16e Networks, IEEE, Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 1976-1979.
    [45] R.Perumalraja, J.Jackson Juliet Roy, S.Radha, Multimedia Supported Uplink Scheduling for IEEE 802.16d OFDMA Network, IEEE, Proceedings of Annual India Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1-5.
    [46] Howon Lee, taesoo Kwon, Dong-Ho Cho, Geunhwi Lim, et al, Performance Analysis of Scheduling Algorithms for VoIP Services in IEEE 802.16e Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1231-1235.
    [47] vinay, N. Sreenivasulu, D. Jayaram, et al, Performance Evaluation of End-to-End Delay by Hybrid Scheduling Algorithm for QoS in IEEE 802.16 Network, IEEE, Proceedings of IFIP International Conference on Wireless and Optical Communications Networks, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006, 1-5.
    [48] R. Iyengar, K. Kar, B. Sikdar, Scheduling Algorithms for Point-to-Multipoint Operation in IEEE 802.16 Networks, IEEE, International Symposium on Modelling and Optimzation in Mobile, Ad Hoc and Wireless Networks, Los Almitos, CA, USA: 2006, 1-7.
    [49] Chihong Jiang, Tzechieh Tsai, Token Bucket Based CAC and Packet Scheduling for IEEE 802.16 Broadband Wireless Access Networks, IEEE Communications Society, Proceedings of Consumer Communications and Networking Conference, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006,183-187.
    [50] Jonny Sun, Yaling Yao, Hongfei Zhu, Quality of Service Scheduling for 802.16 Broadband Wireless Access Systems, IEEE, Proceedings of VehicularTechnology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006,1221-1225.
    [51] Leonardo Badia, Andrea Baiocchi, Alfredo Todini, et al, On the Impact of Physical Layer Awareness on Scheduling and Resource Allocation in Broadband Multicellular IEEE 802.16 Systems, IEEE Wireless Communications, 2007, 14(1): 36-43.
    [52] Howon Lee, Taesoo Kwon, Dong-Ho Cho, An Efficient Uplink Scheduling Algorithm for VoIP Services in IEEE 802.16 BWA Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2004, 3070-3074.
    [53] Dusit Niyato, Ekram Hossain, Queue-Aware Uplink Bandwidth Allocation and Rate Control for Polling Service in IEEE 802.16 Broadband Wireless Networks, IEEE Transactions on Mobile Computing, 2006, 5(6): 668-679.
    [54] Howon Lee, Taesoo Kwon, An Enhanced Uplink Scheduling Algorithm Based on Voice Activity for VoIP Services in IEEE 802.16d/e System, IEEE Communication Letters, 2005, 9(8): 691-693.
    [55] Antonio Lera, Antonella Molinaro, Sara Pizzi, Channel-Aware Scheduling for QoS and Fairness Provisioning in IEEE 802.16/WiMAX Broadband Wireless Access Systems, IEEE Networks, 2007, 21(5): 34-41.
    [56] S. A. Xergias, N. Passas, and L. Merakos.”Flexible Resource Allocation in IEEE 802.16 Wireless Metropolitan Area Networks”. IEEE LAN/MAN, pp. 6, September 2005.
    [57] D. Niyato and E. Hossain.”Queue-aware uplink bandwidth allocation and rate control for polling service in IEEE 802.16 broadband wireless networks”. IEEE Transaton on MobileComputing, Vol. 5, pp. 668 - 679, June 2006.
    [58] J. Sun, Y. Yao, and H. Zhu.”Quality of Service Scheduling for 802.16 Broadband WirelessAccess Systems”. IEEE Vehicular Technology Conference Spring, pp. 1221 - 1225, 2006.
    [59] M. Mehrjoo, X. S. Shen, and K. Naik.”A Joint Channel and Queue-Aware Scheduling forIEEE 802.16 Wireless Metropolitan Area Networks”. IEEE Wireless Communications and Networking Conference, March 2007.
    [60] H. S. Alavi, M. Mojdeh, and N. Yazdani.”A Quality of Service Architecture for IEEE 802.16 Standards”. IEEE Asia-Pacific Conference on Communications, pp. 249 - 253, October 2005.
    [61] K. Vinay, N. Sreenivasulu, D. Jayaraml, and D. Das.”Performance Evaluation of End-toend Delay by Hybrid Scheduling Algorithm for QoS in IEEE 802.16 Network”. IEEE IFIPInternational Conference on Wireless and Optical Communications Networks, pp. 5, April 2006.
    [62] H.Wang,W. Li, and D. P. Agrawal.”Dynamic admission control and QoS for 802.16 wireless MAN”. IEEE Wireless Telecommunications Symposium, pp. 60 - 66, April 2005.
    [63] H. Lee, T. Kwon, and D. H. Cho.”An Enhanced Uplink Scheduling Algorithm Based on Voice Activity for VoIP Services in IEEE 802.16d/e System”. IEEE Communication Letters, Vol. 9, pp. 691 - 693, August 2005.
    [64] S. E. Hong and O. H. Kwo.”Considerations for VoIP Services in IEEE 802.16 Broadband Wireless Access Systems”. IEEE Vehicular Technology Conference Spring, pp. 1226 - 1230, 2006.
    [65] H. Lee, T. Kwon, and D. H. Cho.”Extended-rtPS Algorithm for VoIP Services in IEEE 802.16 systems”. IEEE International Conference on Communication, pp. 2060 - 2065, June 2006.
    [66] D. Zhao and X. S. Shen.”Performance of Packet Voice Transmission Using IEEE 802.16 Protocol”. IEEE Wireless Communication, pp. 44 - 51, February 2007
    [67] C. Nie, M. Venkatachalam and X. Yang,“Adaptive Polling Service for Next Generation IEEE802.16 WiMAX Networks”, IEEE Global Telecommunications Conference (GLOBECOM '07), pp:4754-4758, Nov. 2007.
    [68] H. Lee", H. Kimt and D. Chol,“Extended-rtPS Considering Characteristics of VoIP Codecs in Mobile WiMAX”,IEEE19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2008), pp: 1-5, Sept. 2008.
    [69] S. Oh, S. Cho, K. Jung, and J. Kwun,“VoIP Scheduling Algorithm for AMR Speech Codec in IEEE 802.16e/m System”Communications Letters, IEEE Volume 12, Issue 5, May 2008 Page(s):374– 376.
    [70] Yibing Lin, Yumin Chuang, Modeling the Sleep Mode for Cellular Digital Packet Data, IEEE Communications Letters, 1999, 3(3): 63-65.
    [71] Jae-Woo So, Dong-Ho Cho, On Effect of Timer Object for Sleep Mode Operation in cdma2000 System, IEEE, Proceedings of International Conferenceon Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2000, 555-559.
    [72] Carla-Fabiana Chiasserini, Ramesh R. Rao, Improving Energy Saving in Wireless Systems by Using Dynamic Power Management, IEEE Transactions on Wireless Communications, 2003, 2(5): 1090-1100.
    [73] Sun-Jung Kwon Yun Won Chung, Dan Keun, Sung, Queueing Model for Sleep-Mode Operation in Cellular Digital Packet Data, IEEE Transactions on Vechicular Technology, 2003, 52(4): 1158-1162.
    [74] Luis Alonso, Ramon Agusti, Automatic Rate Adaption and Energy-Saving Mechanisms Based on Cross-Layer Information for Packet-Switched Data Networks, IEEE Radio Communications, 2004, 42(3): 15-20.
    [75] Qingchun Yu, Huabei Zhou, Advanced MAC Protocol with Adjustable Sleep Mode for Wireless Sensor Networks, IEEE, Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006, 1-4.
    [76] Lefteris Mamatas, Vassilis Tsaoussidis, Transport Protocol Behavior and Energy-Saving Potential, IEEE, Proceedings of Conference on Local Computer Networks, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 889-896.
    [77] jun-Bae Seo, Seung-Que Lee, Performance Analysis of Sleep Mode Operation in IEEE802.16e, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2004, 1169-1173.
    [78] Sayande Mukherjee, Kin K. Leung, Protocol and Control Mechanisms to Save Terminal Energy in IEEE802.16 Networks, IEEE, Proceedings of Pacific RimConference on Communications, Computers and Signal Processing, Piscataway,NJ 08855-1331, USA: IEEE, 2005, 5-8.
    [79] Yang Xiao, Energy Saving Mchanism in the IEEE 802.16e Wireless MAN, IEEE Communication Letters, 2005, 9(7): 595-597.
    [80] Yang Xiao, Performance Analysis of an Energy Saving Mechanism in the IEEE 802.16e Wireless MAN, IEEE, Proceedings of Consumer Communications and Networking Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 406-410.
    [81] Yan Zhang and Masayuki Fujise, Energy Management in the IEEE802.16e MAC, IEEE Communication Letters, 2006, 9(4): 311-313.
    [82] Neung-Hyung Lee, Saewoong Bahk, MAC Sleep Mode Control Considering Downlink Traffic Pattern and Mobility, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2005, 2074-2080.
    [83] Youlin Chen, Shiaoli Tsao, Energy-efficient Sleep-mode Operations for Broadband Wireless Access Systems, IEEE, Proceedings of Vehicular
    [84] Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1112-1116.
    [85] Fangming Xu, Wei Zhong, Zheng Zhou, A Novel Adaptive Energy Saving Mode in IEEE 802.16e System, IEEE, Proceedings of MILCOM 2006, Piscataway, NJ 08855-1331, USA: IEEE, 1-6.
    [86] Kwanghun Han, sunghyun Choi, Performance Analysis of Sleep Mode Operation in IEEE 802.16e Mobile Broadband Wireless Access Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1141-1145.
    [87] Shengqing Zhu, Tianlei Wang, Enhanced Power Efficient Sleep Mode Operation for IEEE 802.16e Based WiMAX, IEEE, IEEE Mobile WiMAX Symposium, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 43-47.
    [88] N. Mohanmmad Pour Nejatian, M.M. Nayebi, Evaluating the Effect of non-Poisson Traffic Patterns on Power Consumption of Sleep Mode in the IEEE 802.16e MAC, IEEE, Proceedings of International Conference on Wireless Optical Communications Networks, Piscataway, NJ 08855-1331, USA: IEEE,2007, 1-5.
    [89]刘利,李津生,洪佩琳,IEEE 802.16e休眠模式算法的研究和改进,计算机学报,2007,30(1):146-157。
    [90] Yin Ge, Gengsheng Kuo, An Efficient Sleep Mode Management Scheme in IEEE 802.16e Networks, IEEE, Proceedings of International Conference on Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 5957-5962.
    [91] Mingon Kim, Minho Kang, Jungyul Choi, Performance Evaluation of the Sleep Mode Operation in the IEEE 802.216e MAC, IEEE Communications Society, Proceedings of International Conference on Advanced Communication Technology, New York, NY 10016-5997, USA: IEEE, 2007, 602-607.
    [92] Yunju Park, Gang Uk Hwang, Performance Modelling and Analysis of the Sleep-Mode in IEEE802.16e WMAN, IEEE, Proceedings of Vechicular Technology Confernce, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 2801-2806.
    [93] "Voice over Internet Protocol. Definition and Overview". International Engineering Consortium. 2007. http://www.iec.org/online/tutorials/int_tele/index.asp. Retrieved 2009-04-2
    [94] Ghazzal Mehdi , Future of VoIP over Wireless in Economic Downturn, master thesis october 2009.
    [95] P. Setiawan et al., "On the ITU-T G.729.1 Silence Compression Scheme," EUSIPCO, Lausanne, Switzerland, 2008.
    [96] U. Olsson“Toward the all-IP vision”. Ericsson Review, Vol. 82(2005):1, pp. 44-53
    [97] M. Arango, A. Dugan, C. Huitema, S. Pickett, V. Jacobson,“Media Gateway Control Protocol (MGCP)”IETF RFC 2705, October 1999.
    [98] v J. Davidson, J. Peters, M. Bhatia, S. Kalidindi, S. Mukherjee,”Voice over IP fundamentals”Cisco Press,1587052571 2006 p.p 152-154.
    [99] L. Hettick , S. Taylor,”Convergence in Network World”, http://www.networkworld.com retrieved on September 01, 2009.
    [100] U. Olsson“Toward the all-IP vision”. Ericsson Review, Vol. 82(2005):1, pp. 44-53
    [101] S. Ahson, A. Ahson, M. Ilyas“WiMAX: Applications CRC”Press, 2007 ISBN 1420045474.
    [102] http://wimaxforum.org/resources/documents/marketing/whitepapers
    [103] G. Lynch,“Australian WiMAX pioneer trashes technology as miserable failure”http://www.commsday.com/node/228 March 20, 2008
    [104] IEEE C802.16e-04/522r3:“Extended rtPS for VoIP services”, Nov. 16, 2004.
    [105] WiMAX: The Last Mile Winner? By Capgemini, 2006
    [106]“WiMAX spectrum more expensive in developing market”by http://www.cellular-news.com/story/22370.php access on 07/04/2007
    [107]“Can WiMAX address your application?”by WiMAX forum.
    [108] The Voice over IP Insurrection http://gigaom.com/2004/09/19/the-voice-over-ip-insurrection/
    [109] Piri, E., et al. (2008) ROHC and aggregated VoIP over fixed WiMAX: an empirical evaluation.Proceedings of the IEEE Symposium on Computers and Communications (ISSC), May 2008.
    [110] M. D. Katz and F. H. P. Fitzek,“Wimax Evolution: Emerging Technologies and Applications,”John Wiley & Sons Inc, 2009.
    [111] G. Dong“Research on MAC Layer Scheduling and Resource Management for IEEE 802.16e OFDM System”, Ph.D dissertation ,2008.
    [112] C. Lu“A Shared-Based Uplink Scheduling Algorithm with Voice Activity Detection Mechanism for VoIP Services in IEEE 802.16 System”Master dissertaion 2007.
    [113] L. Bai“Analysis of the Market for WiMAX Services”Master thesis 2007.
    [114] SIP- http://en.wikipedia.org/wiki/Session_Initiation_Protocol
    [115] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, June 2002.
    [116] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", RFC 3550, July 2000.
    [117] ITU-T Recommendation G.729—Coding of Speech at 8 kbit/s Using Conjugate-Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP), March 1996.
    [118] ITU-T Recommendation G.729/Annex A—Reduced Complexity 8 kbit/s CS-ACELP Speech Codec, November 1996.
    [119] ITU-T Recommendation G.729/Annex B—A Silence Compression Scheme for G.729 Optimized for Terminals Conforming to Recommendation V.70, November 1996.
    [120] ITU-T Recommendation G.723.1– Dual Rate Speech Coder for Multimedia Communications Transmitting at 5.3 and 6.3 kbit/s, March 1996.
    [121] ITU-T Recommendation G.723.1– Annex A: Silence Compression Scheme, November 1996.
    [122] "Enhanced Variable Rate Codec, Speech Service Option 3 and 68 for Wideband Spread Spectrum Digital Systems", 3GPP2 C.S0014-B v1.0, May 2006.
    [123] Li, A., "RTP Payload Format for Enhanced Variable Rate Codecs (EVRC) and Selectable Mode Vocoders (SMV)", RFC 3558, July 2003.
    [124] "Discontinuous Transmission (DTX) of Speech in cdma2000 Systems", 3GPP2 C.S0076-0, Version 1.0, December 2005.
    [125] [ITU-G.711.1] International Telecommunications Union, "Wideband embedded extension for G.711 pulse code modulation", ITU-T Recommendation G.711.1, March 2008.
    [126] International Telecommunications Union, "Pulse code modulation (PCM) of voice frequencies", ITU-T Recommendation G.711, November 1988.
    [127] 3GPP TS 26.090, "Adaptive Multi-Rate (AMR) speech transcoding",version 4.0.0 (2001-03), 3rd Generation Partnership Project (3GPP).
    [128] 3GPP TS 26.101, "AMR Speech Codec Frame Structure", version 4.1.0 (2001-06), 3rd Generation Partnership Project (3GPP).
    [129] 3GPP TS 26.190 "AMR Wideband speech codec; Transcoding functions", version 5.0.0 (2001-03), 3rd Generation Partnership Project (3GPP).
    [130] 3GPP TS 26.201 "AMR Wideband speech codec; Frame Structure", version 5.0.0 (2001-03), 3rd Generation Partnership Project (3GPP)
    [131] 3GPP2 C.S0052-A v1.0,“Source-Controlled Variable- Rate Multimode Wideband Speech Codec (VMR-WB), Service Options 62 and 63 for Spread Spectrum Systems,”Apr. 2005.
    [132] Vladimír Malenovsky, Milan Jelínek.“IMPROVING THE DETECTION EFFICIENCY OF THE VMR-WB VAD ALGORITHM ON MUSIC SIGNAL”. The 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008,
    [133] International Telecommunications Union, "G.729 based Embedded Variable bit-rate coder: An 8-32 kbit/s scalable wideband coder bitstream interoperable with G.729", ITU-T Recommendation G.729.1, May 2006.
    [134] [ITU-G.729.1-C] International Telecommunications Union, "G.729.1 DTX/CNG scheme", ITU-T Recommendation G.729.1 Annex C, May 2008.
    [135] ITU-T Recommendation G.718, "Frame Error Robust Narrowband and Wideband Embedded Variable Bit-Rate Coding of Speech and Audio from 8-32 Kbit/s", (consented) May 2008.
    [136] Ahmadi, S., "Real-Time Transport Protocol (RTP) Payload Format for the Variable-Rate Multimode Wideband (VMR-WB) Audio Codec", RFC 4348, January 2006.
    [137] A. Lakaniemi,Y. Wang April 28, 2009RTP payload format for G.718 speech/audio draft-ietf-avt-rtp-g718-01.txt
    [138] Y. Hiwasaki et al.,“A G.711 Embedded Wideband Speech Coding for VoIP Conferences,”IEICE Trans. Info.& Sys., vol. E89-D, no. 9, Sept. 2006, pp. 2542–51.
    [139] H. Choi and D. Cho,“Hybrid Energy-Saving Algorithm ConsideringSilent Periods of VoIP Traffic for Mobile WiMAX”,. IEEE International Conference on communications ICC '07. 2007
    [140] J. B. Seo, S. Q. Lee, N. H. Park, H. W. Lee, C. H. Cho”Performance Analysis of Sleep Mode Operation in IEEE802.16e,”IEEE Vehicular Technology Conference, pp. 1169-1173, 2004.
    [141] Yan Zhang and Masayuki Fujise, "Energy Management in the IEEE802.16e MAC", IEEE Communication Letters, Vol.9, No.4, pp311-313, April 2006
    [142] P. T. Brady,”A model for generating on-off speech patterns in two-way conversation,”Bell Syst. Tech. J., pp. 2445-2472, Sept. 1969.
    [143] ITU-T Recommendation G.711– Appendix II "A comfort noise payload definition for ITU-T G.711 use in packet-based multimedia communication systems”. Feb 2002.
    [144] Schulzrinne, H. and S. Casner, \RTP Pro_le for Audio and Video Conferences with Minimal Control", RFC 3551, July 2003.
    [145] D.H Cho, J.H. Song, M.S. Kim, and K.J. Han, Performance analysis of the IEEE 802.16 wireless metropolitan area network, First International Conference on Distributed Frameworks for Multimedia Applications p.130, IEEE, Washington, DC, 2005.
    [146] P. T. Brady,”A model for generating on-off speech patterns in two-way conversation,”Bell Syst. Tech. J., pp. 2445-2472, Sept. 1969.
    [147] G.A.Eriksson, B.Olin, K.Svanbro and D.turina,“The challenges of voice over-IP-over-wireless ,”Ericsson Review No.1,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700