芒果苷酯化衍生物的化学合成及药理活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1研究背景
     芒果苷(Mangiferin)系纯天然化合物,具有广泛的生物活性,植物来源广,生产技术成熟,市售产品纯度高达95%以上。芒果苷至今仍未被开发为临床药物的原因之一是其药理作用泛而弱,定位不突出。有学者指出,芒果苷属于BCS-4类药物,溶解性和跨膜通透性均很弱,生物利用度低,从而制约了芒果苷药理作用的发挥。
     为了提高芒果苷的生物利用度从而提高其药理活性,大多研究从提高芒果苷的水溶性入手,但收效不明显;另有一些研究从提高芒果苷的跨膜通透性入手,这些研究全部集中在制备高脂溶性衍生物方面,虽有一些成效,但也不甚理想,所制备的衍生物至今均未得到开发应用。
     本论文也从提高芒果苷的跨膜通透性入手,制备高脂溶性的芒果苷酯化衍生物。目前尚未见到与芒果苷酯化衍生物有关的文献报道,本论文从这一空白点切入,预计会得到一些较有意义的研究结果。
     2方法与结果
     本论文的研究,涵盖化学合成、分离纯化、化合物结构确证、理化性质表征、药理学研究等内容。
     (1)化学合成。以芒果苷为起始化合物,以酸酐为溶剂,以H+为催化剂,使芒果苷分别与乙酸酐、丙酸酐和丁酸酐反应,生成芒果苷酯化衍生物。反应的选择性不强,反应产物中包含3-5个酯化程度不同的“多酯化衍生化合物”。
     (2)分离纯化和结构确证。采用硅胶柱层析方法从反应产物中分离得到7个新结构化合物(化合物Ⅰ-Ⅳ、PAM、HPM、HBM),依据1HNMR
     图谱、13C NMR图谱和HMBC图谱,全部确证其化学结构。其中3个产率最高的分别为:(1)7,2',3',4',6'-五乙酯化芒果苷衍生物,或7,2',3',4',6'-penta-acetyl-mangiferin (PAM),分子式:C29H28O16;(2)3,6,7,2',3’,4',6'-七丙酯化芒果苷衍生物,或3,6,7,2',3',4',6'-hepta-propionyl-mangiferin (HPM),分子式:C40H46O18;(3)3,6,7,2',3',4'-六丁酯化芒果苷衍生物,或3,6,7,2',3',4'-hexa-butyryl-mangiferin (HBM),分子式:C43H54017。论文对这3个化合物进行了重点研究。
     (3)理化性质。PAM、HPM和HBM不溶于水而易溶于醋酸乙酯;在pH<9水中稳定,在碱水中有少部分分解;熔点明显降低,较芒果苷低近100℃;紫外吸收特征明显。
     (4)表观油/水分配系数。分别测定芒果苷、PAM、HPM和HBM在正辛醇和水组成的液—液互萃两相中的浓度,计算出油/水分配系数。芒果苷的油/水分配系数随pH值的减小而增大,但绝对数值较小(小于6);PAM、HPM和HBM的油/水分配系数均大于100,最大值出现在pH7(均大于270),并随溶液酸度或碱度的增大而减小。
     (5)采用浓氨水致咳的小鼠模型研究止咳作用。与空白对照组比较,芒果苷高、中剂量组(1.0、0.5 mmol·kg-1)均有显著的止咳作用,可显著延长小鼠的咳嗽潜伏期(P<0.05),并能显著减少咳嗽次数(P<0.01)。PAM、HPM和HBM虽有一定的止咳作用趋势,引咳潜伏期也有所延长,但未显示出统计学显著性差异(P>0.05);咳嗽次数也有所减少,但未显示出统计学显著性差异(P>0.05)。
     (6)采用小鼠气管排泌酚红模型研究化痰作用。与空白对照组比较,芒果苷高、中剂量组(1.0、0.5 mmol·kg-1)均能显著促进小鼠排泌酚红(P<0.05或P<0.01);PAM、HPM和HBM虽然也有一定的促进排泌作用,但未显示出统计学显著性差异(P>0.05)。
     (7)采用组胺—胆碱联合引喘法研究平喘作用。与空白对照组比较,芒果苷高、中剂量组(1.0、0.5mmol·kg-1)组均能显著延长豚鼠的引喘潜伏期(P<0.05或P<0.01);PAM、HPM和HBM虽然也显示出一定的延长作用趋势,但未显示出统计学显著性差异(P>0.05)。
     (8)采用体外细菌平皿培养法研究抑菌作用。PAM、HPM和HBM除在最大浓度(75 mg·mL-1)时对金黄色葡萄球菌敏感株(G+)和乙型副伤寒杆菌(G-)有抑制作用外,对其它菌株均未表现出抑制作用。
     (9)采用体外抗HSV-1研究抗单纯疱疹病毒作用。芒果苷、PAM、HPM和HBM均表现出一定的细胞毒性,但毒性很低;对疱疹病毒HSV-1的抑制作用不明显,CPE抑制率均不超过25%。
     (10)通过测定小鼠耳廓肿胀度及其腹腔毛细血管通透性来研究抗炎作用。与空白对照组比较,芒果苷高中剂量组(1.0.0.5mmol·kg-1)、PAM高中剂量组(0.25、0.125mmol·kg-1)、HPM高中低剂量组(0.25、0.125、0.063mmol·kg-1)和HBM高中低剂量组(0.25、0.125、0.063mmol·kg-1)均能显著抑制小鼠耳廓肿胀(P<0.05);芒果苷低剂量组(0.25mmol·kg-1),PAM低剂量组(0.063mmol·kg-1)虽然有抑制肿胀的趋势,但未显示出统计学显著性差异(P>0.05)。腹腔通透性试验,芒果苷高中低剂量组(1.0、0.5、0.25mmol·kg-1)、PAM高中剂量组(0.25、0.125mmol·kg-1)、HPM高中低剂量组(0.25、0.125、0.063mmol·kg-1)和HBM高中剂量组(0.25、0.125mmol·kg-1)均能显著抑制毛细血管的通透性,减少腹腔液渗出,显示出显著的抗炎作用(P<0.01或P<0.05);PAM低剂量组(0.063mmol·kg-1)和HBM低剂量组(0.063mmol·kg-1)也有抑制毛细血管通透性的作用趋势,但未显示出统计学显著性差异(P>0.05)。
     (11)采用MTT法和荷瘤动物研究抑制肿瘤作用。MTT法结果表明,PAM、HPM和HBM能使7901、hella和7404细胞株的活细胞数量减少,提示药物可促使肿瘤细胞死亡。与空白对照组比较,HBM高剂量组(1.0mmol·kg-1)对小鼠荷瘤(S180)有一定的抑制作用(P<0.05);中剂量组(0.5mmol·kg-1)有一定的作用趋势,但未显示出统计学显著性差异(P>0.05)。
     (12)降血糖活性及降血糖作用机制研究。①采用链脲佐菌素所致糖尿病小鼠模型研究降血糖作用。与空白对照组比较,PAM高中剂量组(0.25,0.125mmol·kg-1), HPM高中剂量组(0.25,0.125mmol·kg-1)和HBM高中低剂量组(0.25,0.125,0.063mmol·kg-1)显示显著的降血糖作用(P<0.01);芒果苷高中剂量组(1.0, 0.5mmol·kg-1), PAM低剂量组(0.063mmol·kg-1)和HPM低剂量组(0.063mmol·kg-1)显示一定的降血糖作用(P<0.05);芒果苷低剂量组(0.25mmol·kg-1)有降血糖的作用趋势,但未显示出统计学显著性差异(P>0.05)。②采用肾上腺素所致高血糖小鼠模型研究对抗急剧血糖升高的作用。芒果苷高剂量组(1.0mmol·kg-1)、PAM高剂量组(1.0mmol·kg-1)、HPM高剂量组(1.0mmol·kg-1)和HBM高剂量组(1.0mmol·kg-1)均没有对抗肾上腺素的升血糖作用(P>0.05)。③在体外抑制蛋白酪氨酸磷酸酶1B(PTP1B)活性的试验中,在5μg·mL-1浓度时,PAM、HPM和HBM就显示出较高的PTP1B酶抑制作用;在20μg·mL-1浓度时,PTP1B酶产生明显沉淀,表明PAM、HPM和HBM具有极强的抑制作用。
     3结论
     (1)合成方法简单易行,可产生多种新化合物。采用酸酐直接酰化(酯化)法,很容易从芒果苷制备芒果苷酯化衍生物;采用常规的硅胶柱层析法可方便、较大量地分离和纯化芒果苷酯化衍生物,得到化合物单体。本文所得7个酯化衍生物均为新结构化合物,其结构为首次报道。
     (2)酯化衍生物PAM、HPM和HBM的为高脂溶性物质,其理化性质、油/水分配系数的数值大小和变化趋势完全不同于芒果苷;油/水分配系数远大于芒果苷的。
     (3)酯化衍生物的药理作用有明显改变。芒果苷在止咳、化痰、平喘、抑菌、抗病毒等方面有一定的活性,而酯化衍生物]PAM、HPM和HBM却没有,提示PAM、HPM和HBM因化学结构改变而丧失了这些药理活性。PAM、HPM和HBM在体外细胞培养中,能使7404、hella和7901细胞株的活细胞数量减少,提示其具有促进肿瘤细胞死亡的作用;HBM对荷瘤小鼠的肿瘤细胞(S180)也有较弱的抑制生长作用,这些作用与芒果苷相似,提示PAM、HPM和HBM保持了芒果苷的这一活性。PAM、HPM和HBM抗炎和降血糖作用的效价强度比芒果苷的高,只需1/4的摩尔剂量,即可产生与芒果苷相似的抗炎和降血糖效果,提示其抗炎和降血糖活性比芒果苷的高;此外,PAM、HPM和HBM能明显抑制蛋白酪氨酸磷酸酶1B(PTP1B),提示PAM、HPM和HBM因化学结构改变而使抗炎和降血糖活性大大增强。
     (4)抗炎和降血糖作用显示一定的结构一效应关系。从芒果苷、PAM(乙酯化)、HPM(丙酯化)到HBM(丁酯化),酯化基团大小递增,脂溶性也递增,在相同剂量时,抗炎和降血糖作用强度呈递增变化。
     (5)酯化衍生物的降糖作用机制。芒果苷及其酯化衍生物PAM、HPM、HBM不具有胰岛素样作用,也不能刺激胰岛细胞在短时间内分泌大量胰岛素。PAM、HPM和HBM的降血糖作用机制可能是对PTPIB的抑制和促进受损胰岛细胞的恢复:一方面,通过抑制PTPIB,提高胰岛素受体浓度,从而提高胰岛素的利用率;另一方面,药物的高脂溶性使跨膜通透性增加,使更多药物进入胰岛细胞,使胰岛细胞得到更好地恢复,从而使胰岛细胞的分泌量增加。
     (6)化学结构对药理作用的影响大。从结构变化与药理活性变化的关系分析,芒果苷苷元上-OH基团的有无及数量,决定了止咳、化痰、平喘、抑菌、抗病毒活性的有无;而抗炎、抑制PTPIB活性和降血糖作用,只与芒果苷母核的化学结构和结构特点有关,与母核上链接的其它基团无关。
     (7)芒果苷苷元比芒果苷本身更具有研究开发价值。去除葡萄糖基后的芒果苷苷元,在相同剂量下其抗炎、降血糖作用可能更加显著;如进行酯化衍生,衍生物的抗炎、降血糖作用可能会得到飞跃式提升
     4创新点
     (1)用BCS药剂分类原则作为指导思想,对芒果苷进行结构修饰,提高其脂溶性,从而提高其跨膜通透性,增加其生物利用度,最终提高其药理活性;药理研究结果表明,抗炎和降血糖作用达到了预期的目的。
     (2)首次采用化学方法制备芒果苷酯化衍生物;所制备的7个酯化衍生物(化合物Ⅰ-Ⅳ、PAM、HPM、HBM)均具有新的化学结构,为首次报道。
1 Background
     Mangiferin, a naturally occurring xanthone glucoside, is widely distributed in herbals such as Mangifera indica L., Anemarrhena asphodeloides Bge and Swertia mussotii Franch and has recently attracted much attention due to its anti-diabetic, anti-inflammatory, expectorant, antitussive and anti-asthma activities.
     Mangiferin now can be produced in large scale and with very high purity (more than 95%). Unfortunately, to date mangiferin has not yet been developed to clinical drug, just because it has too many activities to focus on a stronger one.
     According to scientists, mangiferin has certain bio-activities; its weak pharmacological activity is due to its low solubility, low permeability and low bio-availability. In other words, mangiferin is a BCS-4 drug.
     In order to improve the bio-availability of mangiferin so as to improve its pharmacological activity, some studies were involved in improvement of solubility, and had little effects. Improvement of permeability was another way, but only few studies were involved. These studies all focused on preparation of highly lipid-soluble derivatives, which were still not good enough to be put into application even though they showed certain pharmacological activities.
     In this paper we tried to prepare lipid-soluble derivatives too. But one thing was important:we prepared esterified-derivatives, which have not yet been mentioned in existing literatures. These novel esterified-derivatives may lead to some breakthroughs.
     2 Methods and results
     This paper reported the chemical synthesis, separation and structure confirmation of 7 novel mangiferin esterified-derivatives. In addition, the physicochemical properties and pharmacological activities of 3 main target compounds (PAM, HPM and HBM) were studied.
     (1) Synthesis. Mangiferin as original compound, H+ as catalyst, anhydride as solvent, mangiferin respectively reacted with acetic anhydride, propionic anhydride and butyric anhydride to produce esterified-derivatives. The reaction selectivity was so low that the reaction yielded 3 to 5 multi-acylation compounds.
     (2) Separation, purification and structure confirmation. Silica gel chromatography was employed to separate target compounds from the reaction product.7 novel compounds were separated and confirmed by 1H NMR,13C NMR and HMBC spectrum, their chemical structure seen in the following figure. Out of these 7 novel compounds,3 main target compounds were as follow: (a)7,2',3',4',6'-penta-acetyl-mangiferin(PAM), formula:C29H28O16; (b)3,6,7,2',3',4',6'-hepta-propionyl-mangiferin(HPM), formula:C40H46O18; (c)3,6,7,2',3',4'-hexa-butyryl-mangiferin(HBM), formula:C43H54O17. These 7 compounds were reported for the first time.
     (3) Physicochemical properties. PAM, HPM and HBM were easily soluble in ethyl acetate, hardly soluble in water, stable in aq. solution at pH<9; they partly decomposed in aq. solution at pH>10, especially at high temperature. Their melting points decreased sharply with a rate of about 100℃. They had obvious features of UV absorption.
     (4) O/w distribution coefficient. The concentrations of mangiferin, PAM, HPM and HBM in water and n-octanol, by which to form a liquid-liquid extraction system, were determined respectively so as to calculate the o/w distribution coefficient. The o/w distribution coefficient of mangiferin was smaller than that of PAM, HPM and HBM, and it increased when pH decreased. The distribution coefficients of PAM, HPM and HBM were all bigger than 100, with a max at pH7 (>270); and with the increase of acidity or alkalinity, they decreased.
     (5) Coughing mice induced by strong ammonia were employed to study the antitussive activity. Mangiferin's high- and mid-dose group (1.0,0.5 mmol·kg-1) showed certain antitussive effect because they could significantly decrease the cough frequency(P<0.01) and prolong the cough incubation period(P<0.05). The antitussive effect of PAM, HPM and HBM was not significant (P>0.05) even though they had the trend to decrease the cough frequency and to prolong the cough incubation period.
     (6) Phenol red secreting mice were used to study the expectorant activity. Mangiferin's high- and mid-dose group (1.0,0.5 mmol·kg-1) showed certain expectorant effect because they could significantly increase the secretory of phenol red (P<0.05 or P<0.01); the expectorant effect of PAM, HPM and HBM was not significant (P>0.05) even though they had the trend to increase the secretory of phenol red.
     (7) Asthma guinea pigs induced by histamine-Ach were used to study the anti-asthma activity. Mangiferin's high-and mid-dose group (1.0,0.5 mmol·kg-1) showed certain anti-asthma effect because they could significantly prolong the asthma incubation period (P<0.05 or P<0.01); the anti-asthma effect of PAM, HPM and HBM was not significant (P>0.05) even though they had the trend to prolong the asthma incubation period.
     (8) Bacteria culture in vitro was employed to study the bacteriostatic activity. Although PAM, HPM and HBM showed bacteriostatic effect for MRSA(sensitive) and Bacillus paratyphosus at the max concentration (75 mg·mL-1) they didn't show that for other bacteria, or at other concentration levels.
     (9) HSV-1 inhibition test was used to study the anti-virus activity. Cytotoxicity of mangiferin, PAM, HPM and HBM was all not so strong; they could not obviously inhibit HSV-1, and the CPE inhibition rate was less than 50%.
     (10) Swelling of mice ear and permeability of mice celiac capillary were used to evaluate the anti-inflammatory activity. Mangiferin's high-and mid-dose group (1.0,0.5 mmol·kg-1), PAM's high- and mid-dose group (0.25,0.125 mmol·kg-1), HPM's high-, mid- and low-dose group (0.25,0.125, 0.063mmol·kg-1) and HBM's high-, mid- and low-dose group (0.25,0.125, 0.063mmol·kg-1) could significantly inhibit the ear swelling, showed obvious anti-inflammatory effect; although mangiferin's low-dose group (0.25mmol·kg-1) and PAM's low-dose group (0.063mmol·kg-1) had the trend to inhibit the ear swelling, the inhibition effect was not significant (P>0.05).
     In another test, mangifrin's high-, mid- and low-dose group(1.0,0.5, 0.25mmol·kg-1), PAM's high-and mid-dose group(0.25,0.125mmol·kg-1), HPM's high-, mid- and low-dose group(0.25,0.125,0.063mmol·kg-1) and HBM's high- and mid-dose group(0.25, 0.125mmol·kg-1) could significantly decrease the permeability of mice celiac capillary (P<0.01 or P<0.05), showed obvious anti-inflammatory effect; although PAM's low-dose group (0.063mmol·kg-1) and HBM's low-dose group (0.063mmol·kg-1) had the trend to decrease the permeability of mice celiac capillary their anti-inflammatory effect was not significant (P>0.05).
     (11) MTT and tumor bearing mice were used to evaluate the anti-tumor activity. In MTT test, PAM, HPM and HBM showed the effect to enhance the apoptosis of 7901, hella and 7404 tumor cell. In another test, HBM high-dose group (1.0mmol·kg-1) could significantly inhibit the S180 tumor cell in vivo (P<0.05). Although HBM mid-dose group (0.5 mmol·kg-1) had the trend to inhibit tumor cell its inhibition effect was not significant (P>0.05).
     (12) PTP1B inhibition test and hyperglycemia model mice were used to evaluate the hypoglycemic activity and to investigate the hypoglycemic mechanism.
     In hyperglycemia mice induced by STZ, the mangiferin's high- and mid-dose group (1.0,0.5 mmol·kg-1) and all dose levels group (0.25,0.125, 0.063 mmol·kg-1) of PAM, HPM and HBM significantly showed hypoglycemic effect(P<0.01 or P<0.05). Although mangiferin's low-dose group (0.25 mmol·kg-1) had the trend to decrease the mice glucose level its effect was not significant (P>0.05).In hyperglycemia mice induced by adrenaline, high-dose group (1.0 mmol·kg-1) of PAM, HPM and HBM could not supress the sharp increase of mice glucose level (P>0.05). In PTP1B inhibition test in vitro, at 5\ig-mL'1, PAM, HPM and HBM showed obvious PTP1B inhibition effect; precipitates appeared at 20μg·mL-1, this indicated that PAM, HPM and HBM had very high PTP1B inhibition activity.
     3 Conclusions
     (1) Esterified-derivatives not only can be easily prepared from mangiferin by direct acylation reaction, but also can be easily, efficiently separated and purified from the reaction product. Novel compound IⅠ~Ⅳ, PAM, HPM and HBM in this paper are reported for the first time.
     (2) The physicochemical properties and the o/w distribution coefficient of PAM, HPM and HBM are different from those of mangiferin.
     (3) PAM, HPM and HBM do not show any antitussive, expectorant, anti-asthma, bacteriostatic and antiviral effect even though mangiferin certainly showes these activities. This indicates that esterified-derivatives lose these activities because of being acylated. On the other hand, PAM, HPM and HBM can slightly enhance the apoptosis of 7901, hella and 7404 tumor cell in vitro, and have slight inhibition effect on S180 tumor cell in vivo. This indicates that esterified-derivatives inherite the slight tumor inhibition activity from mangiferin. Third, in the case of showing similar anti-inflammatory and hypoglycemic effect, mangiferin requires four times the molar dose that derivatives neede; in addition, PAM, HPM and HBM can significantly inhibit PTP1B. This indicates that esterified-derivatives have stronger hypoglycemic activity than mangiferin.
     (4) For the mangiferin esterified-derivatives, there exists a trend that the longer esterification moieties (non→acetyl→propionyl→butyryl), the higher lipid-solubility, and the stronger anti-inflammatory and hypoglycemic activity. In other words, there exists a certain structure-activity relationship.
     (5) Mangiferin, PAM, HPM and HBM neither have the insulin-like activity nor have the activity to stimulate the islet cell to secrete insulin heavily in short time. The hypoglycemic mechanism of PAM, HPM and HBM may lie in PTP1B inhibition and islet cell repair. First, PTP1B inhibition can increase the concentration of insulin receptor as to increase the availability of insulin; on the other way, high lipid-solubility means high transmembrane permeability, more drugs get into the islet cell and make the cell recover from the STZ damage as to increase the insulin secretion.
     (6) By analyzing the corresponding relation of the chemical structure changes and the pharmacological activity changes, it indicates that-OHs on the aglycon exist or not would directly make the compound to have antitussive, expectorant, anti-asthma, bacteriostatic and antiviral activity or not; in addition, PTP1B inhibition, anti-inflammatory and hypoglycemic activity only get related with the chemical structure and the structure features of the aglycon, or to say, these activities have nothing to do with other moieties on the aglycon.
     (7) The aglycon is more valuable than mangiferin itself. The pharmacological activity of mangiferin depends on its aglycon; and the aglycon reasonably has stronger activity than mangiferin, for example, the anti-inflammatory and hypoglycemic activity. It would be certain that acylated aglycon of mangiferin had very strong anti-inflammatory and hypoglycemic activity.
     4 Innovations
     (1)Took BCS principles as guidelines, the chemical structure of mangiferin was modified to increase the lipid-solubility of the target compounds. High lipid-solubility led to high transmembrane permeability, so that more drugs got into the cell to increase the bio-availability, and as a result, the pharmacological activity significantly strengthened. The study results in this parer indicated that the anti-inflammatory and hypoglycemic activity of mangiferin esterified-derivatives (PAM, HPM and HBM) achieved the expected purpose.
     (2)For the first time, esterified-derivatives of mangiferin were chemically prepared. The esterified-derivatives (compoundⅠ~Ⅳ, PAM, HPM and HBM) mentioned in this paper were novel compounds. The anti-inflammatory and hypoglycemic activities of PAM, HPM and HBM were far more stronger than these of mangiferin, their parent compound.
引文
[1]Bhatia VK, Seshadri TR.Synthesis of mangiferin[J]. Tetrahedron Lett, 1968,14:1741-1742.
    [2]胡彦君,刘桑,王定勇.芒果叶的化学成分研究[J].亚太传统医药,2010,6(2):18-19.
    [3]余胜民,钟鸣.芒果甙药理研究进展[J].中国中医药科技,1999,(03):201-200.
    [4]Oshimi S,Zaima K,Matsuno Y,et al. Studies on the constituents from the fruits of Phaleria macrocarpa[J]. Natural Medicines.2008,62(2):207-208.
    [5]Morikawa T,Kishi A,Pongpiriyadacha Y, et al. Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis[J]. Journal of natural products. 2003,66(9):1191-1193.
    [6]Jurgenliemk G,Nahrstedt A.Phenolic compounds from Hypericum perforatum[J]. Planta medzca.2002,68(1):88-90.
    [7]R B Jadhava, S J Anarthea, S J Surana. Host-hemiparasite transfer of the C-glucosyl xanthone mangiferin between Mangifera indica and Dendrophthoe falcate[J]. Journal of Plant Interactions,2005,1(3):171-177.
    [8]李学坚,邓家刚,杨兴,等.芒果叶药材规范化种植技术[J].中国现代中药,2007,9(8):34-38.
    [9]王强,孙有略.知母中芒果甙的含量测定[J].中国药科大学学报,1991,22(6):383-384.
    [10]陆仲毅.鸢尾、龙胆、岩黄蓍属某些植物中芒果甙的含量测定[J].国外医药植物药分册,1981,2(3):27-28.
    [11]刘华钢,黄海滨,陈燕军.HPLC法测定芒果止咳片中芒果甙的含量[J].中成药,1997,(10):14-15.
    [12]翟红莉,孙连娜,来威,等.HPLC法测定知母药材及其相关制剂中芒果苷和新芒果苷的含量[J].解放军药学学报,2007,(06):472-474.
    [13]Jieping Qin, Jiagang Deng, Xu Feng, et al. Quantitative RP-LC Analysis of Mangiferin and Homomangiferin in Mangifera indica L. Leaves and in Mangifera persiciforma C.Y. Wu et T.L. Ming Leaves[J]. Chromatographia, 2008,68(11):955-960.
    [14]C Satirasuttipong. Mangiferin Contents of Leaves, Bark and Branches of Thai Mangifera indica L. Cultivars[D]. Mahidol University,2009.
    [15]S Rastogi, M M Pandey, A K S Rawat. A new, convenient method for determination of mangiferin, an anti-diabetic compound, in Mangifera indica L[J]. JPC-Journal of Planar Chromatography-Modern TLC,2007,20(5): 317-320.
    [16]牛玉存,孙长颢,李颖,等.正交试验优化知母中芒果苷的提取工艺[J].卫生研究,2009,(04):404-405.
    [17]季德,陆兔林,宋珅.知母中芒果苷提取方法考察及知母毛皮肉中芒果苷含量比较[J].上海中医药杂志,2006,(05):60-61.
    [18]陈万生,娄子洋,殷学平.知母提取物及其制备方法和用途[P].中国发明专利,专利号ZL03115509.X.
    [19]袁叶飞,胡祥宇.川西獐牙菜中芒果苷的提取分离研究[J].时珍国医国药,2009,(08):1840.
    [20]陈银华.射干化学成分芒果苷的分离鉴定及药材高效液相指纹图谱的研究[D].湖北中医学院2008年硕士硕士论文.
    [21]A Schieber, N Berardini. Identification of Flavonol and Xanthone Glycosides from Mango (Mangifera indica L. Cv. "Tommy Atkins") Peels by High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry[J]. J of Agric Food Chem,2003,51 (17):5006-5011.
    [22]邓家刚,李学坚.提取高纯度芒果苷的工艺研究[J].中国中医药科技,2008,(01):50-51.
    [23]唐燕青,丘丹萍,罗泳林,等.芒果叶总皂苷提取工艺的优化研究[J].化工技术与开发,2009,(07):18-19+41.
    [24]邓家刚,李学坚.高纯度芒果苷的制备方法[P].中国发明专利ZL200610079234.5.
    [25]李学坚,杜正彩,邓家刚.采用水基溶剂提取芒果苷的工艺研究[J].中成药,2012,34(1):161-164.
    [26]李学坚,杜正彩,邓家刚.D101大孔树脂吸附芒果苷的影响因素[J].中国实验方剂学杂志,2011,17(15):51-53.
    [27]李学坚,杜正彩,邓家刚.一种芒果苷的制备方法[P].中国发明专利,申请号201010543720.4.
    [28]广西中医学院芒果叶研究小组.芒果叶治疗慢性气管炎的药理实验及临床疗效观察[J].中医教学,1974,(2/3):38.
    [29]邓家刚,郑作文,曾春晖.芒果苷的药效学实验研究[J].中医药学刊,2002,(06):802-803.
    [30]袁叶飞,邓家刚,余听,等.芒果苷单钠盐的药效学实验研究[J].时珍国医国药,2008,(04):816-817.
    [31]邓家刚,袁叶飞.芒果苷单钠盐的制备及其与芒果苷的药效比较[J].华西药学杂志,2008,(01):17-18.
    [32]杨佳.知母水提物与活性成分芒果苷及其糖苷的抗糖尿病作用[J].国外医学(中医中药分册):2002,(06):353-354.
    [33]Ichiki H,Miura T,Kubo M,et al.New antidiabetic compounds,mangiferin and its glucoside[J]. Biol Pharm Bull,1998,21(12):1389-1391.
    [34]Miura T,Ichiki H,Iwamoto N,et al.Antidiabetic activity of the rhizoma of Anemarrhena asphodeloides and active components, mangiferin and its glucoside[J]. Biol Pharm Bul,2001,24(9):100.
    [35]Miura T,Ichiki H, Hashimoto I,et al.Antidiabetic activity of a xanthone compound, mangiferin[J]. Phytomedicine,2001,8(2):85-86.
    [36]S.Muruganandan, K. Srinivasan,S.Gupta, et al.Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats[J].Journal of Ethnopharmacology.2005,97(3):497-498.
    [37]贾珍,陈晓梅HPLC测定藏茵陈注射液中芒果苷的含量[J].中成药,2006,(11):1703-1704.
    [38]邓家刚,郝二伟,郑作文,等.芒果苷对两种不同炎症模型前列腺素E 2含量的影响[J].中华中医药学刊,2008,(10):2085-2086.
    [39]邓家刚,阎莉,郭力城.芒果苷对花生四烯酸代谢产物的影响[J].中国民族医药杂志,2008,(08):26-28.
    [40]邓家刚,郭力城,郑作文,等.芒果苷对豚鼠肺组织释放慢反应物质的影响[J].广西中医药,2008,(03):58-59.
    [41]邓家刚,杨柯,郑作文,等,芒果苷在鸭体内抑制鸭乙型肝炎病毒感染的实验研究[J].广西中医学院学报,2007,(01):1-3.
    [42]郑作文,邓家刚,杨柯.芒果苷在2215细胞培养中对乙肝病毒HBsAg、 HBeAg分泌的影响[J].中医药学刊,2004,(09):1645-1646.
    [43]Zheng MS, Lu ZY Antiviral effect of mangiferin and isomangiferin on herpes simplex virus[J].Chin Med J(Eng.),1990,103(2):160-165.
    [44]C Yoosook, N Bunyapraphatsara, Y Boonyakiat, et al. Anti-herpes simplex virus activities of crude water extracts of Thai medicinal plants [J]. Phytomedicine,2000,6(6):411-419.
    [45]黄小鸥,陈壮,邓家刚.芒果苷滴丸对小鼠实验性肝损伤的保护作用[J].中国药师,2009,(09):1184-1187.
    [46]韦健全,郑子敏,潘勇,等.芒果苷对乙醇引起肝损伤的保护作用[J].广西医科大学学报,2008,(05):732-733.
    [47]Bhatia HS,Candelario-Jalil E, de Oliveira AC, et al.Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells[J]. Arch Biochem Biophys.2008,477(2):253-254.
    [48]Yoshimi N, Matsunaga K, Katayama M, et al. The inhibitory effects of mangiferin, a naturally occurring glucosylxanthone, in bowel carcinogenesis of male F344 rats[J].Cancer Lett,2001,163(2):163-170.
    [49]D Garcia, R Delgado, FM Ubeira, et al. Modulation of rat macrophage function by the Mangiferaindica L. extracts Vimang and mangiferin [J]. International Immunopharmacology,2002,2(6):797-806
    [50]杨小丽,刘晓春,蓝娇,等.芒果甙对鼻咽癌细胞系CNE2细胞增殖、凋亡及周期的影响[J].山东医药,2009,(39):23-24.
    [51]刘晓春,蓝娇,潘莉莉,等.芒果甙诱导鼻咽癌CNE2细胞凋亡及其对细胞内钙含量的影响[J].广西医学,2009,(05):616-617.
    [52]程鹏,彭志刚,杨杰,等.芒果甙对白血病K562细胞端粒酶活性和凋亡的影响[J].中药材,2007,(03):306-309.
    [53]彭志刚,罗军,夏凌辉,等.芒果甙诱导慢性髓系白血病K562细胞凋亡[J].中国实验血液学杂志,2004,(05):590-594.
    [54]农少云,农朝赞,潘莉莉,等.芒果甙对连环蛋白P120磷酸化及肝癌细胞生物学行为的影响[J].广西医科大学学报,2005,(04):495-497.
    [55]黄华艺,农朝赞,郭凌霄,等.芒果甙对肝癌细胞增殖的抑制和凋亡的诱导[J].中华消化杂志,2002,(06):17-19.
    [56]黄华艺,农朝赞,郭凌宵,等.芒果甙对肝癌大鼠血清上皮钙粘蛋白和癌胚抗原以及单胺氧化酶的影响[J].医学综述,2001,(12):764-765.
    [57]黄华艺,赵世元,农朝赞,等.芒果甙对肝癌可溶性E-上皮钙黏蛋白及癌胚抗原和单胺氧化酶的影响[J].中华消化杂志,2001,(08):56-57.
    [58]农朝赞,郭凌霄,黄华艺.芒果甙对肝癌大鼠肝组织β-catenin和p120ctn表达的影响[J].右江民族医学院学报,2003,(02):143-146.
    [59]P Rajendran, G Ekambaram, D Sakthisekaran. Cytoprotective Effect of Mangiferin on Benzo(a)pyrene-Induced Lung Carcinogenesis in Swiss Albino Mice[J]. Basic & Clinical Pharmacology & Toxicology,2008, 103(2):137-142.
    [60]Jose Manuel Leiroa, Ezequiel Alvarezb, Juan Alberto Arranz. et al. In vitro effects of mangiferin on superoxide concentrations and expression of the inducible nitric oxide synthase, tumour necrosis factor-a and transforming growth factor-β genes[J]. Biochemical Pharmacology,2003, 65(8):1361-1371.
    [61]U Chattopadhyay,S Dasa, S Guha. Activation of lymphocytes of normal and tumor bearing mice by mangiferin, a naturally occurring glucosylxanthone[J]. Cancer Letters,1987,37(3):293-299.
    [62]邓家刚,杨柯,阎莉,等.芒果苷对免疫抑制小鼠T淋巴细胞增殖的影响[J].中药药理与临床,2007,23(5):64.
    [63]Sanchez GM, Re L, Giuliani A, et al. Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice[J]. Pharmacol Res.2000,42(6):565.
    [64]S Muruganandan, J. Lal, P K Gupta. Immunotherapeutic effects of mangiferin mediated by the inhibition of oxidative stress to activated lymphocytes, neutrophils and macrophages[J]. Toxicology,2005,215(1):57-68.
    [65]Rodriguez J, Di Pierro D, Gioia M, et al.Effects of a natural extract from Mangifera indica L, and its active compound, mangiferin, on energy state and lipid peroxidation of red blood cells[J].Biochim Biophys Acta,2006, 1760(9):1333-1342.
    [66]Pardo-Andreu G, Barrios MF, Curti C, et al.Protective effects of Mangifera indica L extract(Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver[J].Pharmacol Res, 2008,7(1):79-86.
    [67]Rivera DG, Balmaseda IH, Leon AA, et al. Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin[J]. J Pharm Pharmacol.2006,58(3):385.
    [68]S. Prabhu, M. Jainu, K.E. Sabitha and C. S. Shyamala Devi. Cardioprotective effect of mangiferin on isoproterenol induced myocardial infarction in rats [J]. Indian J. of experimental Biology,44(3):209-215,2006.
    [69]RR Carvalho, CH Pellizzon, et al.Effect of mangiferin on the development of periodontal disease:Involvement of lipoxin A(4):anti-chemotaxic action in leukocyte rolling[J]. Chemico-Biological Interactions,2009,179(2-3):344-350.
    [70]T Miura, C Fukuta, et al. Hypolipidemic activity of Mangiferin in cholesterol-fed mice[J].Journal of Traditional Medicines,2001,18(3):119-121.
    [71]K Jung, B Lee, SJ Han,et al.Mangiferin ameliorates scopolamine-induced learning deficits in mice[J].Biological & Pharmaceutical Bulletin.2009(32): 242-246.
    [72]GC Jagetia, VA Venkatesha,et al.sMangiferin protects human peripheral blood lymphocytes against y-radiation-induced DNA strand breaks:a fluorescence analysis of DNA unwinding assay [J].Nutrition research,2006,(26)6:303-311.
    [73]D. Garcia, M. Escalante, R. Delgado, et al. Anthelminthic and antiallergic activities of Mangifera indica L. stem bark components Vimang and mangiferin[J]. Phytotherapy Research,2003,17(10):1203-1208.
    [74]B. Mishra, K.Indira Priyadarsini. Pulse radiolysis studies of mangiferin:A C-glycosyl xanthone isolated from Mangiferaindica[J]. Radiation Physics and Chemistry,2006,75(1):70-77.
    [75]S Muruganandana, S Guptaa, M Kataria, et al. Mangiferin protects the streptozotocin-induced oxidative damage to cardiac and renal tissues in rats[J]. Toxicology,2002,176(3):165-173.
    [76]NH Daud, CS Aung, AK Hewavitharana. Mango Extracts and the Mango Component Mangiferin Promote Endothelial Cell Migration[J]. J of Agric and Food Chem,2010,58(8):5181-5186.
    [77]C Neelakandan, T Kyu. Membrane morphology and phase diagrams of mangiferin modified poly(amide)/poly(vinyl pyrrolidone) blends[J]. Journal of Membrane Science,2011,367(1):240-248.
    [78]J Rodriguez, D Di Pierro, M Gioia, et al. Effects of a natural extract from Mangifera indica L, and its active compound, mangiferin, on energy state and lipid peroxidation of red blood cells[J]. Biochimica et Biophysica Acta, 2006,1760(9):1333-1342.
    [79]李学坚,杜正彩,邓家刚.采用析因设计方法研究槲皮素和没食子酸对芒果苷止咳作用的影响[J].中国实验方剂学,2011,17(23):145-147.
    [80]李学坚,胡文姬,邓家刚,等.析因分析法研究槲皮素对芒果苷抗炎、化痰作用的影响[J].时珍国医国药,2012,23(2):35-37.
    [81]王乃平,邓家刚,黄海滨.芒果总苷片的主要药效学研究[J].中国中药杂志,2004,29(10):1013-1017.
    [82]MMM Pinto, ME Sousa, MSJ Nascimento. Xanthone Derivatives:New Insights in Biological Activities[J]. Current Medicinal Chemistry,2005, 12(21):2517-2538.
    [83]Cantagrel N, Lubrano C, Robin J R. Glycosylation of mangiferine by biocatalyst, useful in cosmetic field to protect skin comprises contacting mangiferine with a glycosyltransferase enzyme, in the presence of a sugar donor:FR,2882762(A1) [P]. US patent,2006-09-08.
    [84]梁建钦.芒果苷糖酯衍生物的非水相酶促合成及其抗炎活性研究[D].广西医科大学博士论文,2011.
    [85]李学坚,邓家刚,覃振林,等.芒果苷-小檗碱组合物抑菌、抗炎、镇痛作用的研究[J].中国中医药科技,2010,(01):36-37.
    [86]李学坚,邓家刚,覃振林,等.芒果苷小檗碱组合物对大鼠实验性子宫炎症的影响[J].时珍国医国药,2008,(12):3008-3009.
    [87]李学坚,邓家刚,覃振林,等.芒果苷小檗碱组合物降血糖作用的试验研究[J].中国现代中药,2008,(12):26-28.
    [88]邓家刚,袁叶飞.水溶性芒果苷单钠盐的制备方法及其应用[P].中国发明专利,申请号200610115172.9
    [89]廖洪利,吴秋业,胡宏岗,等.芒果苷的结构修饰[J].华西药学杂志, 2008,(04):385-387.
    [90]廖洪利.知母中芒果苷的分离和结构修饰[D].第二军医大学硕士论文,2005.
    [91]周宇,胡丽娜,吴秋业,等.芒果苷衍生物的合成及其PTP1B酶抑制活性研究[J].药学实践杂志,2010,29(3):193-196.
    [92]吴玮峰.芒果苷衍生物的合成及其生物活性研究[D].第二军医大学硕士论文,2009.
    [93]李学坚.芒果苷衍生物及其制备方法,以及作为药物的用途[P].中国发明专利,专利号ZL200510088313.8
    [94]吴秋业,陈万生,胡宏岗,等.芒果苷类化合物以及其制备方法和在医药领域的应用[P].申请号200610117200.0
    [95]叶小利,李学刚.降血压药物3-烷氧基-芒果苷、合成及应用[P].中国发明专利,申请号200910104184.5.
    [96]李学坚,邓家刚.芒果苷-小檗碱组合物[P].中国发明专利,申请号200710126143.7
    [97]王志萍,邓家刚,王勤.羟丙基-β-环糊精包合法提高芒果苷溶解度的研究[J].中成药,2008,30(8):1123-1126.
    [98]Lai L, Lin LC, Lin JH, et al.Pharmacokinetic study of free mangiferin in rats by microdialysis coupled with microbore high-performance liquid chromatography and tandem mass spectrometry[J]. J Chromatography A,2003,987(1):367-374.
    [99]Wang HX, Ye G, Ma CH, et al. Identification and determination of four metabolites of mangiferin in rat urine [J]. J Pharm Biomed Anal,2007, 45(5):793-798.
    [100]Ma CH, Wang HX, Tang YH, et al. Identification of major xanthones and steroidal saponins in rat urine by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry technology following oral administration of Rhizoma Anemarrhenae decoction [J]. Biomed Chromatogr, 2008,22(10):1066-1083.
    [101]HH Liu, K Wang, YH Tang, ZL Sun,et al. Structure elucidation of in vivo and in vitro metabolites of mangiferin[J]. J of Pharmaceutical and Biomedical Analysis,2011,55(5):1075-1082.
    [102]U Palanisamy, HM Cheng, T Masilamani, et al.Rind of the rambutan, Nephelium lappaceum, a potential source of natural antioxidants[J]. Food Chemistry,2008,109(1):54-63
    [103]JRR De Souza, JIX De Carvalho, MTS Trevisan. Chitosan-coated pectin beads:Characterization and in vitro release of mangiferin[J]. Food Hydrocolloids,2009,23(8):2278-2286.
    [104]Swagatika Sahu, Basanta Kumar Das, Jyotirmayee Pradhan, et al. Effect of Magnifera indica kernel as a feed additive on immunity and resistance to Aeromonas hydrophila in Labeo rohita fingerlings[J]. Fish & Shellfish Immunology,2007,23(1):109-118.
    [105]F Rouillard, A Josse. Cosmetic or Pharmaceutical Compositions Containing Mangiferin or Derivatives Thereof [P]. PCT/FR1995/001552.
    [106]L Charrier, F Poirier, G Mailler. cosmetic use of mangiferin[P]. US patent, 2006/0088560 A1.
    [107]C W Poutona, C J H Porter. Formulation of lipid-based delivery systems for oral administration:Materials, methods and strategies [J]. Advanced Drug Delivery Reviews,2008,60(6):625-637.
    [108]C Puglia, R Filosa, A Peduto, et al. Evaluation of Alternative Strategies to Optimize Ketorolac Transdermal Delivery [J]. AAPS PharmSciTech,2006; 7 (3):E61-E69.
    [109]P Torres, D Reyes-Duarte, N Lopez-Cortes. Acetylation of vitamin E by Candida antarctica lipase B immobilized on different carriers[J]. Process Biochemistry,2008,43(2):145-153.
    [110]K B Sloan, S A M Koch, K G. Siver. Mannich base derivatives of theophylline and 5-fluorouracil:syntheses, properties and topical delivery characteristics [J]. International Journal of Pharmaceutics,1984, 21(3):251-264.
    [111]Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification:the correlation of in vitro drug product dissolution and in vivo bioavailability [J]. Pharm Res,1995,12(3):413-420.
    [1]梁建钦.芒果苷糖酯衍生物的非水相酶促合成及其抗炎活性研究[D].年广西医科大学博士学位论文,2011.
    [2]吴玮峰.芒果苷衍生物的合成及其生物活性研究[D].第二军医大学硕士论文,2009.
    [3]袁叶飞,邓家刚,余听,等.芒果苷单钠盐的药效学实验研究[J].时珍国医国药,2008,19(4):816-817.
    [4]王志萍,邓家刚,王勤.羟丙基-β-环糊精包合法提高芒果苷溶解度的研究[J].中成药,2008,30(8):1123-1126.
    [5]李敏.前药设计原理及其临床应用[J].中国现代药物应用,2009,3(15):193-195.
    [6]傅晓钟,王永林,兰燕宇,等.阿德福韦单L-氨基酸酯、单非甾体抗炎药羧酸酯前药的设计、合成与抗乙肝病毒活性研究[J].药学学 报,2010,45(8):1017-1024.
    [7]陈旭冰,陈光勇,施贵荣,等.贝诺酯的合成工艺改进[J].大理学院学报,2009,8(6):12-14.
    [8]徐敏.贝诺酯的制备及应用[J].化学工程与装备,2009,(4):104-105.
    [9]K B Sloan, S A M Koch, K G. Siver. Mannich base derivatives of theophylline and 5-fluorouracil:syntheses, properties and topical delivery characteristics [J]. International Journal of Pharmaceutics,1984, 21(3):251-264.
    [10]闻 韧.药物合成反应[M].北京:化学工业出版社,2001.
    [11]常建华,董绮功.波谱原理及解析(第二版)[M].北京:科学出版社,2005.
    [12]孟令芝,龚淑玲,何永炳.有机波谱分析(第二版)[M].武汉:武汉大学出版社,2003.
    [13]Hu YJ, Liu S, Wang DY. Chemical Constituents of the Leaf of Mangifera indica [J]. Asia-Pacific Traditional Medicine,2010,6(2):18-19.
    [14]韦 松,杨小良,赵卫峰,等.扁桃树皮化学成分研究[J].中成药,2008,30(9):1399-1400.
    [15]袁干军,易延逵.海南五层龙根的化学成分研究[J].中药材,2005,28(1):27-29.
    [16]Rancona S, Chaboud A, Darbour N, et al. A new C-glycosyl xanthone isolated from Dayallia solida [J]. Phytochemistry,1999,52:1677-1679.
    [17]褚小立.紫外可见光谱一化学计量学[M].北京:化学工业出版社,2011.
    [18]国家药典委员会.中华人民共和国药典[S],北京:化学工业出版社,2010:附录Ⅵ C.
    [19]陈毅平,牛晓静,陈双英.芒果苷的稳定性及其影响因素[J].华西药学杂志.2008,23(3):359-361.
    广西医科大学博士论文 芒果苷酯化衍生物的化学合成及药理活性研究 第二章化学研究
    [20]张 宁,平其能.生物药剂分类系统(BCS)及其应用进展[J].中国新药杂志.2008,17(19):1655-1658.
    [21]张宁,平其能.基于生物药剂分类系统对普通口服固体制剂免除生物等效性研究的考虑[J].中国临床药理学杂志,2008,24(4):370-372.
    [22]国家药典委员会.中华人民共和国药典[S],北京:化学工业出版社,2010:附录Ⅵ B.
    [23]李学坚,杜正彩,邓家刚.采用水基溶剂提取芒果苷的工艺研究[J].中成药,2012,34(1):165-168.
    [24]李学坚,杜正彩,邓家刚.D101大孔树脂吸附芒果苷的影响因素[J].中国实验方剂学杂志,2011,17(15):51-53.
    [25]Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification:the correlation of in vitro drug product dissolution and in vivo bioavailability [J]. Pharm Res,1995,12(3):413-420.
    [26]黄建权,王唯红.HPLC法研究鸟嘌呤类抗病毒药物的油/水分配系数与药物结构的关系[J].药物分析杂志,2005,25(12):1570-1573.
    [27]姜宇,何群.秦皮甲素平衡溶解度及表观油/水分配系数的研究[J].中国药房,2010,21(29):2725-2727.
    [28]陶涛,赵雁,陈庆华.石杉碱甲的解离常数、表观溶解度和表观油/水分配系数的测定[J].中国医药工业杂志,2005,36(8):487-489.
    [29]刘克非,李晓峰,张雅听,等.葫芦素E溶解度、正辛醇-水及脂质体-水分配系数测定[J].沈阳药科大学学报,2010,27(11):853-855.
    [1]李学坚,邓家刚,杨兴,等.芒果叶药材规范化种植技术[J].中国现代中药,2007,9(8):34-38.
    [2]中国卫生部药典委员会.卫生部药品标准(中药成方制剂第五分册)[S],1992:50.
    [3]中国卫生部药典委员会.卫生部药品标准[S],WS-10890(ZD-0890)-2002.
    [4]李学坚,杜正彩,邓家刚.采用析因设计方法研究槲皮素和没食子酸对芒果苷止咳作用的影响[J].中国实验方剂学杂志,2011,17(23):145-147.
    [5]廖洪利,吴秋业,叶光明,等.芒果苷药理研究进展[J].天津药学,2005,17(2):50-52.
    [6]陈奇.中药药理研究方法学[M].北京:人民卫生出版社,1993:811
    [7]徐叔云.药理学实验方法学[M].北京:人民卫生出版社,1992
    [8]邓家刚,郑作文,曾春晖.芒果苷的药效学实验研究[J].中医药学刊,2002,(06):802-803.
    [9]广西壮族自治区卫生厅编.1990年版广西中药材标准[S].广西科学技术出版社,1992:54
    [10]陆存蕴.治疗慢性支气管炎药物芒果甙鉴定会报道[J].医药工业,1976,(1):51
    [11]王乃平,邓家刚,李学坚.芒果叶总苷片的主要药效学研究[J].中国中药杂志,2004,20(10):1013-1014.
    [12]李学坚,邓家刚,覃振林,等.芒果苷—小檗碱组合物抑菌、抗炎、镇痛作用的研究[J].中国中医药科技,2010,17(1):36-37.
    [13]王志萍,邓家刚,谭珍媛.芒果苷片体外抑菌杀虫作用的实验研究[J].时珍国医国药,2009,20(9):2167-2168.
    [14]邓家刚,郭宏伟,运晨霞,等.芒果苷抑制鸭乙肝病毒感染的免疫机制[J].细胞与分子免疫学杂志,2010,26(10):2046-2047.
    [15]郑作文,邓家刚,杨柯.芒果苷在2215细胞培养中对乙肝病毒HBsAg、 HBeAg分泌的影响[J].中医药学刊,2004,22(9):1645-1646.
    [16]袁叶飞,邓家刚,胡祥宇.芒果苷单钠盐的抑菌作用研究[J].中国实验方剂学杂志,2011,17(6):173-175.
    [17]刘宗涛,于红,尹延梅,等.重组蓝藻抗病毒蛋白N的纯化复性及其抗单纯疱疹病毒1型活性的研究[J].中国海洋药物,2008,27(3):1-5.
    [18]安立冰,刘宗涛,于红.重组蓝藻抗病毒蛋白N抗单纯疱疹病毒2型作用的实验研究[J].社区医学杂志,2008,6(13):7-8.
    [19]邓家刚,杨柯,郑作文,周小雷.芒果苷在鸭体内抑制鸭乙型肝炎病毒感染的实验研究[J].广西中医学院学报,2007,(01):1-3.
    [20]郑作文,邓家刚,杨柯.芒果苷在2215细胞培养中对乙肝病毒HBsAg、 HBeAg分泌的影响[J].中医药学刊,2004,(09):1645-1646.
    [21]卫智权,邓家刚,阎莉,等.芒果苷对脂多糖诱导慢性炎症的抗炎作用[J].中药药理与临床,2011,27(2):43-45.
    [22]邓家刚,阎莉,郭力城.芒果苷对花生四烯酸代谢产物的影响[J].中国民族医药杂志,2008,(8).
    [23]邓家刚,郝二伟,郑作文,等.芒果苷对两种不同炎症模型前列腺素E_2含量的影响[J].中华中医药学刊,2008,(10).
    [24]梁建钦.芒果苷糖酯衍生物的非水相酶促合成及其抗炎活性研究[D].广西医科大学博士论文,2011.
    [25]黄华艺,农朝赞.芒果甙对肝癌细胞增殖的抑制和凋亡的诱导[J].中华消化杂志,2002,22(6):341-343.
    [26]彭志刚,罗军,夏凌辉,等.芒果甙诱导慢性髓系白血病K562细胞凋亡[J].中国实验血液学杂志,2004,12(5):590-594.
    [27]程鹏,彭志刚,杨杰,等.芒果甙对白血病K562细胞端粒酶活性和凋亡的影响[J].中药材,2007,3(30):306-309.
    [28]Sarkar A, Sreenivasan Y, Ramesh G T, et al. Beta D-Glucoside suppresses tumornecrosis factor induced activation of nuclear transcription factor kappaB but potentiates apoptosis[J]. J Biol Chem,2004,279:33768-33781.
    [29]王艳杰,孙阳,李明珠,等.五味子多糖对S180荷瘤小鼠红细胞免疫抗肿瘤的作用[J].天津医药,2011,39(9):824-827.
    [30]高宇,虞剑,李冰,等.海胆黄多糖SEP对S180的体内抑制作用[J].中国细胞生物学学报,2011,33(9):998-1003.
    [31]蓝萍,叶小利,李学刚,等.知母中α-葡萄糖苷酶抑制剂的提取分离及鉴定[J].中成药,2010,32(11):1945-1948.
    [32]蓝萍,柳明,李盼盼,等.芒果苷及其衍生物对糖尿病小鼠的降糖作用[J].中国动物保健,2010,(6):21-22.
    [33]李学坚,邓家刚,覃振林,等.芒果苷小檗碱组合物降血糖作用的试验研究[J].中国现代中药,2008,10(12):26-28.
    [34]周宇,胡丽娜,罗剑飞,等.芒果苷衍生物的合成及其PTP1B酶抑制活性研究[J].药学实践杂志,2011,29(3):193-196.
    [35]廖洪利.知母中芒果苷的分离和结构修饰[J].第二军医大学硕士论文, 2005.
    [36]赵爱农,罗红.魔芋葡甘聚糖降血糖作用的实验研究[J].中华实用中西医杂志,2005,18(13):241-242.
    [37]王晓敏,邹志坚,陈月梅,等.翻白草黄酮对糖尿病小鼠血清胰岛素和胰岛素抗体的作用[J].时珍国医国药,2008,19(2):338-339.
    [38]宋冰,刘学政.大黄素对2型糖尿病小鼠血糖、胰岛素水平的影响及机制探讨[J].山东医药,2011,51(38):32-33.
    [39]郑杰,籍保平,何计国,等.桔梗对高血糖小鼠短期血糖和胰岛素水平影响[J].食品科学,2006,27(10):525-527.
    [40]李光伟,潘孝仁,Peter H.Bennett血浆葡萄糖、胰岛素比值是可靠的胰岛素敏感性指数吗[J].中华心血管病杂志,1996,24(1):57-62.
    [41]邱昌龙,杨晓溪,赵舒,等.桂枝人参汤加味对2型糖尿病胰岛素抵抗的干预研究[J].中医学报,2011,26(6):843-845.
    [42]钟正贤,周桂芬.广西前胡总甙片的药理研究.中草药,1998,29(9):618-620
    [43]庞晓斌,谢欣梅,王守宝,等.人源蛋白酪氨酸磷酸酶(PTP1B)(?)印制剂的高通量筛选[J].药学学报,2011,46(9):1058-1064.
    [1]Rivera D G, Balmaseda I H, Leon A A, et al. Anti-allergic properties of mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin[J]. J Pharm Phanmc,2010,58(3):385-392.
    [2]Rodriguez J, Di Pierro D, Gioia M, et al.Effects of a natural extract from Mangifera indica L, and its active compound, mangiferin, on energy state and lipid peroxidation of red blood cells[J].Biochim Biophys Acta,2006, 1760(9):1333-1342.
    [3]Pardo-Andreu G, Barrios MF, Curti C, et al.Protective effects of Mangifera indica L extract(Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver[J].Pharmacol Res, 2008,7(1):79-86.
    [4]程鹏,彭志刚,杨杰,等.芒果甙对白血病K562细胞端粒酶活性和凋亡的影响[J].中药材,2007,30(3):306-309.
    [5]彭志刚,罗军,赖永榕,等.芒果苷对白血病K562细胞周期分布及细胞周期素A、细胞周期素B1表达的影响[J].中华中医药杂志,2007,22(8):510-513.
    [6]邓家刚,杨柯,阎莉,等.芒果苷对免疫抑制小鼠T淋巴细胞增殖的影响[J].中国药理与临床,2007,23(5):64-65.
    [7]Atasi D, Sukumar C. The variation in cytoplasmic distribution of mouse peritoneal macrophage during phagoeytesis modulated by mangiferin, an immunomodulatorf[J]. Immunobiology,2009,214:367-376.
    [8]Im R, Mano H, Matsuura T, et al.Mechanisms of blood glucose-lowering effect of aqueous extract from stems of Kothala himbutu (Salacia reticulata)in the mouse[J].J Ethnopharmacol,2009,121(2):234-240.
    [9]廖洪利,吴秋业,胡宏岗,等.芒果苷的结构修饰[J].华西药学 杂志,2008,23(4):385-387.
    [10]蓝萍,柳明,李盼盼,等.芒果苷及其衍生物对糖尿病小鼠的降糖作用[J].中国动物保健,2010,12(6):21-22.
    [11]周宇,胡丽娜,罗剑飞,等.芒果苷衍生物的合成及其PTP1B酶抑制活性研究[J].药学实践杂志,2011,29(3):193-196.
    [12]梁健钦.芒果苷糖酯衍生物的非水相酶促合成及其抗炎活性研究[D].广西医科大学:药理学,2011:51-65.
    [13]袁叶飞,邓家刚,胡祥宇,等.芒果苷磺酸钠抗白血病的实验研究[J].时珍国医国药,2010,21(7):1664-1665.
    [14]邓家刚,袁叶飞.芒果苷单钠盐的制备及其与芒果苷的药效比较[J].华西药学杂志,2008,23(1):17-18.
    [15]袁叶飞,邓家刚,余听,等.芒果苷单钠盐的药效学实验研究[J].时珍国医国药,2008,19(4):816-817.
    [16]袁叶飞,邓家刚.芒果苷单钠盐的制备工艺[J].中国医院药学杂志,2008,28(3):181-183.
    [17]徐广爱.一种芒果苷盐及其制备方法与用途[P]:CN 101108869A.2008-01-23.
    [18]Cantagrel N, Lubrano C, Robin J R. Glycosylation of mangiferine by biocatalyst, useful in cosmetic field to protect skin comprises contacting mangiferine with a glycosyltransferase enzyme, in the presence of a sugar donor:FR,2882762(A1)[P].2006-09-08.
    [19]李学坚.芒果苷衍生物及其制备方法,以及作为药物的用途[P]:CN1757648A.2006-04-12.
    [20]Wang H, Ye G, Ma CH, et al. Identification and determination of four metabolites of mangiferin in rat urine [J]. J Pharm Biomed Anal,2007, 45(5):793-798.
    [21]Ma CH, Wang LX, Tang YH, et al. Identification of major xanthones and steroidal saponins in rat urine by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry technology following oral administration of Rhizoma Anemarrhenae decoction [J]. Biomed Chromatogr,2008,22(10):1066-1083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700