芒果苷糖酯衍生物的非水相酶促合成及其抗炎活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1目的与意义
     芒果苷(Mangiferin,MGF)是一种具有Xanthone结构的葡萄糖C-糖苷(分子式为C19H18O11,分子量为422.34),存在于漆树科植物芒果(Mangifera indica L.)的果实、叶、树皮,百合科植物知母(Anemarrhena asphodeloides Bge.)的根茎、地上部分,鸢尾科植物射干(Belamcanda chinensis(L.)DC.)的花、叶等植物中。
     MGF分子具有较大的平面结构,溶解度较差(在纯水及pH 1.3~7.4的缓冲溶液中平均溶解度<1mg·mL-1),而经换算人的口服有效剂量为630mg,溶解单剂量MGF需要的胃肠道的液体体积>250mL,根据生物药剂学分类系统(Biopharmaceutics classification system,BCS)的定义MGF属于一种溶解性差的药物。此外,MGF在正丁醇-水系统中分配系数(Oil/water partition coefficient,P)非常小(pH1~4时,P值约为2.3,当pH值大于6.86时,P值仅为0.01),通常P值与胃肠通透性相关性较好,P值在100~1000时,被动吸收较好,推测MGF胃肠通透性较差。再者,MGF在小鼠体内肠道吸收效果较差,证实了MGF通透性差。综合MGF上述三方面的性质,
     MGF的低油水分配系数可能与其在小鼠体内低生物利用度直接相关,按照生物药剂学分类系统(BCS)原则,MGF可归类为BCS第4类药物(低溶解性-低通透性),此类药物一般存在严重的生物利用度问题。MGF具有丰富的药理作用,包括抗炎、抗氧化、抗肿瘤、免疫调节作用、抗糖尿病作用等。因此,课题组拟将MGF开发成为一种具有抗炎作用的新药,但研发过程中发现MGF存在严重的吸收问题。MGF在人体中的抗炎剂量为630mg/次,一日3次,作为一个纯度在90%以上的单体化合物,服用剂量显然很大。将MGF开发成新药,必须解决MGF低吸收的问题,如果提高了MGF吸收的生物利用度,药效提高,最终能调整MGF的给药量。目前,课题组已经开展提高MGF溶解性的研究(应用的技术包括成盐、磺酸盐、金属离子螯合物、制剂手段提高溶解度等),而在提高MGF通透性方面的研究尚属空白。
     将低脂溶性药物制备成酯类化合物或前药,从而提高药物的油水分配系数,是提高该类药物胃肠通透性(即被动吸收)的最常用的前药设计策略。MGF具有黄酮类结构,还有多个酚羟基及糖基上的多个羟基,可以对这些羟基进行酰化修饰,增加药物分子整体脂溶性。采用化学法对黄酮类化合物进行酰化,空间选择性不高,并且将活性酚羟基酰化,导致抗氧化活性降低。本文利用脂肪酶的酯化反应或酯交换作用,可选择性将化合物酯化修饰,不但提高黄酮类化合物的脂溶性,还能提高其稳定性及抗氧化活性。
     脂肪酶(Lipase,EC 3.1.1.3),即三酰基甘油酯水解酶,该酶催化天然底物油脂的水解,生成的产物包括脂肪酸、甘油和甘油单酯或二酯。脂肪酶被广泛用于酯、硫羟酸酯、酰胺类化合物、多元醇酯、多元酸酯三酰甘油酯及一些疏水性酯类的水解、醇解、酯化、转酯化及酯类的逆向合成反应。在非水有机溶剂中,脂肪酶Novozym 435对葡萄糖基6位羟基专属性很高,可以催化葡萄糖的单酰化。
     为此,本论文针对MGF低油水分配系数,从提高MGF通透性角度出发,采用酶法合成MGF酯类前药,尝试解决MGF生物利用度问题,达到提高药效的目的。理论上,还可为BCS 4类药物的研发提供思路。
     2方法和结果
     全文对MGF进行结构修饰,合成酯类前药,并对产物结构及相关理化性质进行测定,最后测定该前药的抗炎活性。方法与结果如下:
     (1)该部分对MGF溶解度及油水分配系数进行研究。采用HPLC法测定MGF在pH为1.32,2.52,3.32,4.50,5.00,6.86,7.40,8.01缓冲溶液中的平衡溶解度。结果显示MGF的溶解度随pH提高而增加。在pH 1.3~5.0的溶解度约为0.16 mg·mL~(-1);在pH 6.86~7.4时溶解度增加至0.82 mg·mL~(-1);当pH 8.01时溶解度为1.44 mg·mL~(-1)。
     采用摇瓶-HPLC法测定MGF在正辛醇-缓冲溶液(pH 1.32,2.52,3.32,4.50,5.00,6.86,7.40,8.01)体系中的表观油水分配系数(P)。MGF的油水分配系数随pH增加而降低,P值从2.313降低至0.05。
     根据生物药剂学分类系统(BCS),推测MGF属于BCS 4类药物(低溶解度-低通透性药物)。提示,可以通过合成MGF脂溶性前药,提高脂溶性达到提高MGF通透性的目的。
     (2)本部分对MGF糖酯衍生物的非水相酶促合成的可行性进行研究。以MGF为酰基受体,以甲酸乙酯、乙酸乙酯、丙酸乙酯为酰基供体,利用商品脂肪酶Novozym 435为催化剂,在二氧六环中经过转酯化反应,合成了3种酰化的MGF糖酯衍生物,经HPLC-MS分析鉴定3种产物为甲酰基MGF、乙酰基MGF、丙酰基MGF。从HPLC图谱及TLC图谱分析,衍生物的脂溶性均明显提高,达到目标化合物预期目的。
     (3)本部分对6′-O-丙酰基芒果苷(PMGF)合成、分离、结构鉴定进行研究,并对合成条件进行优化。首先,以MGF为酰基受体,丙酸乙酯为酰基供体,利用脂肪酶在有机溶剂中的酯交换作用,在MGF糖基6′-OH选择性酰化。其次,采用制备液相色谱法分离得到高纯度PMGF。然后,测定产物的MS谱、一维~1H-NMR和~(13)C-NMR确定分子量及分子结构,并测定(g)-HMBC及(g)-HMQC对C、H进行归属,确定酰化位置,最后确证产物结构为6′-O-丙酰基芒果苷。最后,优化酶促反应条件,优化后的酶促反应条件为:在8 mL二氧六环中加入30 mg Novozym 435、芒果苷30mg、丙酸乙酯1mL,在恒温水浴振荡摇床中60℃下反应20h。
     (4)对PMGF水溶解度、油水分配系数、体外水解稳定性进行考察,并与MGF做对比研究。首先,采用摇瓶法测定PMGF在纯水(37℃)的溶解度,结果显示PMGF溶解度为0.166±0.02μg·mL~(-1),与同条件下MGF的溶解度接近,PMGF并未由于脂溶性提高而导致水溶解度下降。
     其次,采用HPLC法测定PMGF在正辛醇-缓冲溶液中的油水分配系数,结果显示PMGF在pH 1.3~8.01范围内油水分配系数由21.104降低至0.108,比MGF均显著增加4.33~92.36倍,其中在中性及碱性环境下提高倍数均在10倍以上,尤其在模拟肠液的pH(pH7.4)环境中增加了93.36倍,预测PMGF在肠道通透性将有很大程度提高。
     然后,采用HPLC法测定PMGF在pH 2及7.4溶液中的水解稳定性。PMGF在该溶液中均能缓慢水解为MGF。PMGF在pH2的酸性溶液中,按照一级速度过程水解为MGF,半衰期为69.3h;在pH 7.4偏碱性溶液中,水解为MGF的比例及速度较慢,部分PMGF变成3种脂溶性高于MGF的未知产物(推测是丙酰基转移到其他羟基后形成的产物,脂溶性仍然比MGF有所提高),导致PMGF浓度下降较快,半衰期为34.6h。
     最后,PMGF浓度在血浆中按照非线性速度过程水解变成MGF,半衰期为11.7~20.6h。
     综合上述内容,与原型MGF相比较,PMGF在不降低溶解度前提下脂溶性显著提高,在胃肠pH环境下能缓慢水解(水解半衰期>30h)为MGF,主要在血浆中水解为原型MGF。推测将MGF修饰为PMGF能显著提高MGF的胃肠通透性,在吸收的时间段内,PMGF比例较大,吸收入血后,能顺利水解还原为MGF,提示,PMGF很有潜力作为MGF的前药。
     (5)本部分研究了人肠道菌群对MGF和PMGF的代谢作用。采用离体代谢研究的方法,用富含人肠道菌群的培养液与MGF/PMGF在厌氧条件下共同孵育,采用大孔树脂、制备液相色谱法分离代谢产物,经HPLC-MS、一维~1H-NMR和~(13)C-NMR确证代谢产物结构为MGF苷元(Norathyriol)。结果如下:PMGF在孵育开始0~2h内全部水解为MGF,孵育第4~8h时间段PMGF和MGF逐步代谢为Norathyriol,第7h的Norathyriol浓度达到最高,随后Norathyriol浓度持续下降,第12h仍然有明显代谢产物。证实,PMGF转化为MGF的主要部位是肠道,暴露在肠道菌群环境中仅需要2h就能将PMGF分解完全;MGF及PMGF在肠道菌群作用下转化为Norathyriol,时滞4h。在肠道菌群作用下,PMGF完全水解需要2h,推测在此水解阶段,未被水解的高脂溶性的PMGF持续吸收,净效应就是PMGF的吸收速度与程度会比原型MGF的要高。此外,代谢产物Norathyriol吸收的特征,有待进一步研究。
     (6)对比研究了PMGF的体内、体外抗炎活性。首先,利用小鼠巨噬细胞株RAW264.7在脂多糖刺激下产生炎性细胞因子,观察PMGF和MGF对炎性细胞因子生成的影响,结果显示低浓度(5μg?mL~(-1))MGF及PMGF体外对NO、IL~(-1)、TNF-α无显著抑制作用(抑制率<7%)。其次,小鼠二甲苯致耳肿胀试验表明,MGF和PMGF均显示显著的抗炎作用(抑制率>30%,P<0.05),PMGF中、低剂量组的抗炎效果高于MGF中、低剂量组但无显著性差异(P>0.05),提示,PMGF中、低剂量组药效具有高于同剂量的MGF的趋势,出现以上现象,可能由于提高MGF脂溶性改善膜通透性,增加了MGF经小鼠胃肠道的生物利用度,达到增效的目的。
     3结论
     针对MGF溶解度低且油水分配系数低的特性,围绕MGF结构修饰主题,通过酶催化反应,最终找到高活性的高脂溶性的MGF前药—PMGF,PMGF的溶解度与原型MGF相当,但PMGF脂溶性显著提高,抗炎药效有优于MGF的趋势,有理由认为PMGF作为MGF前药是有效的。以上研究,为MGF前药的研究提供了新的化合物结构类型,为有目的的开发MGF新药奠定了基础。
     本文对难溶性药物的开发研究亦有一定的指导意义。本文从通透性方面入手,提高MGF脂溶性,动物药效证明酯类前药PMGF抗炎效果有优于MGF的趋势。可见,从通透性方面改善BCS 4类药物的生物利用度是行之有效的。
     4创新点
     (1)首次利用固定化脂肪酶Novozym 435在非水相中合成了3种MGF脂溶性衍生物甲酰基MGF、乙酰基MGF、丙酰基MGF。
     (2)提高MGF脂溶性,动物实验证实达到增效的目的。
     (3)首次将BCS指导原则应用到MGF研究中,以“增加脂溶性来改善膜通透性”为指导思想,指导整个MGF前药的设计,并取得良好的效果。
1 Purpose and significance
     Mangiferin [2-C-d-gluco-pyranosyl-1, 3, 6, 7-tetrahydroxyxantone; C_(19)H_(18)O_(11); Mw, 422.34] is a kind of active flavonoids, a xanthone C-glycoside, and has been reported in various parts of Mangifera indica: fruits, leaves, stem bark; Anemarrhena asphodeloides Bge: leaves, stem bark, roots; Belamcanda chinensis: flower, leaves.
     Mangiferin (MGF) has poor solubility (<1 mg·mL~(-1)) over the pH range 1.3 to 7.4, due to the large plane molecular structure. The dose of anti-inflammatory for human is about 630mg. It need more than 250 mL volume of aqueous media to dissolve the amount of mangfiferin according Biopharmaceutics Classification System (BCS, abbr.) guidance. BCS is a framework for classifying drug substances based on their aqueous solubility and intestinal permeability. The partition coefficient (P, abbr.) in octanol/water system of MGF is ranging from 0.01 to 2.3, while pH value is from 6.86 to 4. At the same time, the bioavailability of MGF in rats is poor which was evaluating by in situ intestinal perfusion model. Permeability is believed to be the key factors of absorption. Partition coefficient of drug has good correlation with gastrointestinal permeability. Typically, partition coefficient on the range of 100–1000 is required for efficient passive transcellular transport. So it is presume that low bioavailability of MGF may be owing to low permeability. Therefore, MGF is classified as belonging to BCS-4 class, low solubility and low permeability, and mostly encounter serious bioavailability problems. MGF has been reported to have multiple biological effects, including anti-inflammatory, antidiabetic, antioxidant, antitumor, immunomodulatory, anti-allergic, antiviral, antibacterial, etc. The R&D members intended to development MGF as a new drug with anti-inflammatory effect, but we found that MGF had serious absorption problems. To exploit MGF for a new drug, it is essential to ameliorate bioavailability after oral administration. After enhanced the bioavailability of MGF, the given dose of MGF would be reduce ultimately. Currently, some techniques, including salt formation, sulfonate formation, preparation technique to improve solubility, have been carried out to improve the solubility of MGF. But there is no any report on the increase of permeability of MGF.
     To improve drug’s permeability by increasing partition coefficient, acylation is one of the useful and conventional methods for the synthesis of prodrug. The chemical acylation of flavonoids is notregioselective and produce some phenolic-hydroxyl-mask by-products. For shielded the functional hydroxyl group which are responsible for the antioxidant activity of flavonoids, the activity would decrease more or less. However, the enzymatic acylation of flavonoids by lipases with phenolic acids is more regioselective than chemical acylation and may enhance not only their solubility in various media, but also their stability and their antioxidant activity. Lipase is reported to use for the structure modification such as arbutin, isoquercetin, phloridzin, rutin, narigin, etc.
     Lipase (Lipase, EC 3.1.1.3), three acyl ester hydrolase, is a kind of enzyme catalyzed hydrolysis of natural substrate oil to obtain fatty acids, glycerol and glycerol ester or diester. Lipase is widely used for the reactions of hydrolysis; alcoholysis, esterification, transesterification and ester reverse reaction for substrates (sulfur carboxylates, amides, polyol esters, multi-glycerol triglyceride ester and some hydrophobic ester involved). Lipase Novozym 435 (a form of Candida Antarctica lipase B) is found to be an effective biocatalyst for the acylation of glucose alone with high regioselective to 6-hydroxyl of glucose.
     Therefore, the enzymatic synthesis of MGF ester, as a kind of prodrug, was investigated on the aim of bioavailability improvement resulted in the enhancing the permeability. In theory, it will provide some ideas for the R&D of BCS 4 drugs.
     2 Methods and results
     This work could be divided into several sections, structure modification, Structure identification, Determination of Physical and Chemical Properties and Anti-inflammatory activity assay.
     (1) MGF was classified as belonging to BCS-4 class via research of biopharmaceutics properties of MGF. The solubility and octanol/water partition coefficient of MGF were very low over the pH range 1.3 to 8.0, solubility changed from 0.16 to 1.44 mg·mL~(-1), partition coefficient was ranging from 2.313 to 0.05, while pH value was from 6.86 to 4. Moreover, the bioavailability of MGF in rats was low. The permeability of MGF could be increased by synthesis the fat-soluble derivatives.
     (2) In this part, novel sugar ester prodrugs (formyl MGF, acetyl MGF, propionyl MGF) of MGF, were synthesized by transesterification in non-aqueous medium using commercial immobilized lipase (Novozym 435) as biocatalyst. The HPLC method for reaction process monitoring was established. The molecular weight of these prodrugs was confirmed by HPLC-MS. The enzymatic synthesis was an attractive and economic way for preparation of mono-ester of glycoside, and provided a promising way for grafting acyl group onto glycoside directly.
     (3) In this part, novel sugar ester prodrug (6′-O-propionyl MGF,PMGF) was synthesized by transesterification in non-aqueous medium using commercial immobilized lipase (Novozym 435) as biocatalyst MGF as acyl acceptor, ethyl propionate as acyl donor without the need of vinyl ester. The HPLC method and purification process of the prodrug was established. The chemical structure of this prodrug was confirmed by HPLC-MS, 1H-NMR, 13C-NM, (g)-HMBC and (g)-HMQC. The effects of the substrate amount, temperature, the nature of the solvent, reaction time and the initial water content were investigated. Novozym 435 retained the highest activity in dioxane. The optimal conditions were the follow: In the 8 mL dioxane containing 30mg MGF and 30mg lipase, adding 1mL ethyl propionate, then the synthesis was performed at 60℃for 20h. Novozym 435 had a high stability. After the lipase continuously used for 15 times, the concentration of product was not changed significantly compared with the first time. Novozym 435 could catalyze the regioselective acylation of 6' hydroxyl group at glucose moiety through the transesterification.
     (4) In this part, the physicochemical and hydrolysis were evaluated in vitro. Firstly, the equilibrium solubility of PMGF was measured by shake-flask method. The solubility was 0.166±0.02μg·mL~(-1), and did not decline as a result of fat-soluble increase. Secondly, the octanol/water partition coefficient of PMGF was very low over the pH range 1.3 to 8.0, and was ranging from 21.104 to 0.08. The partition coefficient of PMGF was increased significantly for 4.33 ~ 92.36 times compared with MGF. The prodrug was significantly more hydrophilic than MGF. Thirdly, the hydrolysis of MGF and PMGF were studied in hydrochloric acid buffer (pH 2), phosphate buffer (pH 7.4) and plasma solution. MGF showed a high chemical stability in both the aqueous medium of pH 2, pH 7.4 and plasma PBS (pH 7.4). But PMGF was hydrolysis to MGF in vitro. Moreover, three unknown substances were detected in PBS (pH 7.4) medium. It could be due to propionyl transfer to the adjacent hydroxyl of glucose. Summarily, the fat-soluble of PMGF was significantly increased. PMGF was hydrolyzed to prototype MGF in the plasma. It was speculated that the gastrointestinal permeability of PMGF could be increase significantly.
     (5) In this part, the metabolisms of PMGF and MGF in human intestinal flora in vitro were investigated. Human intestinal flora and PMGF/MGF were incubated under anaerobic conditions. The metabolite were separated and purified by preparative HPLC. PMGF was degraded to PMG within 2 h at the beginning of incubation. This characteristic could be benefit to the absorption of PMGF. Moreover, human intestinal flora could transform PMGF and MGF to aglycone of MGF (norathyriol). Norathyriol was detected at 4h. The absorption mechanism of norathyriol would be planning to investigate.
     (6) In this part, the anti-inflammatory effect of PMGF was investigated in vitro and in vivo. In vitro, MGF and PMGF (5μg·mL~(-1)) were tested on TNFα, IL-1 and NO production in activated macrophages (RAW264.7 cell line) stimulated with LPS (5μg·ml~(-1)). All the inhibition effects of MGF and PMGF were below 10%. In vivo, the anti-inflammatory effect of PMGF was determined via mice auricular swelling model induced by dimethylbenzene. MGF and PMGF obviously relieved the mice auricular swelling. The effects of middle and low dose of PMGF were better than that of MGF probably due to a higher bioavailability of PMGF attributed to its high permeability.
     3 Conclusion
     In conclusion, on the basis of these results obtain in this work, a kind of high lipophilic MGF ester, 6′-O-propionyl MGF, was obtained. The anti-inflammatory effect of PMGF was better than that of MGF probably due to a higher bioavailability of PMGF attributed to its high permeability. PMGF was demonstrated to be suitable for MGF prodrugs design. In theory, all these works could provide some ideas for the R&D of BCS 4 drugs.
     4 Innovation
     (1) For the first time, novel sugar ester prodrugs (formyl MGF, acetyl MGF, propionyl MGF) of MGF, were synthesized by transesterification in non-aqueous medium using commercial immobilized lipase (Novozym 435) as biocatalyst.
     (2) The fat-soluble MGF prodrug and synergism of anti-inflammatory are achieved.
     (3) During the course of structure modification of MGF, BCS guidance is applying into the MGF research. The enzymatic synthesis of MGF ester, as a kind of prodrug, was investigated on the aim of bioavailability improvement resulted in the enhancing the permeability.
引文
[1] Nú?ez-Sellés AJ. Antioxidant Therapy: Myth or Reality? [J]. J Braz Chem Soc, 2005, 16(4):699-710.
    [2] http://havanajournal.com/culture/entry/cuban-scientists-extend-clinical-trials-of-vimang/
    [3] Joubert E, Otto F, Griiner S, et al. Reversed-phase HPLC determination of mangiferin, isomangiferin and hesperidin in Cyclopia and the effect of harvesting date on the phenolic composition of C. genistoides [J]. Eur Food Res Technol, 2003, 216(3):270-273.
    [4] Martin F, Hay AE, Cressend D, et al. Antioxidant C-Glucosylxanthones from the Leaves of Arrabidaea patellifera [J]. J Nat Prod, 2008, 71(11): 1187-1190.
    [5] Shahat AA, Hassan RA, Nazif NM, et al. Isolation of mangiferin from Bombax malabaricum and structure revision of shamimin [J]. Planta Med, 2003, 69(11):1068-1070.
    [6] Wu JF, Chen SB, Gao JC, et al. Xanthone glycosides from herbs of Polygala hongkongensis Hemsl and their antioxidant activities [J]. J Asian Nat Prod Res, 2008, 10(7-8):673-678.
    [7] Oshimi S, Zaima K, Matsuno Y, et al. Studies on the constituents from the fruits of Phaleria macrocarpa [J]. J Nat Med, 2008, 62(2):207-210.
    [8] Morikawa T, Kishi A, Pongpiriyadacha Y, et al. Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis [J]. J Nat Prod, 2003, 66(9):1191-1196.
    [9] Pauletti PM, Castro-Gamboa I, Siqueira Silva DH, et al. New antioxidant C-glucosylxanthones from the stems of Arrabidaea samydoides[J]. J Nat Prod, 2003, 66(10):1384-1387.
    [10] Matsuda H, Tokunaga M, Iwahashi H, et al. Studies on palauan medicinal herbs. II. Activation of mouse macrophages RAW 264.7 by Ongael, leaves of Phaleria cumingii (Meisn.) F. Vill. and its acylglucosylsterols [J]. Biol Pharm Bull, 2005, 28(5):929-933.
    [11] Jürgenliemk G, Nahrstedt A. Phenolic compounds from Hypericum perforatum [J]. Planta Med, 2002, 68(1):88-91.
    [12] Ferrari J, Terreaux C, Sahpaz S, et al. Benzophenone glycosides from Gnidia involucrate [J]. Phytochemistry, 2000, 54(8):883-889.
    [13] Gómez-Zaleta B, Ramírez-Silva MT, Gutiérrez A, et al. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin pKa values [J]. Spectrochim Acta A Mol Biomol Spectrosc, 2006, 64(4): 1002-1009.
    [14] Sato T, Kawamoto A, Tamura A,et al. Mechanism of antioxidant action of Pueraria glycoside (PG)-1 (an isoflavonoid) and Mangiferin (a xanthonoid) [J]. Chem Pharm Bull.1992, 40(3):721-724.
    [15] Ichiki H,Miura T,Kubo M,et a1.New antidiabetic compounds, mangiferin and its glucoside [J]. Biol Pharm Bul1, 1998, 21(12): 1389-1390.
    [16]Miura T, Ichiki H, Iwamoto N, et a1.Antidiabetic activity of the rhizoma of Anemarrhena asphodeloides and active components,mangiferin and its glucoside [J]. Biol Pharm Bull, 2001, 24(9): 1009-1011.
    [17] Miura T, Ichiki H, Hashimoto I, et al. Antidiabetic activity of a xanthone compound, mangiferin [J]. Phytomedicine, 2001, 8(2):85-87.
    [18] Muruganandan S, Srinivasan K, Gupta S, et al. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats [J]. J Ethnopharmacol, 2005, 97(3):497-501.
    [19] Rivera DG, Balmaseda IH, León AA,et al. Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin [J]. J Pharm Pharmacol, 2006, 58(3):385-392.
    [20]邓家刚,杨柯,郑作文,等.芒果苷在鸭体内抑制鸭乙型肝炎病毒感染的实验研究[J].广西中医学院学报,2007,10(1):1-3.
    [21]邓家刚,郝二伟,郑作文,等.芒果苷对两种不同炎症模型前列腺素E2含量的影响[J].中华中医药学刊,2008,26(10):2085-2086.
    [22] Bhatia HS, Candelario-Jalil E, de Oliveira AC, et al. Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells [J]. Arch Biochem Biophys, 2008, 477(2):253-258.
    [23]邓家刚,杨柯,阎莉,等.芒果苷对免疫抑制小鼠T淋巴细胞增殖的影响[J].中药药理与临床,2007,23(5):64-65.
    [24]农少云,农朝赞,潘莉莉,等.芒果甙对连环蛋白P120磷酸化及肝癌细胞生物学行为的影响[J].广西医科大学学报,2005,22(4):495-497.
    [25]程鹏,彭志刚,杨杰,等.芒果甙对白血病K562细胞端粒酶活性和凋亡的影响[J].中药材,2007,30(3):306-309.
    [26]彭志刚,罗军,赖永榕,等.芒果苷对白血病K562细胞周期分布及细胞周期素A、细胞周期素B1表达的影响[J].中华中医药杂志,2007,22(8):510-513.
    [27]廖洪利,陈军,杨倩.芒果苷衍生物的制备[J].化学与生物工程,2010,27(5):49-50.
    [28]蓝萍,柳明,李盼盼,等.芒果苷及其衍生物对糖尿病小鼠的降糖作用[J].中国动物保健,2010,12(6):21-22.
    [29]吴玮峰.芒果苷衍生物的合成及其生物活性研究[学位论文].第二军医大学,2009.
    [30]袁叶飞,邓家刚,胡祥宇,等.芒果苷磺酸钠抗白血病的实验研究[J].时珍国医国药,2010,21(7):1664-1665.
    [31]袁叶飞,邓家刚,余昕,等.芒果苷单钠盐的药效学实验研究[J].时珍国医国药,2008,19(4):816-817.
    [32]邓家刚,袁叶飞.芒果苷单钠盐的制备及其与芒果苷的药效比较[J].华西药学杂志,2008,23(1):17-18.
    [33]袁叶飞,邓家刚.芒果苷单钠盐的制备工艺[J].中国医院药学杂志,2008,28(3):181-183.
    [34]吴薛明,许婷婷,刘春美,等.芒果苷结构修饰的研究进展[J].安徽农业科学,2010,38(29):16241-16242.
    [35] Amidon GL, Lennern?s H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability [J]. Pharm Res, 1995, 12(3):413-420.
    [36]斯陆勤,黄健耿,李高.生物药剂学分类系统及其应用[J].中国药师,2008,11(2):160-166.
    [37] Fessner WD, Jones JB. Biocatalysis and biotransformation: from discovery to application [J]. Curr Opin Chem Biol, 2001, 5:103-105.
    [38] Schmidt RD, Verger R. Lipases: interfacial enzymes with attractive applications [J]. Angew Chem Int Ed Engl, 1998, 37:1608-1633.
    [39] Jaeger KE, Dijkstra BW, Reetz MT. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases [J]. Annu Rev Microbiol, 1999, 53:315-351.
    [40]Villeneuve P, Muderhwa J M, Graille J, et al. Customizing lipases for biocatalysis: a survey ofchemical, physical and molecular biological approaches [J]. J Mol Catal B Enzym, 2000, 9: 113-148.
    [41]谷利伟,赵金兰.酶技术在油脂工业中的应用[J].中国油脂,1998,23(5):43-45.
    [42]张玉彬.生物催化的手性合成[M].北京:化学工业出版社,2002:21-274.
    [43] Muralidhar RV, Marchant R, Nigam P. Lipases in racemic resolutions [J]. J Chem Technol Biotechnol, 2001, 76(1):3-8.
    [44] Carrea G, Riva S. Properties and synthetic applications of enzymes in organic solvents [J]. Angew Chem Int Ed Engl, 2000, 39(13):2226-2254.
    [45]李雨虹.有机相中脂肪酶催化合成辣椒素酯的研究[学位论文].湖南农业大学,2007.
    [46]段煜,杜宗良,唐卫文,等.硬脂酸和月桂酸在Novozym435催化下对芦丁酯化及分子筛对酯化率的影响[J].天然产物研究与开发,2006,18:741-746.
    [47]辛嘉英,陈林林,张蕾,等.无溶剂体系脂肪酶催化阿魏酸油酸甘油酯合成研究[J].中国粮油学报,2009,24(5):74-79.
    [48]郑丽妃,刘焕珍,GUO Zheng,等.有机相中脂肪酶催化阿魏酸油醇酯合成的研究[J].食品工业科技,2009,30(4):285-288.
    [49]辛嘉英,郑妍,赵冠里,等.VE阿魏酸酯的酶法合成及抗氧化性的研究[J].食品科学,2006,27(10):229-233.
    [50]辛嘉英,柳眉,张蕾,等.有机相脂肪酶催化合成阿魏酸乙酯[J].食品科学,2007,28(9):137-140.
    [51] Zaks A, Klibanov AM. Enzyme-catalyzed processes in organic solvents [J]. PNAS, 1985, 82(10):3192-3196.
    [52] Kang IJ, Pfromm PH, Rezac ME. Real time measurement and control of thermodynamic water activities for enzymatic catalysis in hexane [J]. J Biotechnol, 2005, 119(2): 147-154.
    [53] Sabeder S, Habulin M, Knez Z. Lipase-catalyzed synthesis of fatty acid fructose esters [J]. J Food Eng, 2006, 77(4):880-886.
    [54]陈志刚,宗敏华,顾振新.离子液体中糖酯类化合物的酶法合成[J].有机化学,2007,27(11):1448-1452.
    [55]罗贵民.酶工程[M].北京:化学工业出版社,2002:388.
    [56] Zhang X, Kobayashi T, Adachi S, et al. Lipase-catalyzed synthesis of 6-O-vinylacetyl glucose in acetonitrile [J]. Biotechnol Lett, 2002, 24(13): 1097-1100.
    [57] Zhou J, Tao G, Liu Q, et al.Equilibrium yields of mono-and di-lauroylmannoses through lipase-catalyzed condensation in acetone in the presence of molecular sieves [J]. Biotechnol Lett, 2006, 28(6):395-400.
    [58] Plou FJ, Cruces MA, Ferrer M, et al. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent [J]. J Biotechnol, 2002, 96(1):55-66.
    [59]邓家刚,王志萍,李学坚,等.芒果苷滴丸成型工艺的研究[J].中成药,2008,30(7):1070-1073.
    [60]王志萍,邓家刚,王勤,等.羟丙基-β-环糊精包合法提高芒果苷溶解度的研究[J].中成药,2008,30(8):1124-1126.
    [1] Avdeef A, Box KJ, Comer JE, et al. pH-metric logP 10 determiation of liposomal membrane-water partition coefficients of ionizable drugs [J].Pharm Res, 1998, 15(2):209-215
    [2] Amidon GL, Lennern?s H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability [J]. Pharm Res, 1995, 12(3):413-420.
    [3]斯陆勤,黄健耿,李高.生物药剂学分类系统及其应用.中国药师,2008,11(2):160-166.
    [4]邓家刚,冯旭,王勤,等.芒果叶与芒果枝条中芒果苷的含量对比研究[J].广西中医药,2006,29(2):53-55.
    [5] Gómez-Zaleta B, Ramírez-Silva MT, Gutiérrez A, et al. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin pKa values. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 64(4): 1002- 1009.
    [6]黄世杰.研制速释口服剂型时体外-体内相关的考虑.国外医学药学分册,2006,33(3):228- 230.
    [7]徐勤,刘布鸣,邓立东.芒果苷大鼠在体肠道吸收机制研究.中国药房,2009,20(21):1613- 1615.
    [8] Hou YL, Fan SJn, Zhang H, et al. Pharmacokinetic study of mangiferin in rat plasma and retina using high-performance liquid chromatography. Molecular Vision, 2010, (16): 1659-1668.
    [9] Li YJ, Bi KS.RP-HPLC determination and pharmacokinetic study of mangiferin in rat plasma after taking traditional Chinese medicinal-preparation: Zhimu decoction. Chromatographia, 2003, (57): 767-770.
    [10]袁叶飞,邓家刚,胡祥宇,等.芒果苷磺酸钠抗白血病的实验研究[J].时珍国医国药,2010,21(7):1664-1665.
    [11]袁叶飞,邓家刚,余昕,等.芒果苷单钠盐的药效学实验研究[J].时珍国医国药,2008,19(4):816-817.
    [12]邓家刚,袁叶飞.芒果苷单钠盐的制备及其与MGF的药效比较[J].华西药学杂志,2008,23(1):17-18.
    [13]袁叶飞,邓家刚.芒果苷单钠盐的制备工艺[J].中国医院药学杂志,2008,28(3):181-183.
    [14]邓家刚,王志萍,李学坚,等.芒果苷滴丸成型工艺的研究[J].中成药,2008,30(7):1070-1073.
    [15]王志萍,邓家刚,王勤,等.羟丙基-β-环糊精包合法提高芒果苷溶解度的研究[J].中成药,2008,30(8):1124-1126.
    [1] Ishihara K, Katsube Y, Kumazawa N, et al. Enzymatic preparation of arbutinderivatives: Lipase-catalyzed direct acylation without the need of vinyl ester as an acyl donor [J]. J Biosci Bioeng, 2010, 109(6):554-556.
    [2] Stevenson DE, Wibisono R, Jensen DJ, et al. Direct acylation of ?avonoid glycosides with phenolic acids catalysed by Candida Antarctica lipaseB (Novozym435?) [J]. Enzyme Microb Technol, 2006, 39: 1236-1241.
    [3] Li XF, Zong MH, Yang RD. Novozym 435-catalyzed regioselective acylation of 1-β-D-arabinofuranosylcytosine in a co-solvent mixture of pyridine and isopropyl ether [J]. J Mol Catal B Enzym, 2006,38:48-53.
    [4] Chang SW, Yang CJ, Chen FY, et al. Optimized synthesis of lipase-catalyzed L-ascorbyl laurate by Novozym? 435[J]. J Mol Catal B Enzym, 2009, 56:7-12.
    [5]邓家刚,陈勇,王勤,等.芒果苷原料药的质量标准研究[J].中药材,2007,30(11):1464-1466.
    [6] Cao L, Fischer A, Bornscheuer UT, et al. Lipase-catalyzed solid phase synthesis of sugar fatty acid esters.Biocatal Biotransfor, 1996, 14(4) :269-283.
    [7]肖萍,黄兴振.高效液相色谱法测定利咽片中芒果苷的含量[J].中国医院药学杂志,2006,26(8):985-987.
    [8]刘敏,赵白云,赵亮,等.炮制前后知母中芒果苷和新芒果苷的含量变化[J].第二军医大学学报,2006,27(5):528-530.
    [1] Kitao S, Ariga T, Matsudo T, et al. The synthesis of catechin-glucosides bytransglycosylation with Leuconostocmesenteroides sucrose phosphorylase [J].Biosci Biotech Bioch, 1993, 57(12):2010–2015.
    [2] Suzuki Y, Suzuki K, Yoneyama M, et al. 4 G-alpha-D-glucopyranosyl rutin,and its preparation and uses. EP 0420376:1991.
    [3] Sakai M, Suzuki M, Nanjo F, et al. 3-O-acylated catechins and methods of producing same. EP 0618203:1994.
    [4] Tommasini S, Raneri D, Ficarra R, et al. Improvement in solubility and dissolution rate of flavonoids by complexation with [beta]-cyclodextrin[J]. J.Pharmaceut Biomed, 2004, 35(2):379–387.
    [5] Sanchez GM, ReL, Giuliani A, et al. Protective effects of Mangiferaindica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophages activation in mice [J]. PharmacolRes, 2000, 42(6):565–573.
    [6] Stoilova I, Gargova S, Stoyanova A, et al. Antimicrobial and antioxidant activity of the polyphenol mangiferin [J].Herbal Polonica, 2005, 51 (1-2):37-44.
    [7] Guha S, Ghosal S, Chattopadhyay U. Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring glucosylxanthone [J]. Chemotherapy, 1996, 42(6):443-451
    [8] Leiro J, Garcia D, Arranz JA, et al. An Anacardiaceae preparation reduces the expression of inflammation-related genes in murine macrophages [J]. Int Immunopharmacol, 2004, 4(8):991-1003.
    [9] Prabhu S, Narayan S, Devi CS. Mechanism of protective action of mangiferin on suppression of inflammatory response andlysosomal instability in rat model of myocardial infarction [J].Phytother Res, 2009,23(6):756-760.
    [10] Bhatia HS, Candelario-Jalil E, de Oliveira AC, et al.Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells [J]. Arch BiochemBiophys, 2008, 477(2):253-258.
    [11] Muruganandan S, Lal J, Gupta PK. Immunotherapeutic effects of mangiferin mediated by the inhibition of oxidative stress to activated lymphocytes, neutrophils and macrophages [J]. Toxicology, 2005, 215(1-2):57-68.
    [12] Makare N, Bodhankar S, Rangari V. Immunomodulatory activity of alcoholic extract of Mangiferaindica L. in mice [J].J Ethnopharmacol, 2001, 78(2-3):133-137.
    [13] Im R, Mano H, Matsuura T, et al. Mechanisms of blood glucose-lowering effect of aqueous extract from stems of Kothalahimbutu (Salaciareticulata) in the mouse [J].J Ethnopharmacol, 2009, 121(2):234-240.
    [14] Miura T, Ichiki H, HashimotoI, et al. Antidiabetic activity of a xanthone compound, mangiferin [J].Phytomedicine, 2001, 8(2):85-87.
    [15] Sellamuthu PS, Muniappan BP, Perumal SM, et al. Antihyperglycemic effect of mangiferin in streptozotocin induced diabetic rats [J]. J Health Sci, 2009, 55(2) 206–214.
    [16]徐勤,刘布鸣,邓立东.芒果苷大鼠在体肠道吸收机制研究[J].中国药房,2009,20(21):1613- 1615.
    [17] Yalkowsky SH, Morozowich W. A physical chemical basis for the design of orally active prodrugs. In: Drug Design Vol. IX, Ed by Ariens EJ, Academic Press, New York, 1980:121-185.
    [18] Rice-Evans CA, Miller NJ, Paganga G. Structure–antioxidant activity relationships of flavonoids and phenolic acids [J]. Free Radical Biol Med, 1996, 20(7):933–956.
    [19] Ishihara K, Nakajima N. Structural aspects of acylated plant pigments: stabilization of flavonoid glucosides and interpretation of their functions [J]. J Mol Catal B Enzym, 2003, 23(2-6):411–417.
    [20] Tamura H, Yamagami A. Antioxidative activity of monoacylatedanthocyanins isolated from Muscat Bailey A grape [J]. J Agric Food Chem, 1994, 42(8): 1612–1615.
    [21] Stevenson DE, Wibisono R, Jensen DJ, et al. Direct acylation of flavonoid glycosides with phenolic acids catalysed by Candida antarcticalipase B (Novozym 435?) [J].Enzyme Microb Technol, 2006,39 (6):1236–1241.
    [22] Ishihara K, Katsube Y, Kumazawa N,et al. Enzymatic preparation of arbutin derivatives: Lipase-catalyzed direct acylation without the need of vinyl ester as an acyl donor [J]. J Biosci Bioeng, 2010, 109(6)554–556.
    [23] Enaud E, Humeau C, Piffaut B, et al.Enzymatic synthesis of new aromatic esters of phloridzin [J]. J Mol Catal B Enzym, 2004, 27(1-2):1–6.
    [24] Kontogianni A, Skouridou V, Sereti V, et al. Lipase-catalyzed esterification of rutin and naringin with fatty acids of medium carbon chain [J]. J Mol Catal B Enzym, 2003, 21(1-2):59–62.
    [1]邓家刚,覃丽兰.芒果苷近5年研究进展[J].长春中医药大学学报,2008,24(4):463- 464.
    [2] Gómez-Zaleta B, Ramírez-Silva MT, Gutiérrez A, et al. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin pKa values [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 64(4): 1002- 1009.
    [3]黄世杰.研制速释口服剂型时体外-体内相关的考虑[J].国外医学药学分册,2006, 33(3):228- 230.
    [4]徐勤,刘布鸣,邓立东.芒果苷大鼠在体肠道吸收机制研究[J].中国药房,2009,20(21):1613- 1615.
    [5]操峰,郭健新,平其能,等.灯盏乙素酯类前药的合成、理化性质及降解研究[J].药学学报,2006,41(7):595-602.
    [6] Yunlong Hou, Shengjun Fan, Hong Zhang, et al. Pharmacokinetic study of mangiferin in rat plasma and retina using high-performance liquid chromatography [J]. Molecular Vision, 2010, (16): 1659-1668.
    [7] Y. J. Li, K. S. Bi. RP-HPLC determination and pharmacokinetic study of mangiferin in rat plasma after taking traditional chinese medicinal-preparation: Zhimu decoction [J]. Chromatographia, 2003, (57): 767-770.
    [1] Chen X, Zhong D, Jiang H, et al. Characterization of some glucuronide conjugates by electrospray ion trap mass spectrometry [J]. Yao Xue Xue Bao, 1998, 33(11):849-854.
    [2] Day AJ, Ca?ada FJ, Díaz JC, et al. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase [J]. FEBS Lett, 2000, 468(2-3):166-170.
    [3] Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition [J]. J Pharmacol Exp Ther, 2003, 304(3):1228-1235.
    [4] Kanjana S, Teruaki A, Yan L, et al. Isolation of a human intestinal bacteriumthat transforms mangiferin to norathyriol and inducibility of the enzyme that cleaves a C-glucosyl bond [J]. Biol Pharm Bull, 2005, 28(9):1672-1678.
    [5]王毅,刘铁汉,王巍,等.肠道菌群对人参皂苷Rg1的代谢转化作用的研究[J].中国中药杂志,2001,26(3):188-189.
    [6] Wang H, Ye G, Ma CH, et al. Identification and determination of four metabolites of mangiferin in rat urine [J]. J Pharm Biomed Anal, 2007, 45(5):793-798.
    [7] Wang JP, Ho TF, Lin CN, et al. Effect of norathyriol, isolated from Tripterospermum lanceolatum, on A23187-induced pleurisy and analgesia in mice. Naunyn Schmiedebergs Arch Pharmacol, 1994, 350 (1):90-95.
    [8] Hsu MF, Lin CN, Lu MC, et al. Inhibition of the arachidonic acid cascade by norathyriol via blockade of cyclooxygenase and lipoxygenase activity in neutrophils. Naunyn Schmiedebergs Arch Pharmacol, 2004, 369(5):507-515.
    [1]邓博雅.急性支气管炎的诊断与治疗[J].实用乡村医生杂志,2002,9(6):35-36.
    [2]邓家刚,郑作文,曾春晖.芒果苷的药效学实验研究[J].中医药学刊,2002,12,20(6):802-803.
    [3]邓家刚,郑作文,周文光.芒果止咳片治疗风热犯肺型咳嗽的疗效观察[J].辽宁中医杂志,2000,27(9):411-412.
    [4]邓家刚,郑作文,杨柯.芒果苷对内毒素致热家兔体温的影响[J].中国实验方剂学杂志,2006,12(2):72-73.
    [5]邓家刚,杨柯,郑作文,等.芒果苷在鸭体内抑制鸭乙型肝炎病毒感染的实验研究[J].广西中医学院学报,2007,20(1):1-3.
    [6] Li LP, Zhang JX, Li LF, et al. Effect of aminoguantidine on pulmonary apoptosis in the lipopolysaccharide-induced acute lung injury in rats [J]. Chin Pharmacol Bull, 2007, 23(1):28-32.
    [7] Gu Q, Zhu HM. Apoptosis of rat osteoblasts in process of calcification in vitro [J]. Acta Pharmacol Sin, 2002, 23: 808-812.
    [8] Skin K M, Kim Y H, Park W S, et al. Inhibition of methanol extract from the fruits of Kochia scoparia on lipopolsaccharide-induced nitric oxide, prostaglandin E2, and tumor necrosis factor-αproduction from murine macrophage RAW264.7 cells [J]. Boil Pharm Bull, 2004, 27(4):538-543
    [9] Garrido G, Delgado R, Lemus Y, et al. Protection against septic shock and suppression of tumor necrosis factor alpha and nitric oxide production on macrophages and microglia by a standard aqueous extract of Mangifera indica L. (VIMANG?) Role of mangiferin isolated from the extract [J]. Pharmacol Res, 2004, 50(2):165-172.
    [10] Wang H, Ye G, Tang YH, et al. High-performance liquid chromatographic method for the determination of mangiferin in rat plasma and urine [J]. Biomed Chromatogr, 2006, 20(12):1304-1308.
    [1] Martin F, Hay AE, Cressend D, et al. Antioxidant C-Glucosylxanthones from the Leaves of Arrabidaea patellifera [J]. J Nat Prod, 2008, 71(11):35.
    [2] Wu JF, Chen SB, Gao JC, et al. Xanthone glycosides from herbs of Polygala hongkongensis Hemsl and their antioxidant activities [J]. J Asian Nat ProdRes, 2008, 10(7-8):673-678.
    [3] Oshimi S, Zaima K, Matsuno Y, et al. Studies on the constituents from the fruits of Phaleria macrocarpa [J]. Natural Medicines, 2008, 62(2):207-210.
    [4]陈毅平,牛晓静,陈双英,等.芒果苷的稳定性及其影响因素[J].华西药学杂志,2008,23(3):359-361.
    [5] Gómez-Zaleta B, Ramírez-Silva MT, Gutiérrez A, et al. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin pKa values [J]. Spectrochim Acta A Mol Biomol Spectrosc, 2006, 64(4): 1002-1009.
    [6]侯绍英,李迎梅,赵秀娟,等.人血浆中芒果苷的液相色谱-质谱测定法及药代动力学[M].营养与慢性病—中国营养学会第七届理事会青年工作委员会第一次学术交流会议论文集,2010,143-149.
    [7] Wang H, Ye G, Tang YH, et al. High-performance liquid chromatographic method for the determination of mangiferin in rat plasma and urine [J].Biomed Chromatogr,2006, 20(12) :1304–1308.
    [8]徐勤,刘布鸣,邓立.芒果苷大鼠在体肠道吸收机制研究[J].中国药房,2009,20(21):1613-1615.
    [9]解江纯,刘志东,王晓玉,等.芒果苷大鼠在体肠吸收动力学研究[J].中南药学,2010,8(5):340-343.
    [10] Li YJ, Bi KS. RP-HPLC determination and pharmacokinetic study of mangiferin in rat plasma after taking traditional chinese medicinal-preparation: Zhimu decoction. Chromatographia, 2003, 57 (11-12): 767-770.
    [11] Yue YY, Chen XG,Qin J, et al. Characterization of the mangiferin–human serum albumin complex by spectroscopic and molecular modeling approaches [J]. J Pharm Biomed Anal, 2009, 49(3):753-759.
    [12] Wang H, Ye G, Ma CH, et al. Identification and determination of fourmetabolites of mangiferin in rat urine [J]. J Pharm Biomed Anal, 2007, 45(5):793-798.
    [13] Ma CH, Wang LX, Tang YH, et al. Identification of major xanthones and steroidal saponins in rat urine by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry technology following oral administration of Rhizoma Anemarrhenae decoction [J]. Biomed Chromatogr, 2008, 22(10): 1066–1083.
    [14]廖洪利,陈军,杨倩.芒果苷衍生物的制备[J].化学与生物工程,2010,27(5):49-50.
    [15]蓝萍,柳明,李盼盼,等.芒果苷及其衍生物对糖尿病小鼠的降糖作用[J].中国动物保健,2010,12(6):21-22.
    [16]吴玮峰.芒果苷衍生物的合成及其生物活性研究[D].第二军医大学, 2009.
    [17]袁叶飞,邓家刚,胡祥宇,等.芒果苷磺酸钠抗白血病的实验研究[J].时珍国医国药,2010,21(7):1664-1665.
    [18]袁叶飞,邓家刚,余昕,等.芒果苷单钠盐的药效学实验研究[J].时珍国医国药,2008,19(4):816-817.
    [19]邓家刚,袁叶飞.芒果苷单钠盐的制备及其与芒果苷的药效比较[J].华西药学杂志,2008,23(1):17-18.
    [20]袁叶飞,邓家刚.芒果苷单钠盐的制备工艺[J].中国医院药学杂志,2008,28(3):181-183.
    [21]吴薛明,许婷婷,刘春美,等.芒果苷结构修饰的研究进展[J].安徽农业科学,2010,38(29):16241-16242.
    [22] Rodríguez J, Di Pierro D, Gioia M, et al. Effects of a natural extract from Mangifera indica L, and its active compound, mangiferin, on energy state and lipid peroxidation of red blood cells [J]. Biochim Biophys Acta, 2006,1760(9):1333-1342.
    [23] Pardo-Andreu G, Barrios MF, Curti C, et al. Protective effects of Mangifera indica L extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver [J].Pharmacol Res, 2008, 57(1):79-86.
    [24]邓家刚,阎莉,郭力城,等.芒果苷对花生四烯酸代谢产物的影响[J].中国民族医药杂志,2008,8(8):26-27.
    [25] Li XF, Ohtsuki T, Shindo S, et al. Mangiferin identified in a screening study guided by neuraminidase inhibitory activity [J]. Planta Med, 2007, 73(11):1195-1196.
    [26]王超,王国贤.芒果苷对大鼠心肌缺血再灌注损伤的保护作用[J].中国动脉硬化杂志,2008,16(9):697-700.
    [27] Prabhu S, Jainu M, Sabitha KE, et al. Role of mangiferin on biochemical alterations and antioxidant status in isoproterenol-induced myocardial infarction in rats [J]. J Ethnopharmacol, 2006, 107(1): 126-133.
    [28] Im R, Mano H, Matsuura T, et al. Mechanisms of blood glucose-lowering effect of aqueous extract from stems of Kothala himbutu (Salacia reticulata) in the mouse [J]. J Ethnopharmacol, 2009, 121(2): 234-240.
    [29]程鹏,彭志刚,杨杰,等.芒果甙对白血病K562细胞端粒酶活性和凋亡的影响[J].中药材,2007,30(3):306-309.
    [30]彭志刚,罗军,赖永榕,等.芒果苷对白血病K562细胞周期分布及细胞周期素A、细胞周期素B1表达的影响[J].中华中医药杂志,2007,22(8):510-513.
    [31]杨小丽,刘晓春,蓝娇,等.芒果苷对鼻咽癌细胞系CNE2细胞增殖、凋亡及周期的影响[J].山东医药,2009,49(39):23-24.
    [32]黄小鸥,邓家刚,陈壮,等.芒果苷滴丸对大鼠慢性肝损伤的保护作用[J].中国药师,2009,12(6):701-704.
    [33]邓家刚,杨柯,阎莉,等.芒果苷对免疫抑制小鼠T淋巴细胞增殖的影响[J].中国药理与临床,2007,23(5):64-65.
    [34] Bhatia HS, Candelario-Jalil E, de Oliveira AC, et al. Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells [J]. Arch Biochem Biophys, 2008, 477(2):253-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700