闽江河口湿地芦苇、短叶茳芏和互花米草三种植物枯落物分解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用分解袋法,以闽江河口鳝鱼滩湿地为研究对象,研究了本地种短叶茳芏(Cyperus malaccensis)、芦苇(Phragmites australis)以及外来入侵种互花米草(Spartinaalterniflora)枯落物分解过程中物质和能量的变化动态以及枯落物质量和潮汐水淹对湿地植物枯落物分解的影响,研究结果表明:
     1.3种植物枯落物分解速率由快到慢的顺序是短叶茳芏、互花米草和芦苇,分解速率在0.003166~0.005280 d~(-1)之间,95%干物质分解需要的时间在1.56~2.61 a之间。
     2.在280d的研究时段,C浓度基本稳定,损失方式主要以矿化为主;N浓度呈上升趋势,总N在研究期末表现为净损失,损失方式主要以矿化为主;P浓度呈波动变化,总P在研究期末表现为净损失,损失方式主要以淋溶为主。
     3.枯落物分解过程中热值变化跟C浓度变化显著相关,枯落物初始热值可很好地预测枯落物的分解速率;总能量与剩余干物质质量以及总C含量极显著相关,总能量随干物质及总C的减少而降低,能量损失速率很好的反映了枯落物的分解速率。
     4.枯落物质量是影响枯落物分解的主要因素,经常性的潮汐淹水促进了枯落物的分解,但促进作用不显著。此外,经常性的潮汐淹水显著促进了N元素的损失,也显著地促进了P元素的损失。
Litter decompositions of Cyperus malaccensis、Phragmites australis and Spartina alterniflora (an exotic invasive species) were studied using mesh bags method in the Shanyutan tidal marsh in the Minjiang River estuary. We explored the influences of litter composition and tide on litter decomposition. Main results are as follows:
     1. The decreasing order of litter decomposition rate was Cyperus malaccensis, Spartina alterniflora and Phragmites australis. The decomposition rates ranged from 0.003166 to 0.005280 d~(-1), and the time of 95% dry mass of litter loss ranged from 1.56 to 2.61a
     2. C concentrations had only a little change, and the major pathway of C release was mineralization during the 280 days. There was an upward trend in N concentrations .At the end of the experiment, N content had a net loss and the major pathwany of loss was mineralization. There was a fluctuating downward trend in P concentrations. At the end of the experiment, P content had also a net loss and leaching losses were responsible for much of P loss.
     3. The relationship between Calorific Power dynamics and C concerntration dynamics was significant. The initial Calorific Power is a good indication of litter decomposition rates. The energy declined with decreases of dry mass and C content, and the release rates of energy was closely related to decomposition rates.
     4. Litter quality is the main factor influencing the decomposition rates of plant litter. Frequent tidal flooding had accelerated the litter decomposition, however, the impact of tide on litter decomposition rate was not significant. Frequent tidal flooding had accelerated significantly the N release, and had also accelerated the P loss.
引文
Aber J.D., Melillo M.M.. Terrestrial Ecosystems[M]. 2nd edn. Academic Press, San Diego. 2001
    Aerts R., Verhoeven V.T.A. , Whigham D.F.. Plant-mediated controls on nutrient cycling in temperate fens and bogs[J]. Ecology,1999 ,80: 2170-2181.
    Alerts R, Caluwe H D. Nutritional and plant mediated controls on leaf litter decomposition of Carex species[J]. Ecology, 1997, 78: 244 - 260.
    Alicia SM, Roberto A D. Decomposition of and nutrient dynamics in leaf litter and roots of Poaligularis and S tipa gyneriodes [J]. Journal of Arid Environments, 2003,55:503 - 514.
    Anderson J T , Smith LM. The effect of flooding regimes on decomposition of Polygonum pensylvanicum in playa wetlands (Southern Great Plains , USA) [J] . Aquat. Bot. , 2002, 74 :97-108.
    Augusto C. DE A.Ribas,Marcel O. Tanaka,Andrea L.T.DE Souza. Evaluation of macrofaunal effects on leaf litter breakdown rates in aquatic and terrestrial habitats[J]. Austral Ecology ,2006,31:783-790.
    Baldy v,Chauvet E,Charcosset J Y,Gessner M O.Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river[J].Aquat Microb Ecol,2002,28:25-36.
    BaldyV,GessnerMO,Chauvet E.Bacteria,fungi,and the breakdown of leaf litter in a large river[J].Oikos,1995,74:93-102.
    Barajas G G, Alvarez S J . The relationships between litter fauna and rates of litter decomposition in a tropical rain forest [J].Applied Soil Ecology, 2003 ,24 : 91-100.
    Battle JM , Mihuc TB. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya , a large floodplain river[J]. Hydrobiologia, 2000,418 :123-136.
    Ba'rlocher F, Biddiscombe NR . Geratology and decomposition of Typha latifolia and Lythrum salicaria in a freshwatermarsh[J].Arch Hydrobiol, 1996,136:309-325.
    Bouchard V, Gillon D,Joffre R, Lefeuvre JCActual litter decomposition rates in salt marshes measured using near-infrared reflectance spectroscopy[J ]..Journal of Experimental Marine Biology and Ecology, 2003,290: 149- 163.
    Bridgham S.D. , Richardson C.J.. Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands[J]. Soil Biol. Biochem., 1992, 24:1089-1099.
    Bridgham SD,Richardson CJ. Endogenous versus exogenous nutrient control over decomposition and mineralization in North Carolina peatlands[J]. Biogeochemistry,2003, 65:151-178.
    Brinson MM, Lugo AE , Brown S. Primary productivity ,decomposition and consumer activity in freshwater wetlands[J ]. A nnu. Rev. Ecol. Syst, 1981,12 :123-161.
    Buesing N., Gessner M. O.. Benthic Bacterial and Fungal Productivity and Carbon Turnover in a Freshwater Marsh[J]. Applied and Environmental Microbiology, 2006,72(1) : 596-605.
    Cai XM. Ecosystem ecology [M]. Beijing: Science Press, 2000, 223 - 234.
    Coulson J.C. , Butterfield J.E.L. An investigation of the biotic factors determining the rates of plant decomposition on blanket bog[J] J. Ecol., 1978,66: 631-650.
    Day FP. Effects of Flooding on Leaf Litter Decomposition in Microcosms [J]. Oecologia (Berlin),1983,56:180-184.
    DeBusk W.F.,Reddy K.R..Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh[J]. Soil Sci. Soc. Am. J., 1998,62:1460-1468.
    Debusk WF , Reddy KR. Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh [J]..Biogeochemistry,2005,75:217-240.
    Duarte CM . Nutrient concentration of aquatic plants: Patterns across species[J]. Limnol Oceanogr,1992,37:882-889.
    Enriquez S., Duarte C.M., Sand-Jensen, K.. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content[J].Oecologia, 1993 ,94: 457-471.
    Eswaran H,Berg E V,Reich P.Global soil carbon resources,in Soils and Global Change [M].CRC Press,1995:27-43.
    Findlay SEG,Arsuffi TL.Microbial growth and detritus transformations during decomposition of leaf litter in a stream[J].Freshw Biol,1989,21: 261-269.
    Findlay SEG,Meyer JL,Edwards RT.Measuring bacterial production via rate of incorporation of [3H]thymidine into DNA[J].J Microbiol Methods,1984,2:57-72.
    Fog K .The effect of added nitrogen on the rate of decomposition of organic matter[J ].Biol Rev, 1988, 63:433-462.
    Gessner M O. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake[J]. Aquatic Botany ,2000, 66:9-20.
    Goldman JC, Caron DA, Dennett MR . Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio[J]. Limnol Oceanogr ,1987,32:1239-1252.
    Goulder R.. Extracellular enzyme activities associated with epiphytic microbiota on submerged stems of the reed Phragmites aust ralis [J ]. FEMS Microbiol. Ecol., 1990,73 :323-330.
    Gusewell S., Verhoeven J. T. A. Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter[J]. Plant Soil.,2006, 287:131-143.
    Halupa P. J., Howes B. L. Effects of tidally mediated litter moisture content on decomposition of Spartina alterniflora and S. patens[J] .Marine Biology,1995, 123:379-391.
    Han XG, Li LH, Hang JH. An introduction to biogeochemistry[M]. Beijing: Higher Education Press & Springer Press, 1999,211 -215.
    Harmon M E, Franklin J F, Swanson F J, et al. Ecology of coarse woody debris in temperate ecosystems[J]. Advances in Ecological Research, 1986,15:133 - 302.
    Hieber M,Gessner MO.Contribution of stream detrivores,fungi and bacteria to leaf breakdown based on biomass estimates[J].Ecology,2002,83:1026-1038.
    Hobbie S.E. ,Vitousek P.M.. Nutrient limitation of decomposition in Hawaiian forests[J] .Ecology, 2000a,81:1867-1877.
    Hobbie S.E.. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian Montane forest[J] .Ecosystems , 2000b,3: 484-494.
    Kirschner AKT,Velimirov B.Benthic bacterial secondary production measured via simultaneous 3H-thymidine and 14C-leucine incorporation ,and its implication for the carbon cycle of a shallow macrophyte-dominated backwater system[J].Limnol Oceanogr,1999,44:1871-1881.
    Koerselman W., Meuleman A.F.M.. The vegetation N:P ratio, a new tool to detect the nature of nutrient limitation[J]. J. Appl.Ecol., 1996, 33:1441-1450.
    Kominkova D., Kuehn K. A., Busing N., Steiner D., and Gessner M. O..Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake[J]. Aquat. Microb. Ecol., 2000,22:271-282.
    Kuehn K.A., Gessner M.O., Wetzel R.G., Suberkropp K. . Decomposition and CO2 Evolution from Standing Litter of the Emergent Macrophyte Erianthus giganteus[J] .MicrobEcol ,1999,38:50-57.
    Kuehn K. A., Lemke M. J., Suberkropp K., Wetzel R. G.. Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus[J]. Limnol. Oceanogr, 2000,45:862-870.
    Kuehn KA , Steiner D , Gessner MO. Diel mineralization patterns of standing2dead plant litter : Implications for CO2 flux from wetlands[J]. Ecology, 2004,85 (9) :2504-2518.
    Kuehn K A, Suberkropp k. Decomposition of standing litter of the freshwater emergent macrophyte Juncus effuses[J]. Freshwater Biology, 1998a,40 (4): 717-727.
    Kuehn KA , Suberkropp K. Die1 fluctuations in rates of CO2 evolution from standing dead leaf litter of the emergent macrophyte Juncus effusus [J] . Aquat . Microb.Ecol . , 1998b, 14 :171-182.
    Lambert RC, Lang GE, Reiners WA. Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest[J]. Ecology, 1980, 61:1460 -1473.
    
    Lillebo AI, Flindt MR , Pardal MA, et al. The effect of macrofauna , meiofauna and microfauna on the degradation of Spartina maritima detritus from a salt marsh area [J]. Acta Oecol., 1999, 20 (4) :249-258.
    Lockaby B.G., Murphy A.L. , Somers G.L. .Hydroperiod influences on nutrient dynamics in decomposing litter of a floodplain forest[J]. Soil Sci. Soc. Am. J. ,1996a,60:1267-1272.
    Lockaby B.G., Wheat R.S. ,Clawson R.G.. Influence of hydroperiod on litter conversion to soil organic matter in a floodplain forest[J ]. Soil Sci. Soc. Am. J., 1996b, 60:1989-1993.
    Magill A.H. , Aber A.D.. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems[J ]. Plant Soil, 1998, 203: 301-311.
    Ma S C, YangM X, Zhang R Z. Litter decomposition model and the function of soil fauna[J]. Journal of Liaoning University (Natural Sciences Edition), 1994, 21 (4): 80 - 84.
    Mateo M.A., Romero J.. Evaluating seagrass leaf litter decomposition: an experimental comparison between litter-bag and oxygen-uptake methods[J ].J. Exp. Mar. Biol. Ecol., 1996,202:97-106.
    McKee K L, Seneca E D. The influence of morphology in determining the decomposition of two salt marsh macrophytes [J].Estuaries,1982, 5(4): 302-309.
    Minderman G. Addition, decomposition and accumulation of organic matter in forests [J]. Ecology, 1968, 56: 355 - 362.
    
    Montagna P A, Ruber E. Decomposition of Spartina alterniflora in different seasons and habitats of a northern Massachusetts salt marsh, and a comparison with other Atlantic regions [J]. Estuaries, 1980,3(1):61-64.
    Neckles H A, Neill C. Hydrologic control of litter decomposition in seasonally flooded prairie marshes. Hydrobiologia, 1993, 286(3): 155-165.
    Newell SY,Fallon RD .Toward a method for measuring instantaneous fungal growth rates in field samples [J].Ecology,1991,72:1547-1559.
    Newell SY,Moran MA,Wicks R,Hodson RE.Productivities of microbial decomposers during early stages of decomposition of leaves of a freshwater sedge[J].Freshwater Biol ,1995a,34:135-148.
    Newell SY. Minimizing ergosterol loss during preanalytical handling and shipping of samples of plant litter[J]. Appl. Environ.Microbiol., 1995b,61: 2794-2797.
    Olson J S. Energy storage and the balance of products and decomposers in ecological systems [J ] .Ecology,1963,44(2):322-331.
    Pascoal C, Cassio F.. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river[J]. Appl. Environ. Microbiol., 2004,70:5266- 5273.
    Peterson, B.J., Deegan, L, Helfrich, J., , et al . Biological responses of a tundra river to fertilization[J] .Ecology, 1993, 74: 653-672.
    Puriveth P. Decomposition of emergent macrophytes in a Wisconsin marsh[J]. Hydrobiologia, 1980,72:231- 242.
    Quails R.G. , Richardson C.J.. Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms[J ]. Soil Sci. Soc. Am. J., 2000,64:799-808.
    Rejmankova E., Houdkova K.. Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality [J ]?Biogeochemistry ,2006,80:245-262.
    Richardson C.J., Ferrell G.M. , Vaithiyanathan P. .Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass[J ] . Ecology, 1999,80:2182-2192.
    Roache MC , Bailey PC , Boon PI. Effects of salinity on the decay of the freshwater macrophyte Triglochi n procerum[J]. Aquat. Bot., 2006,84 (1) : 45-52.
    Rohan G C , Richard D B. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes[J].Soil Biology &Biochemistry , 2001 , 33 :2073-2081.
    Ryckegem G. V., Driessche G. V., Beeumen J.J. V. ,et al.The Estimated Impact of Fungi on Nutrient Dynamics During Decomposition of Phragmites australis Leaf Sheaths and Stems [J ].Microbial Ecology,2006, 52:564-574 .
    Sinsabaugh, R. L, Findlay S.. Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary[J]. Microb. Ecol., 1995, 30:127-141.
    Swift M J, Anderson J M. 1989. Decomposition / / Lieth H. Ecosystems of the World, 14B . Tropical rain forest ecosystems ; biogeographical and ecological studies. Amsterdam:Elsevier,547-569.
    
    Taylor BR , Parkinson D , Parsons WFJ . Nitrogen and lignin content as predictors of litter decay-rates : A microcosm test [J ]. Ecology, 1989, 70 : 97-104.
    
    Valiela I, Teal JM, Allen SD, et al. Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter[J]. J exp mar Biol Ecol, 1985,89:29-54
    
    Vargo S M , Neely R K, Kirkwood S M. Emergent plant decomposition and sedimentation : Response to sediments varying in texture , phosphorus content and frequency of deposition [J].Environ. Exp. Bot., 1998,40 :43-58.
    Van Der Valk A.G.,Attivill P.M..Above-and below-ground litter decomposition in an Australian Salt marsh[J].Australian Journal of Ecology,1983,8:441-447.
    
    Vasconcelos H. L. , Laurance W. F. . Influence of habitat,litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape[J] . Oecologia, 2005,144: 456-462.
    
    Vitousek P M, Turner D R. Parton W J. et al. Litter decomposition on the Mauna Loa environmental matrix, Hawai' i:patterns, mechanisms , and models[J]. Ecology, 1994, 75(2): 418-429.
    Weyers H., Suberkropp K.. Fungal and bacterial production during the breakdown of yellow poplar leaves in 2 streams[J]. J. N. Am. Benthol. Soc, 1996,15:408-420.
    White D A, Trapani J M. Factors influencing disappearance of Spartina alternifiora from litterbags [J]. Ecology, 1982, 63(1):242-245.
    Wider R K, Lang G E. A critique of the analytical methods used in examining decomposition data obtained from litter bags [J]. Ecology, 1982, 63(6):1636-1642.
    Wright M. S. & Covich A. P.. The effect of macroinvertebrate exclusion on leaf breakdown rates in a tropical headwater stream[J]. Biotropica,2005, 37: 403-408.
    
    Yin C J, Hang D H, Chen Z Z. Quantitative relationships between the litter decomposition of four species in inner Mongolia grassland and climatic factors[J]. Acta Ecologica Sinica, 1994, 14
    (2):149-154.
    
    Houghton J.,戴晓苏等译.温室气体全球变暖[M].北京:气象出版社,1998,15-49.
    蒋海东,杨青,吕宪国等.三江平原典型环型湿地主要植物群落枯落物的热值变化[J].生态与农村环境学报,2006,22(2):36-39.
    蒋海东,杨青,吕宪国等.三江平原典型环型湿地不同埋藏深度枯落物的热值研究[J].干旱区资源与环境,2007,21(3):130-133.
    廖利平,高洪,汪思龙等.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J].植物生态学报,2000,24(1):34-39.
    刘剑秋,曾从盛,陈宁等.闽江河口湿地研究[M].北京:科学出版社,2006,45-48.
    刘增文,潘开文.Olson枯落物分解模型存在的问题与修正[J].西北农林科技大学学报(自然科学版),2005,33(1):69-70.
    任海,彭少麟.鼎湖山森林生态系统演替过程中的能量生态特征[J].生态学报,1999,19(6):817-822.
    宋长春.湿地生态系统碳循环研究进展[J].地理科学,2003,23(5):622-628.
    宋长春,张金波,张丽华.氮素输入影响下淡水湿地碳过程变化[J].地球科学进展,2005,20(11):1249-1255.
    孙志高,刘景双.湿地枯落物分解及其对全球变化的响应[J].生态学报,2007,27(4):1606-1618.
    武海涛,吕宪国,杨青.湿地草本植物枯落物分解的影响因素[J].生态学杂志,2006a,25(11):1405-1411.
    武海涛,吕宪国,杨青,姜明.土壤动物主要生态特征与生态功能研究进展[J].土壤学报,2006b,43(2):314-323.
    武海涛,吕宪国,杨青等.土壤动物对三江平原典型毛果苔草湿地枯落物分解的影响[J].生态与农村环境学报,2006c,22(3):5-10.
    武海涛,吕宪国,杨青.分解袋法在湿地枯落物分解研究中存在的问题与对策[J].东北林业大学学报,2007,35(2):82-85.
    杨继松,刘景双,于君宝等.三江平原沼泽湿地枯落物分解及其营养动态[J].生态学报,2006a,26(5):1297-1301.
    杨继松,刘景双,于君宝等.三江平原小叶章湿地枯落物分解及主要元素变化动态[J].生态学杂志,2006b,25(6):597-602.
    张银龙,林鹏.九龙江口秋茄红树林根分解过程的物质和能量变化[J].南京林业大学学报, 1998,22(4):47-50.
    郑彩红,曾从盛,陈志强等.闽江河口区湿地景观格局演变研究[J].湿地科学,2006,4(1):29-34.
    官丽莉,周小勇,罗艳.我国植物热值研究综述[J].生态学杂志,2005,24(4):452-457.
    周俊丽,吴莹,张经等.长江口潮滩先锋植物藨草腐烂分解过程研究[J].海洋科学进展,2006,24(1):44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700