白洋淀湿地典型植被芦苇生长特性与生态服务功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地作为地球上水陆相互作用形成的独特生境,与森林、海洋一起被列为全球三大生态系统,占地球表面积约6.4%,为地球上20%的已知物种提供了生存环境,具有不可替代的生态功能。白洋淀湿地是华北地区最大的淡水湖泊,对于保障全流域和北京、天津等重要城市的环境安全具有显著作用。淀内以沼泽为主,土壤营养物质丰富,生物种类繁多,是芦苇的理想产地。芦苇在白洋淀的分布广泛,是白洋淀分布面积最大、最典型的水生植被,在湿地功能的发挥过程中起着不可忽视的作用。但是自20世纪70年代以来,由于遇到各种原因,导致湿地面积不断萎缩、苇地面积相应波动、芦苇品质变差、芦苇产量骤减,不仅影响到当地农民的收入,也影响到湿地生物多样性的保护及其生态服务功能的发挥。
     本文以白洋淀湿地典型植被芦苇为例,研究了中国华北典型湿地生态系统中优势植物的生长特性及其着生土壤的理化性质,估算了芦苇种群在湿地生态服务功能行使过程中的直接价值与间接价值,并对芦苇适宜收割时间的选择进行了初步探讨。
     研究发现,土壤含水量的变化趋势为随深度的增加而上升,各土层含水量的最小值出现在4月,最大值出现在8月;土壤有机质、全氮、全磷含量的变化趋势为随深度的增加而下降,表层土有机质含量高于中、下层土且差距明显,各土层含量随时间变化的趋势不尽相同;土壤全氮/全磷比值的变化趋势为随深度的增加而下降。
     芦苇的密度在四次采样中保持稳定,显示出芦苇种群对环境因子的充分适应;芦苇的株高与直径均随时间的推移而增长,增长速度最快的时期正是芦苇的主要生长期,株高与直径的变化趋势符合白洋淀湿地芦苇种群的生长规律:生长始于每年的3月底、4月初,终于每年的10月底,主要生长期在6月到8月;根状茎具有最大的生物量与氮、磷积累量,地上茎、叶片、叶鞘等构件的相应指标随时间的推移而增大;叶片具有较高的全氮、全磷含量,地上茎、叶片、叶鞘等构件的相应指标随时间推移而降低;芦苇植株的生物量、氮、磷积累量的最大值分别出现在8月、8月和10月,地上部分的相应最大值分别出现在10月、8月和6月;地上部分的全氮/全磷比值在主要生长季中均高于16,显示出在这一时期磷是芦苇地上部分生长的限制因子。
     白洋淀湿地芦苇的生物量较高,为6.48~9.13 kg·m-2,平均7.18 kg·m-2;植株碳储量较大,为2.86~4.04 kg·m-2,平均3.17 kg·m-2,且地下部分的生物量大于地上部分,两者比值为1.90~4.18,平均3.27,地下部分碳储量是地上部分的3倍有余。白洋淀湿地芦苇具有较强的固碳能力,为0.69~2.25 kg·m-2·a-1,是全国陆地植被平均固碳能力的1.4~4.6倍,全球植被平均固碳能力的1.7~5.5倍。与中国不同生态系统相比,白洋淀湿地芦苇种群的固碳能力强于城市、河流、湖泊等生态系统,与相同植被覆盖度的森林生态系统相当。白洋淀芦苇地上部分吸收氮元素的能力为12.05~35.21 g·m-2·a-1,平均18.74 g·m-2·a-1;吸收磷元素的能力为0.64~1.36 g·m-2·a-1,平均1.17 g·m-2·a-1。白洋淀湿地芦苇的光能利用率仅为0.50%~1.65%,若提高到植物理论最大光能利用率5.00%~6.00%,则固碳和释放O2能力可提高2.03~11.00倍,分别达到6.60~8.28 kg·m-2·a-1和18.70~22.44 kg·m-2·a-1,对氮、磷的吸收能力也会有较大的提高,潜力很大。
     另外,本研究发现白洋淀湿地芦苇的适宜收割时间为每年10月,每年通过收割白洋淀典型植被芦苇的地上部分可以获得综合经济收益3.89亿元(其中包括出售芦苇收益1.17亿元,固碳减排收益1.33亿元,释放O2收益1.24亿元,吸收氮元素收益0.12亿元与吸收磷元素收益0.03亿元),相当于安新县年国民生产总值的16.34%、白洋淀区域年旅游收入的60.78%,具有显著的经济效益与生态价值。建议加强对白洋淀湿地典型植被芦苇的研究和管理,做好综合利用,以增加地方财政收入,提高当地人民生活水平,促进白洋淀湿地各种生态服务功能的行使,推进社会主义新农村事业与和谐社会的建设,实现社会-经济-自然复合生态系统的全面发展。
As the special habitat formed by the interaction between terra and water area, wetlands are considered one of the world’s three majoy ecosystems along with forests and oceans. Wetlands account for approximately 6.4% of the earth’s surface, provide habitats for nearly 20% of the known species on the earth, and have irreplaceable ecological functions. As the largest freshwater lake in north China, Baiyangdian Lake plays a significant role in protecting the environmental security of the whole basin and majoy cities. The lake mainly made up of marsh with nutritious soil, is a proper habitat for Phragmites australis. P.australis distributes widely in the wetland, is a typical vegetation and plays an important role in the process of the ecological functions. However, since the 1970’s, due to various reasons encountered, the wetland has been shrinking, and the P.australis area has also been fluctuating, at the same time the quality of P.australis has been downtrending and the production of P.australis has also been plummeting. This situation has not only affected the income of local farmers, but also affected the conservation of wetland biodiversity and its ecosystem services.
     This thesis used P.australis, the typical vegetation in Baiyangdian Lake, as an example to research the growth characteristics, soil physical and chemical parameters of the dominant vegetation in the typical wetlands in north China.The direct and indirect value of P.australis in ecosystem services was estimated, and the suitable harvest time of P.australis was also researched.
     The study found that the soil water content increased with the increasing depth, the minimum of which was in April and the maximum was in August; the contents of soil organic matter, total nitrogen and total phosphorus decreased with the increasing depth, the maximum of which appeared in the surface layer, and the changing trends in different layers over time are different; soil total nitrogen / total phosphorus ratio decreased with the increasing depth.
     The density of P.australis populations remained stable over time, showing the adaptation to environmental factors; the height and diameter of P.australis increased over time, and had the fastest growth rate during the main growing period; rhizome with the largest biomass, nitrogen and phosphorus accumulation, and the corresponding parameters of each component increased over time; lamina with high total nitrogen, total phosphorus, and the corresponding parameters of each component decreased over time; the maximum P.australis plant biomass, nitrogen and phosphorus accumulation were respectively in August, August and October, the maximum of corresponding parameters of aboveground were in October, August and June; the total nitrogen / total phosphorus ratio of the aboveground was higher than 16 in growing period, showing that phosphorus was the limiting factor to the growth of P.australis in this period.
     The P.australis in Baiyangdian Lake had a high biomass(6.48~9.13 kg·m-2, at an average of 7.18 kg·m-2), and carbon storage(2.86~4.04 kg·m-2, at an average of 3.17 kg·m-2). The underground biomass was larger than shoot biomass, and the ratio was over 3(1.90~4.18, at an average of 3.27). Thus underground carbon storage was more than 3 times that of shoot. A typical wetland like Baiyangdian Lake had a strong carbon fixation capacity, 0.69~2.25 kg·m-2·a-1, can be 1.4~4.6 times of the average carbon fixation of terrestrial vegetations in China, and 1.7~5.5 times of that of the world. According to the formula of light efficiency, it was still low, only 0.50%~1.65%. If the light efficiency were improved to be 5.00%~6.00%, the maximum value in theory, the carbon fixation and release oxygen capacity of the vegetation in the wetland would increase 2.03~11.00 times, reach 6.60~8.28 kg·m-2 and 18.70~22.44 kg·m-2 per year, the nitrogen and phosphorus absorption capacity would also increase accordingly, the potential ecosystem services would be huge.
     The suitable harvest time of P.australis was found to be October and the economic value made by harvest the aboveground parts can reach 389 million yuan(including the P.australis sale income 117 million yuan, emission reduction benefit of carbon fixation 133 million yuan, benefit of release oxygen 124 million yuan, benefit of nitrogen and phosphorus absorption 12 million yuan and 3 million yuan), which was equivalent to 16.34% of the gross national product of Anxin County and 60.78% of the tourism income of the region of Baiyangdian, and brought significant economic and ecological value. We suggest that the research and management of P.australis in Baiyangdian Lake should be reinforced and the P.australis should be put into comprehensive utilization so as to enhance local income and people’s living standard. Besides, local government should increase financial assistance to accelerate the ecosystem services of the wetland, promoting socialist rural construction and creating socialist harmonious society, and realizing development of all-round social-economic-natural complex ecosystem.
引文
[1]赵翔,崔保山,杨志峰.白洋淀最低生态水位研究[J].生态学报,2005,25(5):1033-1040.
    [2]朱宣清,何乃华,张圣凯,等.白洋淀水域动态与演变的遥感研究[J].地理科学,1992,12(4):370-378.
    [3]安新县地方志编撰委员会.安新县志[M].北京:新华出版社,2000.10-17.
    [4]安新县地方志办公室.白洋淀[M].北京:中国书店出版社,1996.
    [5]杨永兴.国际湿地科学研究的主要特点、进展和展望[J].地理科学进展,2002,21(2):111-120.
    [6] Falkowski P,Scholes R J,Boyle E,et al.The global carbon cycle:a test of our knowledge of earth as a system [J].Science,2000,290:291-296.
    [7] Mitsch W J, Gosselink J G. Wetlands[M].Chichester:John Wiley and Sons,Inc.,2000.18-19.
    [8]田应兵,宋光煜.湿地土壤及其生态功能[J].生态学杂志,2002,21(6):36-39.
    [9]张希然,陈研华.红树林和酸性潮滩土[J].自然资源学报,1991,6(1):55-61.
    [10]杨萍如,何金海,刘滕辉,等.红树林及其土壤[J].自然资源学报,1987,2(1):32-37.
    [11]龚子同.中国土壤系统分类[M].北京:科学出版社,1999.
    [12]龚子同,张效朴.中国的红树林与酸性硫酸盐土[J].土壤学报,1994,31(1):86-94.
    [13]Stevenson F J.Cycles of Soil Carbon,Nitrgen,Phosphorus,Sulfur,Micronutrients[M].Chichester:John Wiley and Sons Ltd.,1986.
    [14]Mitsch W J.Wetlands[M].New York:Van Nostrand Reinhold Company Inc.,1986.
    [15]Downing J A,McClain M,Twilley R,et al.Theimpact of accelerating land-use change on the N-Cycle oftropical aquatic ecosystems:Current conditions andprojected changes[J].Biogeochemistry,1999,46: 109-148.
    [16]Dorge J.Modelling nitrogen transformations in freshwater wetlands-estimating nitrogen-retention and removal in natural wetlands in relation to their hydrology and nutrient loadings[J].Ecological Modelling,1994,75:409-420.
    [17]Martin J F,Reddy K R.Interaction and spatial distributionof wetland nitrogen processes[J].Ecological Modelling,1997,105:1-21.
    [18]白军红,李晓文,崔保山,等.湿地土壤氮素研究概述[J].土壤,2006,38(2):143-147.
    [19]白军红,邓伟,朱颜明,等.水陆交错带土壤氮素空间分异规律研究-以月亮泡水陆交错带为例[J].环境科学学报,2002,22(3):343-348.
    [20]白军红,王庆改.向海沼泽湿地土壤氮素分布特征及生产效应研究[J].土壤通报,2002,33(2):113-116.
    [21]白军红,邓伟,欧阳华,等.吉林向海沼泽湿地土壤氮素的剖面分布[J].湖泊科学,2004,16(4):377-380.
    [22]袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983.
    [23]Jacobson P J,Jacobson K M,Angermeier P L,et al.Hydrologic influences on soil properties along ephemeral rivers in the Namib Desert[J].Journal of Arid Environments,2000,45(1):21-34.
    [24]Hanaíková.Chemical characteristics of soils and pore waters of three wetland sites dominated byPhragmites australis:Relation to vegetation composition and reed performance[J].Aquatic Botany, 2001,69(2):235-249.
    [25]Odum H T,Ewel K C,Mitsch W J.Recycling treate dsewage through Cypress wetlands in Florida D'ltri FM.Wastewater Renovation and Reuse[C].New York:Marcel Decker,1997:35-67.
    [26]尹澄清.内陆水-陆地交错带的生态功能及其保护与开发前景[J].生态学报,1995,15(3):331-335.
    [27]孙志高,刘景双,于君宝.三江平原不同群落小叶章氮素的积累和分配[J].应用生态学报,2009,20(2): 277-284.
    [28]吴淑杭,徐亚同,姜震方,等.梦清园人工湿地芦苇的氮磷和生物量动态及其适宜收割期的研究[J].农业环境科学学报,2006,25(6):1594-1597.
    [29]Reddy K R,Patrick W HJr,Phillips R E.Evaluation of selected processes controlling nitrogen loss in a flooded soil[J].Soil Science Society of American Journal,1980,44:1241-1246.
    [30]Patrick W H Jr,Reddy K R.Nitrification-denitrification reactions in flooded soils and sediments: Dependence on oxygen supply and ammonium diffusion[J].Journal of Environmental Quality, 1976,5:469-472.
    [31]Poach M E,Faulkner S P.Soil phosphorus characteristics of created and natural wetland in the Atchafalays Delta,LA[J].Estuarine Coastal and Shelf Science,1998,46:195-203.
    [32]Reddy K R.Fate of nitrogen and phosphorus in a wastewater retention reservior containing aquatic macrophytes[J].Journal of Environmental Quality,1983,12(10):137-141.
    [33]严小龙,廖红,戈振扬,等.植物根构型特性与磷吸收效率[J].植物学通报,2000,17(6):511-519.
    [34]Fitter A H.Characteristics and functions of root systems.In:Waisel Y, Eshel A, Kafkafi U. eds. Plant roots the hidden half[M].New york, Basel, Hong Kong: Marcel Dekker, Inc.,1991.3-25.
    [35]翟金良,何岩,邓伟.向海洪泛湿地土壤全氮、全磷和有机质含量及相关性分析[J].环境科学研究,2001,14(6):40-43.
    [36]杨永兴,刘长娥,杨扬.长江口九段沙互花米草湿地生态系统N、P、K的循环特征[J].生态学杂志,2009, 28(2):223-230.
    [37]章文龙,曾从盛,张林海,等.闽江河口湿地植物氮磷吸收效率的季节变化[J].应用生态学报,2009,20 (6):1317-1322.
    [38]林小涛,梁海含,梁华,等.澳门路氹湿地芦苇氮磷含量的季节变化[J].生态学杂志,2007,26(1):5-8.
    [39]谢成章,张友德,徐冠军.荻和芦的生物学[M].北京:科学出版社,1993:21-93.
    [40]吕晓平.中国水禽湿地保护区的保护与发展[M].见:湿地保护与合理利用——中国湿地保护研讨会文集.北京:中国林业出版社,1996:350-354.
    [41]曹秋玉.北固山湿地芦苇和虉草生长规律及其生态功能的研究[D].江苏大学硕士学位论文,2006.
    [42]Graneli W.Reed Phragmites ausrtalis(Cav.)Trin.ex Steudel as an energy in Sweden[J].Biomass,1984 (4):183-208.
    [43]Mauchamp A,S Blanch,P Grillas.Effect of submergence on the growth of Phragmites austrialisseeding[J].Aquatic Botnay,2001,69:147-164.
    [44]Lessen J P M,Menting B J,Van der Putten W H.Effect of sedment type and water level on biomass produetion of wetland plnats species[J].Aquatic Botany,1999,64:151-165.
    [45]Rolletschek H,Rolletschek A,Kuhl H,et al.Clone specific differences in a Phragmites austrialis stand 2.seasonal development of morphological and physiological characteristics at the natural site and after transplantation[J]. Aquatic Botnay,1999,64:247-260.
    [46]Rolletschek H,Hartzendorf T.Effects of salinity and convective rhizome ventilation on amino acid and carbohydrate pattern Phragmites austrialis populations in the Neusiedler Sea region of Ausrtia and Hungary[J].New Phytologist,2000,146:95-106.
    [47]Ruttkay A,Tilesch S,Veszpremi B.Reed management[M]. Mezogazdasagi Kiado,Budapest,1964.
    [48]Rodewald-Rodescu.Das Schilfrohr Phragmites communis Trinius[M].DieBinneng ewasser,1974.
    [49]Haslam S M.Biological flora of the British Isles Phragmites communis Trinius[J].Ecology,1972, 60:585-610.
    [50]Dinka M.The effect of mineral nutrient enrichment of Lake Balaton on the common reed(Phragmites australis)[J].Folia Geobot Phytotaxon,1986,21:65-84.
    [51]Ksenofontova T.Morphology,production and mineral contents in Phragmites australis in different waterbodies of the Estonian SSR[J].Folia Geobot Phytotaxon,1988,23:17-43.
    [52]White S D,Ganf G G.A comparison of the morphology,gas space anatomy and potential of internal aeration in Phragmites australis under variable and static water regimes[J].Aquatic Botnay,2002,73: 115-127.
    [53]Gorham E,Pearsall W H.Production ecology 3.Shoot production in Phragmites in relation to habitat [J].Oikos,1956,7:206-214.
    [54]Clevering O A.An investigation into the effects of nitrogen on growth and morphology of stable and dieback populations of Phragmites australis[J].Aquatic Botnay,1998,60:11-25.
    [55]Fogli S,Marchesini R,Gerdol R.Reed(Phragmites australis)decline in a brachish wetland in Italy [J]. Marine Environmental Research,2002.53:465-479.
    [56]Fogli S,Marchesini R,Gerdol R.Effects of salinity on the growth of Phragmites australis[J].Aquatic Botnay,1997,55:247-260.
    [57]Pearcy R W,Ustin S L.Effects of salinity on growth and photosynthesis of three California tidal marsh species[J].Oecologia,1984,62:68-73.
    [58]Jeannine M Lessmann,Vaclav Bauer.Effect of climatic gradients on the photosynthetic responses of four Phragmites australis populations[J].Aquatic Botany,2001,69:109-126.
    [59]Adma J B,Bate G C.Growth and photosynthetic performance of Phragmites australis in estuarine waters:a field and experimental evaluation[J].Aquatic Botany,1999,64:359-367.
    [60]王洪亮,张承烈.河西走廊不同生态型芦苇质膜特性的比较[J].植物学报,1993,7(2):537-540.
    [61]任东涛,张承烈,陈国昌,等.芦苇生态型划分指标的主分量及模糊聚类分析[J].生态学报,1994,14 (3):265-272.
    [62]杨允菲,郎惠卿.不同生态条件下芦苇无性系种群调节分析[J].草业学报,1998,7(2):1-9.
    [63]赵家荣.芦苇和荻的栽培与利用[M].北京:金盾出版社,2002.
    [64]王祝华,沈允钢.芦苇生物生产力及其对大气CO2加浓的响应[J].生态学报,1994,14(4):397-400.
    [65]杨允菲,李建东.松嫩平原不同生境芦苇种群分株的生物量分配与生长分析[J].应用生态学报,2003,14(l):30-34.
    [66]郭晓云,杨允菲.松嫩平原不同旱地生境芦苇的光合特性研究[J].草业学报,2003,12(3):16-21.
    [67]段晓男,王效科.乌梁素海野生芦苇光合和蒸腾特性研究[J].干旱区地理,2004,27(4):637-641.
    [68]孙刚,祝延成.芦苇光合与蒸腾作用的日进程[J].生物学杂志,1999,16(3):24-26.
    [69]陈歆.北固山湿地优势植物的光合作用特性及人工修复技术研究[D]江苏大学硕士学位论文,2005.
    [70]盖平,鲍智娟,张结军,等.环境因素对芦苇地上部生物量影响的灰色分析[J].东北师大学报自然科学版,2002,34(3):87-91.
    [71]段晓男,王效科.乌梁素海野生芦苇群落生物量及其影响因子分析[J].植物生态学报,2004,28(2):246 -251.
    [72]Daily G C.Nature services:societal denpendence on natural ecosystem[M].Washington:Island Press, 1997.
    [73]孙刚,盛连喜,周道玮.生态系统服务及其保护策略[J].应用生态学报,1999,10(3):365-368.
    [74]Opschoor J B.Special section:Forum on valuation of ecosystem service—The value of ecosystem sevices:whose values?[J].Ecological Economics,1998,25:41-43.
    [75]Urs P K,Heather G,Marty D.Change in ecosystem service values in the San Antonio area,Texas[J]. Ecological Economics,2001,39:333-346.
    [76]Carins J.Protecting the delivery of ecosystem services[J].Ecosystem Health,1997,3(3):185-194.
    [77]Michael D K,John P H.Do focus groups and individual interviews reveal the same information for natural resource valuation?[J].Ecological Economics,2001,36:237-247.
    [78]Costanza R,Ralphd A,Rudorf de Groot,et al.The value of the world`s ecosystem services and nature capital[J].Nature,1997,387:253-260.
    [79]陈仲新,张新时.中国生态系统效益的价值[J].科学通报,2000,45(1):17-22.
    [80]欧阳志云,王效科,苗鸿.中国陆地生态系统生态服务功能及其生态经济价值的初步研究[J].生态学报,1999,19(5):608-613.
    [81]谢高地,张钇锂,鲁春霞,等.中国自然草地生态系统服务价值[J].自然资源学报,2001,16(1):47-53.
    [82]蒋延玲,周广胜.中国主要森林生态系统公益的评估[J].植物生态学报,1999,23(5):426-432.
    [83]韩维栋,高秀梅,卢昌义,等.中国红树林生态系统生态价值评估[J].生态科学,2000,19(1):41-46.
    [84]Larson J S,Mazzarese D B.Rapid assessment of wetlands:History and application to Management[A]. Mitch W J.Global wetlands:Old World and New Amsterdam[C]:Elsevier Seienee B.V.,1994.625-636.
    [85]Young R A,Gray S L.Economic value of water:concepts and empirical estimates[R].Colorado StateUniversity,1972:347.
    [86]Wilson M A,Carpenter S R.Economic evaluation of freshwater ecosystem services in the United States:1971-1997[J].EcologicaI applications,1999,9(3):772-783.
    [87]Richard T W,Wui Y S.The economic value of wetland services a meta-analysis[J].Ecological Economics,2001,37:257-270.
    [88]张培.白洋淀湿地价值评价[D].河北农业大学硕士学位论文,2008.
    [89]崔丽娟.扎龙湿地价值货币化评价[J].自然资源学报,2002,17(4):451-456.
    [90]吴玲玲,陆健键,童春富,等.长江口湿地生态系统服务功能价值评价的评估[J].长江流域资源与环境,2003,12 (5):411-416.
    [91]王伟,陆健健.三样湿地生态系统服务功能及其价值[J].生态学报,2005,25(3):404-407.
    [92]崔丽娟.都阳湖湿地生态系统服务功能价值评估研究[J].生态学杂志,2004,23(4):47-51.
    [93]王学雷,杜耘.洪湖湿地价值评价与生物多样性保护[J].中国科学院院刊,2002,(3):177-180.
    [94]叶东旭,杨锡臣.三江平原湿地的生态价值及保护对策[J].现代化农业,2002,7:41-43.
    [95]梁延海,朱万昌,王立功.大兴安岭湿地价值的初步评价[J].防护林科技,2005,4:54-55.
    [96]陈国强,陈鹏.厦门滨海自然湿地生态系统服务价值的变化研究[J].福建林业科技,2006,33(3):91-95.
    [97]张素珍,李贵宝.白洋淀湿地生态系统服务功能及价值估算[J].南水北调与水利科技,2005,3 (4):22-25.
    [98]李建国,李贵宝.白洋淀湿地生态服务功能于价值估算的研究[J].南水北调与水利科技,2005,3 (3):18-21.
    [99]北京林业大学.土壤理化分析实验指导书[M].北京:北京林业大学出版社,2002.
    [100]梅雪英,张修峰.长江口典型湿地植被储碳、固碳功能研究——以崇明东滩芦苇为例[J].中国生态农业学报,2008,16(2):269-272.
    [101]梅雪英,张修峰.长江口湿地海三棱藨草的储碳、固碳功能研究——以崇明东滩为例[J].农业环境科学学报,2007,26(1): 360-363.
    [102]曹志红,许信旺,汪艳林.皖江地区湿地生态服务价值评估[J].中国农学通报,2008,24(8):413-419.
    [103]张晓惠.黄河三角洲湿地生态服务功能价值评估[D].山东师范大学硕士学位论文,2007.
    [104]谢放尖,吴长年,黄戟,等.苏州太湖国家旅游度假区人工湿地生态服务功能价值评估研究[J].生态经济(学术版),2009,4(1):368-371.
    [105]徐卫华,欧阳志云,Iris v D,等.白洋淀地区近16年芦苇湿地面积变化与水位的关系[J].水土保持学报,2005,19 (4):181-189.
    [106]Loomis R S,Williams W A.Maximum crop productivity:an estimate[J].Crop Science,1963,3(1):67-72.
    [107]刘长娥,杨永兴.九段沙芦苇湿地生态系统N、P、K的循环特征[J].生态学杂志,2008,27(3):418-424.
    [108]吕国红,周莉,赵先丽,等.芦苇土壤有机碳和全氮含量的垂直分布特征[J].应用生态学报,2006,17(3): 384-389.
    [109]白军红,王庆改,丁秋炜,等.不同芦苇沼泽湿地土壤全氮季节动态变化和碳储量研究(简报)[J].草业学报,2008,17(2):162-165.
    [110]李博主编.生态学[M].北京:科学出版社,2000:208.
    [111]李虎群,张艳刚,马立凯,等.白洋淀地区芦苇缘毛长突飞虱发生规律及防治对策初探[J].中国植保导刊,2006,26(8):29-31.
    [112]任春光.白洋淀芦苇病虫发生现状及防治措施[J].病虫测报,1988,8(1):36-38.
    [113]冯忠江,赵欣胜.黄河三角洲芦苇生物量空间变化环境解释[J].水土保持研究,2008,15(3):170-174.
    [114]鲍志娟,盖平.吉林省西部地区芦苇地上部生物量季节动态的研究[J].吉林农业大学学报,2002,24 (5):31-34.
    [115]张友民,杨允菲,王立军.三江平原沼泽湿地芦苇种群生产与分配的季节动态[J].中国草地学报, 2006,28(4):1-5.
    [116]贾庆宇,周广胜,周莉,等.湿地芦苇植株氮素分布动态特征分析[J].植物生态学报,2008,32(4):858- 864.
    [117]曾从盛,张林海,仝川.闽江河口湿地芦苇和互花米草氮、磷养分季节动态[J].湿地科学,2009,7(1): 16-24.
    [118]吴春笃,石驰,沈明霞,等.北固山湿地植物对氮磷元素吸收能力的研究[J].生态环境,2007,16(2):369 -372.
    [119]曾从盛,张林海,仝川.闽江河口湿地短叶茳芏氮、磷含量与积累量的季节变化[J].生态学杂志,2009, 28(5):788-794.
    [120]水利部应对气候变化研究中心.气候变化权威报告-IPCC报告[J].中国水利,2008(2):38-40.
    [121]Bluemle J P,Sabel J M,Karlén W.Rate and magnitude of past global climate changes[J]. Environmental Geosciences,1999,6:63-75.
    [122]Adams J M,Piovesan G.Uncertainties in the role of land vegetation in the carbon cycle[J]. Chemosphere,2002,49:805-819.
    [123]Clark S B,David B,Zoe H.Carbon sink by the forest sector-options and needs for implementation[J]. Forest Policy and Economics,2002,4:65-77.
    [124]Betts R A.Offset of the potential carbon sink from boreal forestation by decreases in surface albedo [J].Nature,2000,408:187-190.
    [125]Dixon R,Brown S,Houghton R,et al.Carbon pools and flux of global forest ecosystems[J].Science, 1994,263,185-190.
    [126]周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究[J].植物生态学报,1996, 20(1):11-19.
    [127]杨永兴.国际湿地科学研究的主要特点、进展和展望[J].地理科学进展,2002,21(2):111-120.
    [128]Brix H,Sorrell B K,Lorenzen B.Are Phragmites dominated wetlands a net source or net sink of greenhouse gases? [J].Aquatic Botany,2001,69:313-324.
    [129]Aselmann I,Crutzen P J.Global distribution of natural freshwater wetlands and rice paddies,their net primary productivity,seasonality and possible methane emissions[J].Journal of Atmosphere Chemistry, 1989,8(4):307-358.
    [130]Crill M P,Bartlett K B,Harriss R C,et al.Methane flux from Minnesota peatlands[J].Global Biogeochem Cycles,1988,2:371-384.
    [131]马学慧,吕宪国,杨青,等.三江平原沼泽地碳循环初探[J].地理科学,1996,16(4):323-330.
    [132]门漱石,崔秀丽,赵芳.白洋淀富营养化成因分析[J].环境科学,1995,16(S1):35-39.
    [133]何浩,潘耀忠,朱文泉,等.中国陆地生态系统服务价值测量[J].应用生态学报,2005,16(6):1122-1127.
    [134]李银鹏,季劲钧.全球陆地生态系统与大气之间碳交换的模拟研究[J].地理学报,2001,56(4):379- 389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700