用户名: 密码: 验证码:
干旱胁迫下小麦形态与生理生化反应的染色体效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦代换系是遗传研究和育种的宝贵资源,开发利用小麦代换系对小麦抗旱育种具有重要意义。本试验以小麦中国春-Synthetic 6x 21个代换系及其亲本为材料,通过设置不同水分处理,采用形态观察、生理生化指标测定等方法,研究干旱胁迫对小麦代换系形态、生化及农艺性状的影响,并初步确定调控穗花发育及其相关性状的主效应染色体。主要研究结果如下:
     1.通过研究正常灌溉和干旱胁迫条件下不同小麦代换系和亲本的穗花分化过程,初步确定了延缓穗花分化进程的主效应基因可能位于Synthetic 6x的2B和7D染色体上;耐旱相关基因可能位于2D染色体上。
     2.通过测定不同处理条件下小麦代换系及其亲本叶片的生理、生化指标,结果表明干旱胁迫导致相对含水量、蛋白质含量、叶绿素及类胡萝卜素含量、光合速率、蒸腾速率降低,最大荧光(Fm)、PSⅡ原初光能转换效率(Fv/Fm)以及PSⅡ潜在活性(Fv/Fo)降低,却导致细胞膜透性增大、SOD和POD活性增强、脯氨酸和丙二醛含量增加、水分利用效率增加。
     在干旱胁迫条件下,Synthetic 6x的1D、2B、2D、3A、3D、4A、4B、6A、6B、7D和7A染色体上具有调控细胞膜稳定性的基因;1A、2D和3D染色体上可能存在调控相对含水量的基因,3A、3B、4B、5B、6B、1D、2D和4D染色体上可能存在调控离体失水速率的基因;5D和1D染色体上可能有促进脯氨酸积累的基因存在,4A、4B、2D和6D染色体上可能有抑制蛋白质含量下降的基因存在;2B和7D染色体上可能存在诱导SOD活性增强的有利基因,1A、2A和2D染色体上可能存在诱导POD活性增强的有利基因;7A和1D、7D染色体上可能存在抑制MDA含量增高的基因:3A和4D染色体上可能存在诱导叶绿素含量增高、光合速率及水分利用效率增高的有利基因,2A和4D染色体上可能存在诱导类胡萝卜素含量增高的有利基因;7B染色体上可能存在诱导蒸腾速率增强的有利基因;3A染色体上可能存在调控调控Fo的基因,4D染色体上可能存在调控Fm的基因,3A和7A染色体上可能存在调控Fv/Fm及Fv/Fo的有利基因。
     3.通过测定不同处理条件下小麦代换系及其亲本的农艺性状,表明干旱胁迫抑制了株高、穗长、穗下节间、单穗粒重、千粒重和单穗粒数增长。
     在干旱胁迫下,Synthetic 6x的1A、5A、6A、1D、2D、3D、4D、6D和7D染色体上可能存在调控株高的基因;1A、4A、6A、7A、1B、2B、4B、6B、7B、2D、3D、5D、6D和7D这15染色体上可能存在调控穗长的基因;1A、3A、6A、7A、2B和2D染色体上可能存在调控穗下节间长度的基因;1A、5A、2B、2D和5D染色体上可能存在调控单穗粒重的基因;1A、5A、2B、2D、3B、3D和6D染色体上可能存在调控千粒重的基因;5A、7A、7B、2D、3D、5D和7D染色体上可能存在调控单穗粒数的基因。
     4.利用主成分分析法对小麦代换系及其亲本的形态及生理生化指标的抗旱系数(DRC)进行分析和综合评价,将21个单项生理指标综合成为7个相互独立的综合指标。通过聚类分析,将小麦代换系及其亲本划分为3类:2D代换系及其父本Synthetic6x属高度抗旱类型;1A、3A、4A、6A、7A、2B、4B、6B、1D、3D、4D、7D代换系属中度抗旱类型;其余8个代换系(2A、5A、1B、3B、5B、7B、5D、6D)以及中国春属不抗旱类型。
     5.利用透射电镜观察不同代换系旗叶的超微结构,父本Synthetic 6x与2D代换系对水分变化不够敏感,与对照相比结构变化较小,表明二者抗旱性较强。而母本中国春与5D代换系对干早胁迫敏感,与对照相比结构变化较大,表明二者抗旱性较差。
Wheat substitution lines are the valuable resources of genetic research and breeding. It is very important to exploit and utilize wheat substitution lines in drought resistance breeding. Chinese Spring (CS)-Synthetic 6x substitution lines and parents were used to study the effect on morphological characters, physiological and biochemical indexes and to determine the main effect chromosomes controlling spikelet progress and correlated indexes by observing morphological structure and measuring indexes under drought stress. The main results were as follows:
     1. A series of spikelet differentiation progress of Chinese Spring (CS)-Synthetic 6x substitution lines and parents under different water treatments were observed to determine the main chromosomes controlling spikelet differentiation progress. The result indicated that the genes inhibiting spikelet differentiation may be located on 2B and 7D chromosomes and that of drought tolerance may be located on 2D chromosome.
     2. The physiological and biochemical indexes of Chinese Spring (CS)-Synthetic 6x substitution lines and parents were measured to study the effect on correlated characters. The results showed that drought stress resulted in reduction of relative water content, protein content, chlorophyll content, corticoid content, net photosynthetic rate, transpiration rate, Fm, Fv/Fm, Fv/Fo and accumulation of proline content, SOD activity, POD activity, MDA content, water use efficiency.
     Under drought stress, the chromosomes 1D, 2D, 2B, 3A, 3D, 4A, 4B, 6A, 6B, 7D and 7A of Synthetic 6x were associated with membrane stability; the genes regulating RWC and RWL may be located on 1A, 2D, 3D and 3A, 3B, 4B, 5B, 6B, 1D, 2D, 4D chromosomes respectively; 1D, 5D chromosomes may associate with the proline accumulation and the 4A, 4B, 2D, 6D chromosome may associate with the protein reduction; the genes regulating SOD and POD activity may be located on 2B, 7D and 1 A, 2A, 2D chromosomes respectively, the genes of inhabiting MDA content may be located on 7A, 1D, 7D chromosomes; the genes regulating chlorophyll and corticoid content may be located on 3A, 4D and 2A,4D chromosomes, respectively; the genes of regulating high photosynthesis may be located on 3 A and 4D chromosomes, the genes of regulating high transpiration rate may be located on 7B chromosome, the genes of regulating high water use efficiency may be located on 3A and 4D chromosomes; the genes of regulating Fo may be located on 3A chromosome, the genes of regulating Fm may be located on 4D chromosome, the genes of regulating Fv/Fm and Fv/Fo may be located on 3A and 7A chromosomes.
     3. The agricultural traits of Chinese Spring (CS) - Synthetic 6x substitution lines as well as parents under the control and drought conditions were measured. The results indicated that drought stress resulted in reduction of plant height, spikelet length and so on.
     The results also indicated the genes of controlling plant height may be located on 1A, 5A, 6A, 1D, 2D, 3D, 4D, 6D and 7D chromosomes; 1A, 4A, 6A, 7A, 1B, 2B, 4B, 6B, 7B, 2D, 3D, 5D, 6D and 7D chromosomes may associate with spikelet length; 1 A,3A, 6A, 7A, 2B and 2D chromosomes may associate with controlling internode length; 1 A, 5A, 2B, 2D and 5D chromosomes may associate with controlling grain weight per spike; 1 A, 5A, 2B, 3B, 2D 3D and 6D chromosomes may associate with controlling 1000-grain weight; 5A, 7A, 7B, 2D, 3D, 5D and 7D chromosomes may associate with controlling kernel number per spike
     4. The drought comprehensive resistance of DRC of physiological, biochemical indexes and agricultural traits of Chinese Spring (CS) - Synthetic 6x substitution lines as well as parents was evaluated by principal components analysis. The results showed that the 21 single indexes could be classified into 7 independent comprehensive components. The cluster analysis was used to divide 21 substitution lines and parents into three kinds of drought resistance type. That was that: 2D substitution line and Synthetic 6x belonged to high drought resistance type; 1A, 3A, 4A, 6A, 7A, 2B, 4B, 6B, 1D, 3D, 4D, 7D substitution lines belonged to middle drought resistance type; 2A, 5A, 1B, 3B, 5B, 7B, 5D, 6D substitution lines and Chinese Spring belonged to poor drought resistance type.
     5 The differences of cell ultra-structure of flags leaves in two wheat substitution lines and parents under drought stress were investigated. The results showed the ultra-structure of flags leaves of 2D substitution line and Synthetic 6x with strong drought resistant were less affected than 5D substitution line and Chinese Spring with weak drought resistant under drought stress.
引文
[1]张正斌,山仑.小麦开花期旗叶水势晴天昼夜变化规律研究[J].西北农业学报,1998,7(1):54-59.
    [2]赵文智,程国栋.干旱区生态水文过程研究若干问题评述[J].科学通报,2001,46(22):1851-1857.
    [3]Rizhsky L,Liang H J,Mittler R.The combined effect of drought stress and heat shock on gene expression in tobacco[J].Plant Physiology,2002,130:1143-1157.
    [4]戴晓琴,李存东,张凤路,等.植物激素对小麦穗粒发育调控机制的研究进展[J].河北农业大学学报,2002,25(增):32-34.
    [5]冯佰利,高小丽,王长发,等.干旱条件下不同温型小麦叶片衰老与活性氧特性的研究[J].中国生态农业学报,2005,13(4):74-76.
    [6]张林刚,邓西平.小麦抗旱性生理生化研究进展[J].干旱地区农业研究,2000,18(4):87-92.
    [7]Christmann A,Hoffmann T,Teplova I,et al.Generation of active pools of abiscisic acid revealed by in vitro imaging of water-stressed Arabidopsis[J].Plant Physiology,2005,137:209-219.
    [8]Smyth D R.Morphogenesis of flowers-our evolving view[J].Plant Cell,2005,17:330-341.
    [9]Vandepoele K,Peer Yves Van de.Exploring the plant transcriptome through phylogenetic profiling[J].Plant Physiology,2005,137:31-42.
    [10]Schereer B,Isidore E,Klein P,et al.Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome[J].Plant Cell,2005,17:361-374.
    [11]Grelet J,Benamar A,Teyssier E,et al.Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying[J].Plant Physiology,2005,137:157-167.
    [12]Michaels S D,Himelblau E,Kim S Y,et al.Integration of Flowering signals in winter-annual Arabidopsis[J].Plant Physiology,2005,137:149-156.
    [13]Gong Z Z,Dong C H,Lee H J,et al.A dead box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis[J].Plant Cell,2005,17:256-267.
    [I4]Rengasamy P,Chittleborough D,Helyar K.Root-zone constraints and plant-based solutions for dryland salinity[J].Plant and Soil,2003,257:249-260.
    [15]Tsukamoto S,Morita S,Hirano E,et al.A novel eis-element that is responsive to oxidative stress regulates three antioxidant defense genes in dee[J].Plant Physiology,2005,137:317-327.
    [16]Cohen I,Knopf J A,Irihimovitch V,et al.A proposed mechanism for the inhibitory effects of oxidative stress on rubisco assembly and its subunit expression[J].Plant Physiology,2005,137:376-387.
    [17]张正斌,山仑,徐旗.小麦族控制旗叶水分利用效率染色体背景分析[J].遗传学报,2000,27(3):240-246.
    [18]Kanwischer M,Porfirova S,Bergmuller E,et al.Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content,tocopherol composition,and oxidative stress[J].Plant Physiology,2005,137:567-578.
    [19]Aroca R,Amodeo G,Femandez-Illescas S,et al.The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots[J].Plant Physiology,2005,137:341-353.
    [20]Mochizuki S,Harada A,Inada S,et al.The Arabidopsis wavy growth protein modulates root bending in response to environmental stimuli[J].Plant Cell,2005,17:537-547.
    [21]Pospisilova J,Synkova H,Rulcova J.Cytokinins and water stress[J].Biologia Plantarum,2000,43(3):321-328.
    [22]Riecardi F,Gazeau P,Jacquemot M P,et al.Deciphering genetic variations of proteome responses to water deficit in maize leaves[J].Plant Physiology and Biochemistry,2004,65:254-266.
    [23]Martinez J P,Lutts S,Schanck A,et al.Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus[J].Journal of Plant Physiology,2004,161:1041-1051.
    [24]Schonfeld M A.Water relations in winter wheat as drought resistance indicators[J].Crop Science,1988,28(3):526-531.
    [25]紫守玺.与小麦抗早性有关的几个水分指标[J].甘肃农业科技,1990,(6):12-13.
    [26]张荣芝,卢建翔.早地冬小麦抗早性形态特征及生理特性的初步研究[J].河北农业大学学报,1991,14(2):10-14.
    [27]五金玲,张宪政,苏正淑.小麦对干旱的生理反应及抗性机理[Jr].国外农学—麦类作物,1994,(5):44-46.
    [28]Clark J M,Mecaig T N.Evaluation of techniques for screening for drought resistance in wheat[J].Crop Science,1982,22:503-506.
    [29]Winter S R.Evaluation of screening techniques for breeding Drought-resistance winter wheat[J].Crop Science,1988,28(3):512-516.
    [30]Bais H P,Vepachedu R,Gilroy S,et al.All elopathy and etotic plant invasion:From molecules and genes to species interaction[J].Science,2003,301:1377-1380.
    [31]余华顺,张林生.小麦种子萌发过程中类PvLEA-18的表达[J].西北植物学报, 2002,22(1):63-68.
    [32]吕丽华,胡玉昂,李雁鸣.水分胁迫下不同抗旱性冬小麦脯氨酸积累动态[J].华北农学报,2006,21(2):75-78.
    [33]Bray E A.Drought and ABA-induced change in polypeptide and mRNA accumulation in tomato leaves[J].Plant Physiology,1988,88:1210-1214.
    [34]Voloudakis A E,Kosmas S A,Tsakas S,et al.Expression of selected drought related genes and physiological responses of greek cotton varieties[J].Functional Plant Biology,2002,29:1237-1245.
    [35]Jiang Y W,Huang B R.Protein alteration in tall fescue in response to drought stress and abscisic acid[J].Crop Science,2002,42(1):207-217.
    [36]Rollfinke I K,Silber M V,Pfitzner U M.Characterization and expression of heptaubisuitin gene from tomato[J].Gene,1998,211:267-276.
    [37]Liu D J.Genome analysis in wheat breeding for disease resistance[J].Acta Botanica Sinica,2002,44(9):7096-7104.
    [38]Tanaka K,Igarashi T,Aono M,et al.Photooxidative stress sensitivity oftransgenic plants containing altered levels of active oxygen scavenging enzymes[A].In:Satoh K,Murata N.Stress Responses of Photosynthetic Organisms[M].New York-Tokyo-Singapore:Elsevier Science Publishing,1998,69-79.
    [39]Zhang H,Shen W B,Xu L L.Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J].Acta BotanicaSinica,2003,45(8):901-905.
    [40]Sun S B,Shen Q R,Wan J M,et al.Induced expression of the gene for NADP-malic enzyme in leaves of Aloe veda L.under salt stress[J].Acta Biochimica et Biophysica Sinica,2003,35(5):423-429.
    [41]Tranbarger T J,Alghazi Y,Muller B,et al.Transcription factor genes with expression correlated to nitrate-related root plasticity of Arabidopsis thaliana[J].Plant Cell &Environment,2003,26(3):459-469.
    [42]Chen K M,Gong H J,Chert G C,et al.ACC and MACC biosynthesis and ethylene production in water-stressed spring wheat[J].Acta Botanica Sinica,2002,44(7):775-781.
    [43]Janakiraman V,Steineu M,Me Coy S B,et al.Recent advances in wheat transformation[J].In Vitro Cell Developmental Biology-Plant,2002,38:404-414.
    [44]Vasil I K.The wanderings of a botanist[J].In Vitro Cell Developmental Biology-Plant,2002,38:383-395.
    [45]Boyer J S.Plant productivity and environment potential for increasing crop plant productivity,genotypic selection[J].Science,1982,218:443-448.
    [46]Chaves M M,Maroco J P,Pereira J S.Understanding plant responses to drought-from genes to the whole plant[J].Functional Plant Biology,2003,30:239- 264.
    [47]Wisniewski K,Zagdanska B.Genotype-dependent proteolytic response of spring wheat to water deficiency[J].Journal of Experimental Botany,2001,52:1455-1463.
    [48]Jones J T,Mullet J E.A salt-and dehydration-inducible pea gene,Cyp15a,encodes a cell-wall protein with sequence similarity to cysteine protease[J].Plant Molecular Biology,1995,28:1055-1065.
    [49]Ozarme C M,Anhuf D,Boulter S L,et al.Biodiversity meets the atmosphere:A global view of forest canopies[J].Science,2003,301:183-186.
    [50]Editoral.Plant systems biology[J].Plant Physiology,2003,132(2):403-404.
    [51]山仑.旱地农业技术发展趋向[J].中国农业科学,2002,35(7):848-855.
    [52]Soeda Y,Konings M C J M,Vorst O,et al.Gene Expression programs during Brassica oleracea seed maturation,osmorpriming,and germination are indicators of progression of the germination process and the stress tolerance level[J].Plant Physiology,2005,137:354-368.
    [53]邹琦.植物对水分胁迫的响应及其在旱作农业和抗旱育种中的应用[A].见:吴平,陈昆松.植物分子生理学进展[M].杭州:浙江大学出版社,2000,207-215.
    [54]郭卫东,饶景萍,李嘉瑞,等.二棱大麦LEA cDNA的克隆与测序[J].西北农业大学学报,2000,28(21):8-13.
    [55]Sivamani E,Bahicldin A,Wraith J M,et al.Improved biomass producitivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVAY1 gene[J].Plant Science,2000,156:227-233.
    [56]Bais H P,Vepachedu R,Gilroy S,et al.Allelopathy and etotic plant invasion:From molecules and genes to species interaction[J].Science,2003,301:1377-1380.
    [57]廖祥濡,告俊凤.渭北地区干早条件下不同品种小麦生长情况分析[J].干早地区农业研究,1994,12(4):87-95.
    [58]洪法水,李燮和.自然干旱胁迫下小麦品种游离脯氨酸累积与抗旱性的关系[J].安徽农业科学,1991,(4):311-314.
    [59]王月福,于振文,潘庆民.不同水分处理对耐旱性不同小麦品种旗叶衰老的影响[J].西北植物学报,2002,22(2):303-308.
    [60]Zhang S Q,Shah L,Deng X P.Change of water use efficiency and its relation with root system growth in wheat evolution[J].Chinese Science Bulletin,2002,47(22):1879-1883.
    [61]高永生,王锁民,张承烈.植物盐适应性调节机制的研究进展[J].草业学报,2003,12(2):1-6.
    [62]Kim K Y,Huh G H,Lee S Y,e t al.Molecular characterization of cDNAs from two anionic peroxidases from suspension cultures of sweet potato[J].Mol Gen Genet,1999,261:941-947.
    [63]邵宏波,梁宗锁,邵明安,等.21世纪土壤科学的主要任务及挑战-生物学方面[J]. 草业学报,2004,13(2):28-34.
    [64]韩斌.植物功能基因组研究[J].中国科学院院刊,2003,(4):250-254.
    [65]Shao H B,Liang Z S,Shao M G.New considerations for improving eco-environment:Take advantage of the information of molecular biology and biotechnology in time[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2004,16(2):1-4.
    [66]Premachandra G S.The measurement of cell membrane stability using polyethylene glycol as a drought tolerance test in wheat[J].Japan.J,Crop Science,1987,56(1):92-98.
    [67]周桂莲,杨慧霞.小麦抗旱性鉴定的生理生化指标及其分析评价[J].干旱地区农业研究,1996,14(2):65-71.
    [68]Blum A,Ebercon A.Cell membrane stability as a measure of drought and heat tolerance in wheat[J].Crop Sci,1981,21:43-47.
    [69]谷俊涛,刘桂茹,栗雨勤,等.不同抗旱类型小麦品种开花期光合速率与抗旱性的比较研究[J].河北农业大学学报,2001,24(3):1-4.
    [70]上官周平,陈培元.不同抗旱性小麦品种渗透调节的研究[J].干旱地区农业研究,1991,9(4):60-63.
    [71]高爱丽,赵秀梅,秦鑫.水分胁迫下小麦叶片渗透调节与抗旱性的关系[J].西北植物学报,1991,11(1):58-64.
    [72]Tanaka K,Igarashi T,Aono M,et al.Photooxidative stress sensitivity of transgenic plants containing altered levels of active oxygen scavenging enzymes[A].In:Satoh K,Murata N.Stress Responses of Photosynthetic Organisms[M].New York-Tokyo-Singapore:Elsevier Science Publishing,1998,69-79.
    [73]史吉平,董永华.水分胁迫对小麦光合作用的影响[J].国外农学一麦类作物,1995(5):49-51.
    [74]Veeranjaneyulu K,Ranjita K B D.Proline metabolism during water stress in mulberry[J].Journal of Experimental Botany,1989,214:581-583.
    [75]陈竺.生命科学的发展趋势及我院的战略思考[J].中国科学院院刊,2003,(3):170-175.
    [76]Chandler V L,Brendel V.The maize genome sequencing project[J].Plant Physiology,2002,130:1594-1597.
    [77]Huang J K,Rozelle S,Pray C,et al.Plant biotechnology in China[J].Science,2002,295:674-677.
    [78]Shao H B,Liang Z S,Shao M G,et al.Impacts of PEG-6000 pretreatment for barley(Hordeum vulgate L.) seeds on the effect of their mature embryo in vitro culture and primary investigation on its physiological mechanism[J].Colloids and Surfaces B:Biointerfaces,2005,41(2-3):73-77.
    [79]Pirtheiro C,Passarinho J A,Ricardo C P.Effect of drought and rewatering on the matablism of Lupinus albus organs[J].Journal of Plant Physiology,2004,161(2):1203-1210.
    [80]Bhargava S,Paranipe S.Genotypic variation in the photosynthetic competence of Sorghum bicolor seedlings subjected to polyethylene glycol-mediated drought stress[J].Journal of Plant Physiology,2004,161:125-129.
    [81]Kocsy G,Szalai G,Galiba G.Effect of osmotic stress on glutathione and hydroxymethyl glutathione accumulation in wheat[J].Journal of Plant Physiology,2004,161:785-794.
    [82]李树真.稀土对根系白然超弱发光和撇芝性白勺影响及其评价[J].干早地区农业研究,1991,增刊:66-72.
    [83]罗淑平,郭述贤,林和平,等.冬小麦抗旱性与超弱发光关系的初步研究[J].干旱地区农业研究,1991,增刊:34-37.
    [84]Lu D B.Increasing resistance by in vitro selection for abacisic acid insensitivity in wheat[J].Crop Science,1989,29(4):939-943.
    [85]徐恒平,江沛洪.土壤干旱对小麦根系蛋白组分变化的影响[J].华北农学报,1992,1(1):33-36..
    [86]李霞,李云荫,曹敏.水分胁迫对抗早性不同的冬小麦品种叶片蛋白质影响的比较[J].华北农学报,1993,2(4):20-25.
    [87]陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系[J].植物生理学报,1999,25(1):49-56.
    [88]李妮亚,高俊风,汪沛洪.小麦幼苗水分胁迫诱导蛋白的特征[J].植物生理学报,1998,24(1):67-71.
    [89]Riccardi F,Gazeau P,Vienne D,et al.Protein changes in response to progressive water deficit in maize[J].Plant Physiology,1998,117:1253-1263.
    [90]Riccardi F,Gazeau P,Jacquemot M P,et al.Deciphering genetic variations of proteome responses to water deficit in maize leaves[J].Plant Physiology and Biochemistry,2004,65:254-266.
    [91]张立军.小麦幼苗干旱逆境蛋白与抗旱关系的研究[J].沈阳农业大学学报,1998,29(2):106-109.
    [92]杨凯,昌小平,胡荣海,等.干旱胁迫下小麦Pro积累相关基因的染色体定位[J].作物学报,2001,27(3):363-366.
    [93]任红旭,陈雄,王亚馥.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化[J].植物生态学报,2001,25(6):709-715.
    [94]Han B,Xue Y B.Genome-wide in traspecifie DNA-sequence variations in rice[J].Current Opinion in Plant Biology,2003,6(2):134-138.
    [95]Wang B S,Luttge U,Ratajezak R.Specific regulation of SOD is formed by NaCl and osmotic stress in leaves of C_3 halophyte Suaeda salsa L[J].Journal of Plant Physiology,2004,161:285-293.
    [96]Munns R.Comparative physiology of salt and water stress[J].Plant Cell &Environment,2002,25(2):239-248.
    [97]张喜英,裴东,曲懋正.几种作物的生理指标对土壤水分变动的阈值反应[J].植物生态学报,2000,24(3):280-283.
    [98]Zhu J K.Salt and drought stress signal transduction in plants[J].Annual Review of Plant Biology,2002,53:247-273.
    [99]李品芳,杨志成.NaCl胁迫下高羊茅生长及K~+、Na~+吸收与运输的动态变化[J].草业学报,2005,14(4):58-64.
    [100]姜义宝,崔国文,李红.干旱胁迫下外源钙对苜蓿抗旱相关生理指标的影响[J].草业学报,2005,14(5):32-36.
    [101]Shao H B,Liang Z S,Shao M A.Molecular mechanisms of higher plant adaptation to stress environment[J].Acta Ecologia Sinica,2005,25(7):1772-1781.
    [102]Shao H B,Liang Z S,Shao M A.LEA proteins:Structure and functions and gene expression[J].Biointerfaces,2005,45(3-4):131-135.
    [103]Shao H B,Liang Z S,Shao M A.Dynamic change of anti-oxidative enzymes for 10 wheat genotypes at soil water deficits through their life circle[J].Biointerfaces,2005,42(3-4):187-195.
    [104]Shao H B,Shao M A,Liang Z S.Osmotic adjustment comparison of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits[J].Biointerfaces,2005,47(2):132-139.
    [105]Shao H B,Liang Z S,Shao M A,et al.Investigation on dynamic changes of photosynthetic characteristics of 10 wheat(Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits[J].Biointerfaces,2005,43(3-4):221-227.
    [106]俞嘉宁.小麦耐旱、耐盐相关基因的克隆,分析与功能研究[D].西北农林科技大学博士学位论文,2003,1-57.
    [107]Yin Z M,Hennig J,Szwacka M,et al.Tobacco PR-2D promoter is induced in transgenic cucumber in response to biotic and abiotic stimuli[J].Journal of Plant Physiology,2004,161:621-629.
    [108]Hieng B,Ugrinovic K,Sustar-Vozlic J,et al.Different classes of proteases are involved in the response to Drought of Phaseolus vulgafis L.cultivars differing in sensitivity[J].Journal of Plant Physiology,2004,161:519-930.
    [109]De Ronde J A,Cress W A,Kruger G H J,et al.Photosynthetic response of transgenic soybean plants,containing an Arabidopsis P5CR gene,during heat and drought stress[J].Journal of Plant Physiology,2004,161:1211-1224.
    [110]Larkindale J,Huang B R.Thermotolerance and antioxidant systems in Agrostis stolonifera:Involvement of salicylic acid,abscisie acid,calcium,hydrogen peroxide,and ethylene[J].Journal of Plant Physiology,2004,161:405-413.
    [111]Wu G H,Robertson A,Liu X J,et al.A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress,ABA,anisomycin,and sphingosine in bromegrass(Bromus inermis)[J].Journal of Plant Physiology,2004,161:449-458.
    [112]Akinci I E,Akinci S.Response of eggplant varieties(Solanum melongena) to salinity in germination and seedling stage[J].New Zealand Journal of Crop and Horticultural Science,2004,32:193-200.
    [113]Serna L.A network of interacting factors triggering different cell fates[J].Plant Cell,2005,16:2258-2263.
    [114]何军贤,韦振泉,林宏辉,等.水分胁迫对小麦幼苗抗氧呼吸和交替氧化酶基因表达的影响[J].植物学报,1999,41(3):340-342.
    [115]沈允钢.植物生理学与21世纪的农业[A].见:吴丁,卢翠桥.植物生理学与跨世纪农业研究[M].北京:科学出版社,1999,1-3.
    [116]Klaper R,Thomas M A.At the crossroads of genomics and ecology:The promise of a canary on a chip[J].Bio Science,2004,54(5):403-412.
    [117]Wang W X,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:Toward genetic engineering for stress tolerance[J].Planta,2003,218:1-14.
    [118]Sun G R,Peng Y Z,Shao H B,et al.Does Puccinelia tenuiflora have the ability of salt exudation[J].Biointerfaces,2005,45(5):56-64.
    [119]Shao H B,Liang Z S,Shao M A.Roles of ABA during the germination and maturation of higher plant seeds[J].Forestry Studies in China,2003,5(4):26-34.
    [120]Zhang J X,Kirham M B.Drought stress-induced changes in activities of superoxide dismutase,catalase,and perexidase in wheat species[J].Plant Cell Physiology,1994,35(5):785-791.
    [121]蒋明义,杨文英,徐江,等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报,1994,36(4):289-295.
    [122]何军贤,傅家瑞.种子Lea蛋白的研究进展[J].植物生理学通讯,1996,32(4):241-246.
    [123]赵会贤,汪沛洪,郭蔼光.水分胁迫对小麦幼苗抗氧化物质含量的影响及其与抗旱性关系[J].西北农业学报,1992,1(3):37-40.
    [124]Neeru Munjal,Sawhney S K,Veena Sawhney.Ferricyanide restores nitrate reductase activity in leaf extracts of water stressed wheat seedling[J].Journal of Plant Physiology,1998,52(4):577-579.
    [125]Srivalli B,Renu Khanna-Chopra.Drought-induced enhancement of protease activity during monocarpie senescence in wheat[J].Current Science,1998,75(11):1174-1176.
    [126]Wittenbach V A.Ribulose bisphosphate earboxylase and protelytic activity in wheat leaves from anthesis through senescence[J].Plant Physiology,1979,64:604-608.
    [127]Chemyad'evI I,Monakhova O F.The activity and content of ribulose-1,5-bisphosphate carboxylase oxygen asein wheat plants as affected by water stress and kartolonn-4[J].Photosynthetiea,1998,35(4):603-610.
    [128]邱全胜,李林,梁厚果,等.水分胁迫对小麦根细胞质膜氧化还原系统的影响[J].植物生理学报,1994,20:145-151.
    [129]Dhindsa R S,Dhindsa P P,ThorpeT A.Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase[J].Journal of Experiment Botany,1981,32:93-101.
    [130]Vasil V,Castillo A M,Fromm M E,et al.Herbicide resistance fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic calli[J].Biology Technology,1992,10:667-674.
    [131]邵宏波,梁宗锁,邵明安.小麦抗旱生理生化和分子生物学研究进展与趋势[J].草业学报,2006,15(3):5-17.
    [132]Huang J K,Rozelle S,Pray C,et al.Plant biotechnology in China[J].Science,2002,295:674-677.
    [133]刘秉华.小麦染色体代换的研究与利用[J].生物学通报,1998,33(4):26-27.
    [134]刘登才,郑有良,兰秀锦.小麦中国春遗传背景的育种改良[J].中国农业科学,2003,36(11):1383-1389.
    [135]C.N.Law等著,王君译.小麦品种间染色体代换系的研究[J].麦类作物,1997,17(2):20-24.
    [136]贾继增,张正斌K.Devos M.D.Gale.小麦21条染色体RFLP作图位点遗传多样性分析[J].中国科学,2001,31(3):13-21.
    [137]Galiba G,Simon-Sarkadi L,Kocsy G,et al.Possible chromosomal location of genes determining the osmoregulation of wheat[J].Theor Appl Genet,1992,85:415-418.
    [138]Galiba G,Gabor K,Ravindar K S.et al.Chromosomal localization of osmotic and salt stress-induced differential alterations in polyamine content in wheat[J].Plant Science,1993,92:203-211.
    [139]Ashton J Delauney,Desh Pal S Verma.A soybean gene encoding Al-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated[J].Mol Gen Genet,1990,221:299-305.
    [140]Ashton J Delauney,Desh Pal S Verma.Proline biosynthesis and osmoregulation in plants[J].Plant J,1993,4(2):215-223.
    [141]Gabor K,Gabriella S,Jozsef S,et al.Heat tolerance together with heat stress-induced changes in glutathione and hydroxymethlglutathione levels is affected by chromosome 5A of wheat[J].Plant science,2004,(166):451-458.
    [142]张娟,张正斌,谢惠民,等.小麦叶片水分利用效率及相关生理性状基因的染色体定位[J].西北植物学报,2005,25(8):1521-1527.
    [143]Morgan J M.A gene Controlling differences in osmorcgnlation in wheat[J].Aust.J.Plant Physiol,1992,18:249-257.
    [144]Farshadfar E,Koszegi B,Tischner T,et al.Substitution analysis of drought tolerance in wheat(Triticum aestivum L.)[J].Plant Breeding,1995,114(6):542-544.
    [145]徐如强,孙其信,张树棒.普通小麦品种Hope细胞膜热稳定性基因的染色体定位[J].遗传,1996,18(4):1-3.
    [146]彭远英,朋郑松,宋会兴.小麦中国春背景下长穗偃麦草光合作用相关基因的染色体定位[J].中国农业科学,2005,38(11):2182-2188.
    [147]Toth B,Galiba G,Feher E,et al.Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat[J].Theor Appl Genet,2003,(107):509-514.
    [148]Ainsworth C C,Johnson H M,Jackson E A,eta.The chromosomal locations of leaf peroxidase genes in hexaploid wheat,rye and barley[J].Theoretical and Applied Genetics,1984,69:205-210.
    [149]Bosch A,Vega C,Benito C.The peroxidase isozymes of the wheat kernel:tissue and substrate specificity and their chromosomal location[J].Theoretical and Applied Genetics,1987,73:701-706.
    [150]Wehling P,Schmidt-Stohn G.,Wricke G..Chromosomal location of esterase,peroxidase and phosphoglucomutase isozyme structural genes in cultivated rye (Secale cereale L.)[J].Theoretical and Applied Genetics,1985,70:377-382.
    [151]Paula R.Neumanl and Gary E.Hart1.Genetic Control of the mitoehondrial form of superoxide dismutase in hexaploid wheat[J].Biochemical Genetics,1986,24:435-446.
    [152]Wu G,Wilen R W,Robertson A J,etal.Isolation,chromosomal location and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic Copper/Znc superoxide dismutase genes in wheat[J].Plant Physiology,1999,120:513-520.
    [153]Craig F,Victor L,Macon D.Wheat grain hardness among chromosome 5D homozygous recombinant substitution lines using different methods of measurement[J].Cereal Chem.1999,76(2):249-254.
    [154]Goud J.V.,Sridevi O.Cytogenetic inevestigations of some quantitative characters in hexaploid wheat Triticum aestivums in gF2 monosomican alysis[A].in:Proc 7th Inter Wheat Symp.Cambridge,England,1988.521-525.
    [155]Millet E.Genetic Control of heading date and spikelet number in common wheat(T.aestivum L.) Line 'Noa'[J].Theor Appl genet,1986,72:105-107.
    [156]Peng Z S,Liu D C,Yen C,et al.The genetic basis of multispikelets per spike for high yield breeding in wheat[A].In:Proc 9th intern Wheat Genet Symp.Canada,1998.2:306-309.
    [157]Yen C,Zheng Y L,Yang J L.An ideotype for high yield breeding,in theory and practice[A].In:Ptoc 9th intern Wheat Genet Symp.China,1993,113-1117.
    [158]刘登才,郑有良,兰秀锦,等.Lophopyrume longatum(Host)A.Lve染色体对小麦小穗数的影响[J].四川农业大学学报,2001,19(2):115-121.
    [159]谢晓玲,邓自发,解俊锋.巨穗小麦种质小穗数的染色体定位研究[J].湖北农业科学,2003,5:19-22.
    [160]吉前华,任正隆,等.小麦幼穗组织培养特性基因的染色体定位[J].麦类作物学报,2004,24(3):1-4.
    [161]Nicholson P,Rezanoor H N,Worland A J.Chromosomal location of resistance to Septoria nodorum in a synthetic hexaploid wheat determined by the study of chromosomal substitution lines in Chinese Spring wheat[J].Plant breeding,1993,110(3):177-184.
    [162]王月福,于振文,潘庆民,等.水分胁迫对耐旱性不同小麦小花分化发育和氮磷及激素含量的影响[J].西北植物学报,2000,20(1):38-43.
    [163]赵春江,郭晓维,李鸿祥,等.不同水分条件下小麦各类茎蘖小花发育进程[J].华北农学报,1998,13(2):1-5.
    [164]李维明,吴为人,卢浩然.检测作物数量性状基因与遗传标记连锁关系的方差分析及其应用[J].作物学报,1993,19(2):97-102.
    [165]李维明,吴为人,卢浩然,等.小麦7D染色体数量性状基因定位和效应估计的研究[J].作物学报,1996,22(6):641-645.
    [166]周淼平,任丽娟,张旭,等.小麦产量性状的QTL分析[J].麦类作物学报,2006,26(4):35-40.
    [167]梁铁兵,雍伟东,谭克辉,等.春化处理控制冬小麦的小穗发育[J].植物学报,2001,43(8):788-794.
    [168]马翎健,何蓓如.小麦幼穗分化研究进展[J].湖北农学院学报,1999,19(3):272-275.
    [169]柳芳,王传海,申双和,等.土壤水分对小麦开花及结实的影响[J].南京气象学院学报,2002,25(5):671-676.
    [170]李存东,曹卫星,张月晨,等.不同播期和品种小麦小花结实的粒位差异[J].华北农学报,2001,16(2):1-7.
    [171]郭天财,朱云集编.小麦栽培关键技术问答[M].北京:中国农业出版社,1998.
    [172]潘璟丽,郝学廉,曹淑琴.在不同土壤水分条件下春小麦茎生长锥的分化及其与营养器官发育的相关性[J].植物学报,1965,(3):24-38.
    [173]王俊英,赵春江,杨宝祝.小麦小花发育与退化的研究[J].华北农学报,1996,11(2):9-13.
    [174]Millter E.Monosomic analysis of heading data and spikelet number in common wheat(T.aestivum L.) multi spikelet line'Noa'[J].Theor.Appl Genet,1986,74:489-492.
    [175]倪郁,李唯.作物抗旱机制及其指标的研究进展与现状[J].甘肃农业大学学报,2001,36(1):14-22.
    [176]Blum A.Chemical desiccation of wheat plants as simulator of post-anthesis stree Ⅱrelation to drought stress[J].Field Crop Res,1983,6(2):149-155.
    [177]杨鹏辉,李贵全,郭丽,等.干旱胁迫对不同抗旱大豆品种质膜透性的影响[J].山西农业科学,2003,31(3):23-26.
    [178]贾银锁,崔四平,李玉英,等.小麦苗期细胞原生质特性与水分胁迫的关系[J].华北农学报,1989,(增):92-96.
    [179]刘海龙,郑桂珍,关军锋,等.干旱胁迫下玉米根系活力和膜透性的变化[J].华北农学报,2002,17(2):20-22.
    [180]王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992,7(4):1-8.
    [181]张娟,谢惠民,张正斌,等.小麦抗旱节水生理遗传育种研究进展[J].干旱地区农业研究进展,2005,23(3):231-238.
    [182]王书子,吴少辉,高海涛,等.旱地小麦品种筛选鉴定及其形态特征探讨[J].干旱地区农业研究,2001,19(2):76-80.
    [183]孙存华,白嵩,白宝璋,等.水分胁迫对小麦幼苗根系生长和生理状态的影响[J].吉林农业大学学报,2003,25(5):485-489.
    [184]吴海卿,段爱旺,杨传福,等.冬小麦对不同土壤水分的生理和形态响应[J].华北农学报,2000,15(1):92-96.
    [185]邓令毅,王洪春.葡萄的抗寒性与质膜透性[J].植物生理学通讯,1984,(2):12-15.
    [186]Sun Q X,Quick J S.Chromosomal locations of genes for heat tolerance in tetraploid wheat[J].Cereal Research Communications,1991,19(4):431-437.
    [187]Porter D R,Nquyen H T,Burke J J.Chromosomal location,of genes Controlling heat-shock proteins in hexaploid wheat[J].Theor Appl Genet,1989,78:873-878..
    [188]缴丽莉,路丙社,白志英.四种园林树木抗寒性的比较分析[J].园艺学报,2006,33(3):667-670.
    [189]陈希勇,李亚军,高赠玉,等.小麦耐热性获得和耐热性表现关系的研究[J].华北农学报,2003,18(9):52-55.
    [190]李广敏,关军锋.作物抗旱生理与节水技术研究[M].北京:气象出版社,2001.
    [191]陈龙,罗志良,谭光轩,等.小麦灌浆期叶片游离脯氨酸和可溶性蛋白质含量与抗旱性的关系[J].周口师范高等专科学校学报,2000,17(2):1-3.
    [192]张玉梅,林琪,刘义国,等.不同抗旱性小麦品种花后旗叶生化特性的研究[J].华北农学报,2006,21(4):43-47.
    [193]吴海卿,段爱旺,杨传福,等.冬小麦对不同土壤水分的生理和形态响应[J].华北农学报,2000,15(1):92-96.
    [194]吕淑霞主编.基础生物化学实验指导[M].北京:中国农业出版社 2003.7
    [195]邹琦主编.植物生理学实验指导[M].北京:中国农业出版社 2000.
    [196]白志英,李存东,冯丽肖,等.干旱胁迫对小麦叶片细胞膜透性效应的染色体定位研究[J]..华北农学报,2007,22(1):1-4.
    [197]张慧,汪沛洪.渗透胁迫下小麦叶片蛋白质合成与降解的示踪研究[J].植物生理学报,1991,17(3):259-266.
    [198]Clua A.A,Castro A M,Gimenez D O,et al.Chromosomal effects in the endogenous contents of non-structural carbohydrates and proteins measured in wheat substitution lines[J].Plant breeding,2002,121(2):141-145.
    [199]刘丹,陈祥伟,于成龙.Vc对水分胁迫下紫丁香和小叶锦鸡儿生理活动的影响[J].东北林业大学学报,2004,32(3):16-18.
    [200]李云荫,王蕴清,曹敏,等.综合评价冬小麦的抗早性[J].植物生理学报,1990,2:17-20.
    [201]王宪泽.作物抗早育种生理生化指标的研究[J].中国农学通报,1994,10(5):5-8
    [202]周桂莲.小麦抗早性鉴定的形态指标及其分析评价[J].陕西农业科学,1996,(4):33-34.
    [203]Narayan D,Misra D.Free proline accumulation and water-stress resistance in breed wheat(Triticum aestivum)[J].Indian Journal of Agricultural Science,1989,59(3):176-178.
    [204]Yang R C,Jana S,Clarke J M..Phenotypic diversity and associations of some potentially drought-responsive characters in durum wheat[J].Crop Sci,1991(31):1484-1491.
    [205]马瑞昆,贾秀领,张全国.冬小麦离体旗叶失水速率和农艺性状的同步选育效应[J].河北农业大学学报,2002,25(2):4-9.
    [206]马瑞昆,刘淑贞,贾秀领.冬小麦幼苗生理特性做为抗旱性鉴定指标的初探[J].华北农学报,1990,增刊,24-29.
    [207]陈荣敏,卢少源,张荣芝.冬小麦抗旱性鉴定指标随生育期的变化规律及用于鉴定的最佳时期[J].华北农学报,1999,14(增刊):45-49.
    [208]Sutka J,Farshadfar E,Koszegi B,etal.Drought tolerance of disomic chromosome additions of Agropyron elongatum to tritieum aestivum[J].Cered Research Communications,1995,23(4):351-357.
    [209]Clarke J M,Romagosa I,Jana S,etal.Relationship of excised leaf water loss rate and yield of durum in diverse environments[J].Canadian Journal of Plant Science,1989,69:1075-1081.
    [210]Clarke J M,Richards R A,Condon A G.Effect of drought stress on residual transpiration and its relationship with water use of wheat[J].Canadian Journal of Plant Science,1991,71:695-702.
    [211]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.
    [212]Elster E F.Oxygen activation and oxygen toxicity[J].Ann Plant Ph ysiol,1982,33:73-96.
    [213]李柏林,梅慧生.燕麦叶片衰老与活性氧代谢的关系[J].植物生理学报,1989,15(1):6-12.
    [214]王瑾,刘桂茹,杨学举.PEG胁迫下不同抗旱性小麦品种幼苗形态及主要理化特性的比较[J].河北农业大学学报,2005,28(5):6-10.
    [215]张宪政.作物生理研究法[M].北京:农业出版社.1992.
    [216]赵世杰,许长城,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.
    [217]单长卷,任永信,戚建华.土壤干旱对冬小麦幼苗生长和叶片生理特性的影响[J].干旱地区农业研究,2006,24(5):105-108.
    [218]单长卷,汤菊香,郝文芳.水分胁迫对洛麦9133幼苗叶片生理特性的影响[J].江苏农业学报,2006,22(3):229-232.
    [219]胡恒觉,黄高宝.新型多熟种植研究[M].兰州:甘肃科学技术出版社,1999,49-21.
    [220]由继红,陆静梅.钙对低温胁迫下小麦幼苗光合作用及相关生理指标的影响[J].作物学报,2002,28(5):693-696.
    [221]姚雅琴,汪沛洪,胡东维,等.水分胁迫下小麦叶肉细胞超微结构变化与抗旱性的关系[J].西北植物学报,1993,13(1):16-20.
    [222]徐振柱,于振文,董庆裕,等.水分胁迫对冬小麦旗叶细胞质膜及叶肉细胞超微结构的影响[J].作物学报,1997,23(3):370-375.
    [223]梁新华,许兴,徐兆桢,等.干旱对春小麦旗叶叶绿素a荧光动力学特征及产量间关系的影响[J].干旱地区农业研究,2001,19(3):72-77.
    [224]赵世杰.叶绿素的定量测定[A].见:邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000,72-75.
    [225]裴雪霞,张定一,王娇爱,等.钾锌锰配施对冬小麦旗叶叶绿素含量的影响[J].小麦研究,2002,23(3):33-35.
    [226]孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999,48-50.
    [227]曹仪植,宋占午.植物生理学[M].兰州:兰州大学出版社,1998,101-154.
    [228]武玉叶,李德全.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响[J].华北农学报,2001,16(2):87-93.
    [229]薛崧,汪沛洪,许大全,等.水分胁迫对冬小麦CO_2同化作用的影响[J].植物生理学报,1992,18(1):1-7.
    [230]井春喜,张怀刚,师生波,等,土壤水分胁迫对不同耐旱性春小麦品种叶片色 素含量的影响[J].西北植物学报,2003,23(5):811-814.
    [231]许长成,李德全,邹琦,等.干旱条件下冬小麦不同叶龄叶绿素荧光及叶黄素循环组分的变化(英文)[J].植物生理学报,1999,25(1):29-37.
    [232]Yang D L,Jing R L,Chang X P,et al.Identification of quantitative trait loci for chlorophyll content and chlorophyll fluorescence in wheat(Triticum aestivum L.)under two water regimes,2006,第七届全国植物基因组学大会会议摘要
    [233]Alvarez J B,Martin L M,Martin A.Chromosomal localization of genes for carotenoid pigments using addition lines of Hordeum chilense in wheat[J].Plant breeding,1998,117(3):287-289.
    [234]Atienza S G,Ramirez C M,Hernandez P,et al.Chromosomal location of genes for arotenoid pigments in Hordeum chilense[J].Plant Breeding,2004,123(3):303-304.
    [235]庄巧生.中国粮食发展战略[M].北京:农业出版社,1990,401-415.
    [236]Zelitch I.The close relationship between net photosynthesis and crop yield[J]Bioscience,1982,32:796-802.
    [237]Khan M N A,Murayama S,Ishimine Y,et al.Physio-mornhotoloiaical studies of F_1 hybrids in rice(Oryza sativa L.)[J].Photosynthetic ability and yield.Plant Production Science,1998,4:233-239.
    [238]马新明,熊淑萍,李琳,等.土壤水分对不同专用小麦后期光合特性及产量的影响[J].应用生态学报,2005,16(1):83-87.
    [239]张秋英,李发东,高克昌,等.水分胁迫对冬小麦光合特性及产量的影响[J],西北植物学报,2005,25(6):1184-1190.
    [240]吕金印,山仑,高俊凤,等.干旱对小麦灌浆期旗叶光合等生理特性的影响[J].干旱地区农业研究,2003,21(2):77-81.
    [241]吕丽华,李雁鸣,胡玉昆.水分胁迫对不同抗旱性小麦品种光合特性及产量性状的影响[J].河北农业大学学报,2005,28(3):1-6.
    [242]张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社,2003,34-43
    [243]Farquhaar G D,Richards R A.Isotopic composition of carbon correlates with water use efficiency of wheat genotypes[J].Aust J Plant Physiol,1984,11:539-552.
    [244]Johnson R C,Kebede H,Mornhmweg D W,et al.Photosynthesis differences among Tritirum accessions at tillering[J].Crop Sci,1987,27:1046-1050.
    [245]Siddiyue K H M,Belford R.K,Tennant D.Shoot ratio of old and modern,tall and semi dwarf wheat m a mediterranean environment[J].Plant Soil,1990,121:89-98.
    [246]张正斌,山仑.小麦旗叶水分利用效率比较研究[J].科学通报,1997,42(17);1876-1883.
    [247]李秧秧,张岁岐,召卜明安.小麦进化材料水分利用效率与氮利用效率间相互关系[J].应用生态学报,2003,14(9):1478-1480.
    [248]Elumala S,Ahmed B,Jon M W,et al.Improved biomass productivity and water use efficiency under water deficit conditions the barley HVA1 in transgenic wheat constituovely expressing gene[J].Plant Sci,2000,155:1-9.
    [249]张正斌,山仑,徐旗.小麦族控制旗叶水分利用效率染色体背景分析[J].遗传学报,2000,27(3):240-246.
    [250]张正斌,徐萍,贾继增.作物抗旱节水分子遗传研究展望[J].中国农业科技导报,2000,2(5):20-22.
    [251]Gorny A G.Effects of D-genome substitutions on the water use efficiency and of Langdon durum wheat to reduced nitrogen nutrition[J].Creal Res Comm,1999,27,83-90.
    [252]张正斌,王德轩.小麦抗旱生态育种[M].陕西人民教育出版社,西安:1992.,3-5.
    [253]魏亦农,孔广超,曹连莆.干旱胁迫对春小麦与黑小麦光合特性影响的比较的应用[J].河南农业大学学报,2000,34(3):2482-2511.
    [254]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农大学报,2000,34(3):248-251.
    [255]冀天会,张灿军,杨子光,等.冬小麦叶绿素荧光参数与品种抗旱性的关系[J].麦类作物学报,2005,25(4):64-66.
    [256]张秋英,李发东,刘孟雨,等.不同水分条件下小麦旗叶叶绿素a荧光参数与籽粒灌浆速率[J].华北农学报,2003,18(1):26-28.
    [257]卢从明,张其德,匡延云.水分胁迫对小麦叶绿素a荧光诱导动力学的影响[J].生物物理学报,1993,9(3):453-457.
    [258]卢从明,张其德,匡廷云,等.水分胁迫对小麦光合系统的影响[J].植物学报,1994,36(2):93-98.
    [259]卢从明,张其德,匡廷云.水分胁迫对小麦叶绿体激发能分配和光系统Ⅱ原初光能转化效率的影响[J].生物物理学报,1995,11(1):82-86.
    [260]许大全,张玉全.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    [261]吴长艾,孟庆,邹琦,等.小麦不同品种叶片对光氧化胁迫响应的比较研究[J].作物学报,2003,29(3):339-344.
    [262]Badburym B.Aquantitative determination of photo chemical and non-photochemical quenching during the slow phase of chlorophyll fluorescence induction curve of bean leaves[J].Biochem.Biophys.Acta.,1984,765:275-281.
    [263]Petersonrb S W.Relationship between steady-state fluorescence yield and photo synthetic efficiency in spinach leaf tissue[J].Plant Physiol,1998,88:158-163.
    [264]Schreiberv B.Ripid assessment of stress on plant leaves by chlorophyll fluorescence measurements[A].In:TENHU-MENJD(ed).Plant response to stress-functional analysis in mediterrane anecosystems[J].Springe-Verlag,Belin,1986,27-53.
    [265]杨晓青,张岁岐,梁宗锁,等.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报,2004,24(5):812-816.
    [266]赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J],应用生态学报,2005,16(7):1261-1264.
    [267]史磊,邓西平,李涛.水分亏缺对不同染色体被性小麦荧光参数的影响[J].西北植物学报,2006,26(2):345-347.
    [268]Yang D L,Jing R L,Chang X P,Li W Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat(Triticum aestivum)[J].J.Integr.Plant Biol,2007,49(5):646-654.
    [269]柴守玺,王宗义.小麦外部性状与抗旱性的关系[J].甘肃农业大学学报,1990,25(2):214-226.
    [270]Donaldson E.Crop traits for water stress tolerance[J].American J,干旱地区农业研究,2003,21(1):134-136.
    [271]柴守玺.小麦抗旱生态分类中的主要农艺性状[J].甘肃农业大学学报,2001,36(1):112-118.
    [272]谢晓玲,邓自发,解俊峰.巨穗小麦种质株高的基因定位[J].种子,2003,5:5-6,11.
    [273]张爱民,郭小丽,曹双河,等.小麦株高性状的QTL分析[J].遗传学报,2002,29(8):706-711.
    [274]Kato K,Sawada S,Sawada S.QTL mapping of genes Controlling ear e mergence time and plant height on chromosome 5A of wheat[J].Theor.Appl.Gene t,1999,98:472-477.
    [275]Shan M M.,Baenziger P S,Yen Y,etal.Genetic analyses of agronomic traits controlled by wheat chromosome 3A[J].Crop science,1999,39(4):1016-1021.
    [276]Cadalen T,Sourdille P,Charmer G,etal.Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population[J].Theor.Appl.Genet.,1998,96:933-940.
    [277]谢晓玲,解俊峰.小麦新种质241主要特异性状的遗传性[J].广西科学院学报,2002,18(2):77-79,83.
    [278]邓小锋,周永红,杨瑞武,等.新疆吐鲁番矮秆波兰小麦穗长基因的染色体定位[J].四川农大学报,2005,23(1):12-14,23.
    [279]郑有良,颜济,杨俊良.小麦粒重基因定位研究[J].作物学报,1993,19(4):304-308.
    [280]谢晓玲,邓自发,解俊峰.小麦新种质241千粒重的基因定位[J].生物学杂志,2001,18(2):4-15.
    [281]李文才,李涛,赵逢涛,等.小麦D基因组产量性状QTL定位[J].华北农学报, 2005,20(4):23-26.
    [282]郑有良,颜济,杨俊良.小麦穗粒数的染色体效应研究[J].四川农业大学学报,1992,10(2):210-214.
    [283]李德全,郭清福.冬小麦抗旱生理特性的研究[J].作物学报,1993,19(2):125-131.
    [284]李方军,郭秀璞,吏国安,等.小麦抗旱鉴定指标的筛选研究[J].沈阳农业大学学报,1999,30(6):586-590.
    [285]冀天会,张灿军,谢惠民,等.小麦品种抗早性鉴定产量指标的比较研究[J].中国农学通报,2006,22(1):103-106.
    [286]Clarkel M,Depauwr M Evaluation of methods for quantification of drought tolerance in wheat[J].Crop Sci,1992,32:723-728.
    [287]陈荣敏,杨学举,梁凤山,等.利用隶属函数法综合评价冬小麦的抗旱性[J].河北农业大学学报,2002,25(2):7-9.
    [288]石书兵,徐文修,张强,等.旱作春小麦品种高产抗旱特性的综合评价[J].干旱地区农业研究,2001,19(2):14-20.
    [289]周广生,梅方竹,周竹青,等.小麦不同品种耐湿性生理指标综合评价及其预测[J].中国农业科学,2003,36(11):1378-1382.
    [290]钮福祥,华希新,郭小丁,等.甘薯品种抗旱性生理指标及其综合评价初探[J].作物学报,1996,22(4):392-398.
    [291]谢志坚.农业科学中的模糊数学方法[M].武汉:华中理工大学出版社,1983,99-193.
    [292]王淑俭,高远志,彭文博,等.小麦不同品种抗热性综合评价[J].河南农业大学学报,1994,28(4):339-343.
    [293]周广生,周竹青,朱旭彤.用隶属函数法评价小麦的耐湿性[J].麦类作物学报,2001,21(4);34-37.
    [294]张明生,张立霞,戚金量,等.甘薯品种抗旱适应性的主成分分析[J].贵州农业科学,2006,34(1):11-14.
    [295]王凤茹,张晓红.干旱逆境下小麦幼苗细胞叶绿体内钙离子浓度变化的电镜细胞化学研究[J].电子显微学报,2002,21(2):106-109.
    [296]Giles,K L,Beardsell M.F,Cohen D.Cellular and ultrastructural changes in mesophyll and bundle sheath cell of maize in response to water stress[J].Plant Physiol,1974,54,208-212.
    [297]韩善华.油菜叶绿体的干旱处理过程中的超微结构变化[J].作物学报,1991,17(4):311-313.
    [298]周国顺,刘自华,李建东,等.水分胁迫对小麦叶绿体膜脂过氧化的影响[J].北京农学院学报,2003,18(2):86-88.
    [299]仵小南,沈曾佑,张志良,等.水分胁迫对植物线粒体结构和脯氨酸氧化酶活性的影响[J].植物生理学报,1986,12(4):388-395.
    [300]陈国菊,杨暹,吴筱颖.干旱胁迫对花椰菜叶片细胞保护酶及超微结构的影响[J].中国蔬菜,2002,(2):8-11.
    [301]白志英,李存东,孙红春.小麦代换系穗花分化与耐旱基因的染色体定位[J].中国农业科学,2007,39(10):2136-2144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700