大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用LA-ICPMS、LA-MC-ICPMS等先进实验测试技术对大兴安岭东北部花岗岩类进行了详细的年代学和地球化学研究,对大兴安岭东北部花岗岩的形成时代、地球化学特征、成因和地壳演化等方面取得了一些新的认识。
     大兴安岭东北部花岗岩主要为早古生代(461~500Ma)和侏罗纪花岗岩(171~190Ma),少量晚古生代(298±2Ma)和三叠纪(236±1Ma)花岗岩。早古生代花岗岩的主要岩石组合为花岗闪长岩-二长花岗岩-碱长花岗岩,具有后造山I型花岗岩的岩石组合和地球化学特征,形成于额尔古纳地块和兴安地块碰撞拼贴结束后的后造山阶段。本区存在高Sr低Yb型和低Sr高Yb型两类侏罗纪花岗岩,在太平洋板块俯冲导致的加厚地壳背景下,类似于“C”型埃达克岩的高Sr低Yb型花岗岩形成于较高压力的下地壳,而低Sr高Yb型花岗岩形成于较低压力的中地壳。Hf同位素和Nd同位素研究表明,花岗岩主要来源于中元古代(1.1~1.5Ga)、新元古代-显生宙(0.4~0.8Ga)从亏损地幔中增生的地壳物质。兴安地块主要是显生宙-新元古代增生的地壳,而额尔古纳地块则以中元古代增生的地壳为主,也有新元古代-显生宙增生的地壳。根据组成物质的属性和增生时代,确定额尔古纳地块和兴安地块的东北部边界在呼玛镇-十四站林场一线。
Granitoids from northeastern Da Hinggan Range are taken as studied object in this thesis. Based on systematic study of field geology, zircon LA-ICPMS U-Pb dating, petrology, geochemistry, Sr-Nd isotope and Hf isotope of these granitoids, their chronology, petrogenesis, tectonic setting and geological implications are discussed, and the following conclusions are obtained.
     1. Zircon U-Pb dating results by laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) indicate that granitoids from northeastern Da Hinggan Range formed mainly in the Early Paleozoic and Jurassic, and some of Late Paleozoic and Triassic. The emplacement ages of Early Paleozoic granitoids including Shibazhan pluton, Neihe pluton, Baiyinna pluton, Chalabanhe pluton and Halapaqi pluton are 499±1 Ma, 500±1 Ma, 460±1 Ma, 465~481 Ma and 461~500 Ma, respectively. Combined with zircon U-Pb dating results of Early Paleozoic granitoids from adjacent regions, the time scale of Early Paleozoic magmatism in the studied area could be determined as 460~500Ma. The Jurassic magmatism of this area could be classified into two stages, i. e. , 188~190Ma and 171~181Ma. The emplacing ages of Hanjiayuanzi pluton and Zhengqicun pluton of the early stage are 188±1 Ma and 190±1 Ma, respectively, while Xinghua-Fanshentun pluton, Jiweidianzi pluton and Heihuashan pluton of the late stage emplaced at 178±1Ma, 176~181 Ma and 171±2 Ma, respectively. Shierzhan granitic pluton of Late Paleozoic formed at 298±2Ma, and Chahayan granitic pluton of 236±1 Ma.
     2. The Early Paleozoic granitoids in this area mainly consists of granodiorite, monzogranite and syenogranite. The mafic minerals in these rocks are hornblende and biotite, while the accessory mineral is titanite and without Al-rich minerals. These granitoids are metaluminous and weakly peraluminous, belonging to calc- alkaline-high-K calc-alkaline series, enriched in large ion lithophile elements (LILE) (e. g. , Rb, Th, U, K, La, Nd and so on), depleted in high field strength elements (HFSE) such as Nb, Ta, P, Ti, etc. . These lines of evidence indicate they exhibit a geochemical characteristics of postorogenic I-type granite, and should formed at postorogenic or postcollisional stage.
     3. The Jurassic granitoids in this area are mainly composed of diorite, quartz diorite, granodiorite and monzodiorite, being metaluminous and weakly peralu- minous, belonging to high-K calc-alkaline series. Based on the enrichment and depletion degree of Sr and Y, they can be separated into two types, i. e. , high-Sr and low-Y type (Sr>500μg/g, Y<2μg/g), and low-Sr and high-Y type (Sr<420μg/g, Y>2μg/g). The early stage of Jurassic granite are of high-Sr and low-Y type, such as Zhengqicun pluton, Hanjiayuan pluton, Sandaoka pluton and Wudingshan pluton, while late stage of them are of low-Sr and high-Y type, e. g. , Xinghua-Fanshentun pluton, Jiweidianzi pluton and Heihuashan pluton. The two types of granites possess similar abundance and same evolutional trend of major elements, and similar Sr-Nd and Hf isotope characteristics. Taken together, the two types of granites originated from similar magmatic source of different depth, high-Sr and low-Y type granite being similar to C-type adakites which derived from low crust, while low-Sr and high-Y type granites derived from middles crust of low pressure.
     The Jurrasic granitoids of this area have similar rock association and geochemical characteristics to granitoids from active continental margin, belonging to NE-NNE distributed granite belt in northeast China, and their origins are related to the subduction of Paleopacific plate.
     4. Most of the Early Paleozoic granitoids have high ~(176)Hf/~(177)Hf ratios and positiveε_(Hf)(t) values, and these spots cluster around the evolutional line of chondrite, implying the source materials of granitoids mainly came from depleted mantle. Some plutons have low ~(176)Hf/~(177)Hf ratios and negativeε_(Hf)(t) values (-14.98~-8.19), falling within the evolutional scope of Proterozoic crust, indicating that they should be derived from partial melting of newly accreted crustal materials during Mesoproterozoic- Neoproterozoic, moreover, their magmatic source may possess affinities of enriched mantle. In addition, contamination of old crustal materials may exist during the formation of some rocks.
     Jurassic granitoids have widely various Hf isotopic composition (ε_(Hf)(t)= -2.82~+11.64 ), attributing to contribution of accreted crustal materials. Zhengqicun pluton have ~(176)Hf/~(177)Hf ratios of 0.2826~0.2827,ε_(Hf)(t) values of -2.82~+2.82, and two stage model age of 1.2Ga in average, indicating its magmatic source are accreted crustal materials during Mesoproterozoic-Neoproterozoic. Heihuashan pluton have highest ~(176)Hf/~(177)Hf ratios for zircons whoseε_(Hf)(t) values up to +11.64, and its young two stage model age (0.47~0.72Ga) indicating the magmatic source are newly accreted crustal materials from depleted mantle during Neoproterozoic-Phanerozoic. Hanjiayuanzi pluton has ~(176)Hf/~(177)Hf ratios,ε_(Hf)(t) values (all of them are positive), and two stage model age between that of Zhengqicun pluton and Heihuashan pluton, implying its magmatic source consist of crustal materials mainly accreted during Mesoproterozoic- Neoproterozoic and some of them accreted during Phanerozoic similar to Heihuashan pluton.
     5. Hf and Nd model ages of granitoids indicate this area have two crust accreted stages, Mesoproterozoic (1.0~1.5Ma) and Neoproterozoic-Phanerozoic (0.4~0.8Ma). Along with age of granitoids from old to young, ~(176)Hf/~(177)Hf ratios andε_(Hf)(t) values gradually increased, while model age became young, suggesting decrease of old crustal materials and increase of juvenile accreted crustal materials in the magmatic source, implying the crust growth of Da Xinggan Range is by underplating and remelting of underpalting rocks.
     6. Nd isotopes and Hf isotopes of zircons for granitoids suggest the line of Humazhen- Shisizhanlinchang should be taken as the boundary of Ergun massif (in the north) and Xing’an massif (in the south), whose crustal growth ages are obviously different. Ergun massif is composed mainly of newly accreted crustal materials in Mesoproterozoic, partly of Neoproterozoic-Phanerozoic and still some of old crustal materials, while Xing’an massif mainly of Neoproterozoic- Phanerozoic. Hence Ergun massif and Xing’an massif have evidently different tectonic characteristics and early evolutional history.
引文
1. 表尚虎,李仰春,何晓华等. 黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征. 中国区域地质,1999,18(1):28-33
    2. 陈斌,徐备. 内蒙古苏左旗地区古生代两类花岗岩类的基本特征和构造意义. 岩石学报,1996,12(4):546-561
    3. 陈斌,赵国春,Simon Wilde. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及构造意义. 地质论评,2001,47(4):361-367
    4. 程瑞玉,吴福元,葛文春,孙德有等. 黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化. 岩石学报,2006,22(2):353-375
    5. 邓晋福,赵海玲,莫宣学等 中国大陆根-柱构造-大陆动力学的钥匙 北京:地质出版社,1996
    6. 段吉业,张梅生. 东北北部古生代生物古地理格局. 中国满洲里-绥芬河地学断面域内岩石圈结构及其演化的地质研究. 北京:地震出版社,1994:
    7. 方文昌. 吉林省花岗岩类及成矿作用[M] . 长春:吉林科学技术出版社,1992
    8. 葛文春,吴福元,周长勇,Abdel Rahman A A. . 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约. 科学通报,2005a,50(12):1239-1246
    9. 葛文春,吴福元,周长勇,张吉衡. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb 年龄及地质意义. 岩石学报,2005b,21(3):749-760
    10. 黑龙江省地质矿产局. 黑龙江省区域地质志. 北京:地质出版社,1993:1-734
    11. 洪大卫,王式,谢锡林,张季生. 兴蒙造山带正ε Nd (t)值花岗岩的成因和大陆地壳生长. 地学前缘,2000,7(2):441-456
    12. 洪大卫,王世光,谢锡林等. 从中亚正ε Nd (t)值花岗岩看超大陆演化和大陆地壳生长的关系. 地质学报, 2003,77(2):203-209
    13. 洪大卫,黄怀曾,肖君宜,徐海明,靳满元. 内蒙中部二叠纪碱性花岗岩及其动力学意义. 地质学报,1994,68(3):219-230
    14. 胡晓,许传诗,牛树银. 华北地台北缘早古生代大陆边缘演化. 中国北方板块构造丛书,北京大学出版社,1990
    15. 李春昱等. 亚洲大地构造图说明书. 北京:地质出版社,1982
    16. 李承东,张旗,苗来成,孟宪峰. 冀北中生代高 Sr 低 Y 和低 Sr 低 Y 型花岗岩:地球化学、成因及其与成矿作用的关系. 岩石学报, 2004,20(2):269-284
    17. 林强,葛文春,吴福元,孙德有,曹林. 大兴安岭中生代花岗岩的地球化学. 岩石学报,2004,20(3):403-412
    18. 李之彤,赵春荆. 小兴安岭-张广才岭花岗岩带的形成和演化. 中国北方花岗岩及其成矿作用论文集. 北京:地质出版社,1991,66-75
    19. 林强,葛文春,孙德有. 中国东北地区中生代火山岩的大地构造意义. 地质科学,1998,33:129-139
    20. 林强,葛文春,孙德有等. 大兴安岭中生代两类流纹岩与玄武岩的成因联系. 长春科技大学学报,2000,30(4):322-328
    21. 林 强,葛文春,曹 林,孙德有,林经国. 大兴安岭中生代双峰式火山岩的地球化学特征. 地球化学,2003, 32(3):208-222
    22. 李双林,欧阳自远. 兴蒙造山带及邻区的构造格局与构造演化. 海洋地质与第四纪地质,1998,18(3):45-54
    23. 李锦轶,莫申国,和政军,孙桂华,陈文. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约. 地学前缘,2004,11(3):157-168
    24. 李锦轶. 中国东北及邻区若干地质构造问题的新认识. 地质论评,1998,44:339-347
    25. 李锦轶,牛宝贵,宋彪等. 长白山北段地壳的形成与演化. 北京:地质出版社,1999
    26. 刘红涛,孙世华,刘建明,翟明国. 华北克拉通北缘中生代高锶花岗岩类:地球化学与源区性质. 岩石学报,2002,18(3):257-274
    27. 刘正宏,刘雅琴,冯本智华北板块北缘中元古代造山带的确立及其构造演化. 长春科技大学学报,2000,30(2):110 114.
    28. 苗来成,刘敦一,张福勤,范蔚茗,石玉若,颉颃强. 大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb 年龄. 科学通报,2007,52(5):591-601
    29. 苗来成,范蔚茗,张福勤,刘敦一,简平,施光海,陶华,石玉若. 小兴安岭西北部新开岭-科洛杂岩锆石 SHRIMP 年代学研究及其意义. 科学通报,2003,48(22):2315-2323
    30. 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志. 北京:地质出版社. 1991
    31. Paterno R. Castillo. 埃达克岩成因回顾. 科学通报,2006,51(6):617-627
    32. 秦克章,李惠民,李伟实,Ishihara Shunso . 内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代. 地质论评,1999,45(2):181-185
    33. 孙德有,吴福元,张艳斌,高 山. 西拉木伦河- 长春- 延吉板块缝合带的最后闭合时间—来自吉林大玉山花岗岩体的证据. 吉林大学学报(地球科学版),2004a. ,34(2):175-183
    34. 孙德有,吴福元,高山. 小兴安岭东部清水岩体的锆石激光探针 U-Pb 年龄测定. 地球学报,2004b,25(2):213-218
    35. 孙德有,吴福元,李惠民,林强. . 小兴安岭西北部后造山 A 型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系. 科学通报,2000,45(20):2217-2222
    36. 孙德有,吴福元,林强,路孝平. 张广才岭燕山早期白石山岩体的成因与壳幔相互作用. 岩石学报,2001,17:213-218
    37. 孙广瑞,李迎春,张昱. 额尔古纳地块基底地质构造. 地质与资源,2002,11(3):129-139
    38. 邵济安等. 中朝板块北缘中段地壳演化. 北京:北京大学出版社,1991
    39. 邵济安,张履桥,牟保磊. 大兴安岭中生代伸展造山过程中的岩浆作用. 地学前缘,1999a,6(4):339-346
    40. 邵济安,韩庆军,张履桥,牟保磊,乔广生. 陆壳垂向增生的两种方式:以大兴安岭为例. 岩石学报,1999b,15(4):600-606
    41. 邵济安,臧绍先,牟保磊,李晓波,王冰. 造山带的伸展与软流圈隆起—以兴蒙造山带为例. 科学通报,1994,39(6):533-537
    42. 邵济安,洪大卫,张履桥. 内蒙古火成岩 Sr-Nd 同位素特征及成因. 地质通报,2002,21(12):817-822
    43. 施光海,苗来成,张福勤,简平,范蔚茗,刘敦一. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义. 科学通报,2004,49(4):384-389
    44. 施光海,刘敦一,张福勤,简平,苗来成,石玉若,陶华. 中国内蒙古锡林郭勒杂岩SHRIMP 锆石 U-Pb 年代学及意义. 科学通报,2003,48(20):2187-2192
    45. 隋振民,葛文春,吴福元,徐学纯,王青海. 大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb 年龄及其成因. 世界地质,2006,25: 229-236
    46. 宋彪,李锦轶,牛宝贵. 黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义 地球学报,1997,18:306-312
    47. 石玉若,刘敦一,张旗,简平,张福勤. 内蒙古苏左旗白音宝力道 Adakite 质岩类成因探讨及其 SHRIMP 年代学研究. 岩石学报,2005,21(01):143-150
    48. 石玉若,刘敦一,张旗,简平,张福勤. 内蒙古苏左旗地区闪长-花岗岩类SHRIMP 年代学. 地质学报,2004,78(6):789-799
    49. 武广,孙丰月,赵财胜. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义. 科学通报,2005,50(20):2278-2288
    50. Wilde S A,吴福元,张兴洲. 中国东北麻山杂岩晚泛非期变质的锆石年龄证据及全球大陆再造意义. 地球化学,2001,30(1):35-50
    51. 王强,许继峰,赵振华,王人镜,邱家骧,包志伟. 大别山燕山期亏损重稀土元素花岗岩类的成因及动力学意义. 岩石学报,2001,17(4):551-564
    52. 王道永,王成善,杜思清. 内蒙古东北部及周边地区前中生代构造发展演化史. 成都理工学院学报,1998,25(4):529-536
    53. 王荃,刘雪亚,李锦轶. 中国华夏与安哥拉古陆间的板块构造[M] . 北京:北京大学出版社,1991,122-134
    54. 吴福元,孙德有,李惠民,汪莜林. 松辽盆地基底岩石锆石 U-Pb 年龄. 科学通报,2000,45:656-660
    55. 吴福元,孙德有,林强. 东北地区显生宙花岗岩的成因与地壳增生. 岩石学报,1999a,15(2):181-189
    56. 吴福元,曹林. 东北亚地区的若干重要基础地质问题. 世界地质,1999b,18(2):1-13
    57. 吴福元,叶茂,张世红. 中国满洲里—绥芬河地学断面域的地球动力模型. 地球科学—中国地质大学学报,1995,20:535-539
    58. 肖龙,Rapp R P,许继峰. 深部过程对埃达克质岩石成分的制约. 岩石学报,2004,20(2):219-225
    59. 许继峰,王强,王义刚,赵振华,熊小林. 宁镇地区中生代安基山中酸性侵入岩的地球化学: 亏损重稀土和钇的岩浆产生的限制. 岩石学报,2001,17(4):576-584
    60. 袁洪林,吴福元,高山,柳小明,徐平,孙德有. 中国东部新生代侵入体的锆石激光探针年龄测定与稀土元素成分分析:对渐新世幔源岩浆底侵作用和地壳抬升的指示. 科学通报,2003,48:1511-1520
    61. 杨进辉,吴福元,柳小明,谢烈文,杨岳衡. 辽东半岛小黑山岩体成因及其地质意义:锆石 U-Pb 年龄和鉿同位素证据. 矿物岩石地球化学通讯,2007,26(1):29-43
    62. 余和中,李玉文,韩守华,易万霞. 松辽盆地古生代构造演化. 大地构造与成矿学,2001,25(4):389-396
    63. 叶惠文,张兴洲,周裕文. 从蓝片岩及蛇绿岩特点看满洲里-绥芬河断面岩石圈结构与演化. 中国-满洲里—绥芬河地学断面内岩石圈结构及其演化的地质研究. 北京:地震出版社,1994,73-83
    64. 叶茂,张世红,吴福元. 中国满洲里—绥芬河地学断面域古生代构造单元及其地质演化. 长春地质学院学报,1994,24:241-245
    65. 张炯飞,李之彤,金成洙. 中国东北部地区埃达克岩及其成矿意义. 岩石学报,2004,20(2):361-368
    66. 张旗,李承东,王焰,王元龙,金惟俊,贾秀勤,韩松. 中国东部中生代高 Sr 低 Yb和低 Sr 高 Yb 型花岗岩:对比及其地质意义. 岩石学报,2005,21(6):1527-1537
    67. 张旗,钱青,王二七,王焰,赵太平,郝杰,郭光军. 燕山中晚期的“中国东部高原”:埃达克岩的启示. 地质科学,2001,36:248-255
    68. 张旗,秦克章,王元龙,张福勤,刘红涛,王焰. 加强埃达克岩研究,开创中国 CuAu等找矿工作的新局面. 岩石学报,2004,20(2):195-204
    69. 张艳斌,吴福元,翟明国,路孝平. 和龙地块的构造属性与华北地台北缘东段边界. 中国科学(D 辑),2004,34(9):795-806
    70. 张梅生,彭向东,孙晓猛. 中国东北地区古生代构造古地理格局. 辽宁地质,1998,(2):91-96
    71. 张兴洲,杨宝俊,吴福元,刘国兴. 中国兴蒙-吉黑地区岩石圈结构基本特征. 中国地质,2006,33(4):816-823
    72. 赵春荆,彭玉鲸,党增欣,等. 吉黑东部构造格架及地壳演化. 沈阳:辽宁大学出版社,1996
    73. 赵越,杨振宇,马醒华. 东亚大地构造的重要转折,地质科学,1994,29(2):105-119
    74. 赵越,张栓宏,徐刚,杨振宇,胡健民. 燕山板内变形带侏罗纪主要构造事件. 地质通报,2004,23:854-863
    75. 张世红. 关于黑龙江省东部古地磁问题的商榷. 黑龙江地质,1993,4(1):67-69
    76. 周长勇,吴福元,葛文春,孙德有,Abdel Rahman A A,张基衡,程瑞玉. 大兴安岭北部塔河辉长岩体的形成时代、地球化学特征及成因. 岩石学报,2005,21(3):763-775
    77. 朱永峰,孙世华,毛骞,赵光. 内蒙古锡林格勒杂岩的地球化学研究:从 Rodinia 聚合到古亚洲洋闭合后碰撞造山的历史记录. 高校地质学报,2004,10(3):343-355
    78. Armstrong R L. The persistent myth of crustal grow th. A us2tralia J. Earth Sci. ,1991,38: 613-630
    79. Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. , 2002,192: 59-79
    80. Atherton M P, Petford N. Generation of sodiu-rich magmas from newly underplated basaltic crust. Nature, 1993,362: 144-146
    81. Bicherl TJ. ,Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantlecrust system. Earth and Planetary Science Lettsrs, 1997,148:243-258
    82. Ballard J R,Palin J M,Willams I S,et al. Two ages porphyry intrusion resolver for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology, 2001,29:383-386
    83. Bonin B, Azzouni-Sekkal A, Bussy F, et al. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings. Lithos, 1998, 45: 45-70
    84. Chen B, Jahn B M, Wilde S, Xu b. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia,China:petrogenesis and tectonic implications Tectonophysics, 2000,328:157-182
    85. Defant MJ and Drummond MS. Derivation of some modern are magmas by melting of young subducted lithosphere, Nature, 1990,347: 662-665
    86. Drummond MS and Defant MJ. A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting:Archean to modern comparisons. Journal of Geophysical Research, 1990,95(13): 21503-21521
    87. Davis G A,Zhang Y D,Wang X ,DARBY B J,et al. Mesozoic tectonic evolution of theYanshan fold and thrust belt,with emphasis on Hebei and Liaoning Provinces, northern China[A]. Geological Society of American,Memoir, 2001. 194,171-198
    88. England C, Houseman G A. Extension during continental convergence with application to the Tibetan plateau. J Geophys Res, 1989, 94: 17561-17579
    89. Evans OC and Hanson GN. Accessorym ineral fractionation of rareearth element (REE) abundance in granitoid rocks. Chemical Geology, 1993. 110: 69-93
    90. Glazner,A. F. ,Bartley,J. M. et. al. Are plutons assembled over millions of years by amalgamation from small magma chambers?GSA Today, 2004,14(4/5):4-11
    91. Hanson J N. The application of trace elements to the Petrogenes is of igneous rocks of granitic composition. Earth and Planetary Science Letters, 1978,38:26-43
    92. Isozaki Y. Jyrassic accretion tectonics of Japan[J]. The Island Arc, 1997,6:25-51
    93. Jahn BM, Wu FY, Capdevila R, Martineau F, Zhao ZH, Wang YX. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing,an Mountains in NE China. Lithos, 2001,59:171-198
    94. King P L,Chappell B W,Allen C M and White A J R. Are A-type granites the high-temperature felsio granites? Evidence from fractiongated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 2001,48:501-514
    95. Li X H, Liu D Y,Sun M,et al. Precise Sm-Nd and U-Pb isotopic dating of the super-giant Shizhuyuan polymetallic de posit and its host granite ,Southeast China. Geol Mga, 2004,141:225-231
    96. Liegeois J P. Some words on the post-collisional magmatism. Lithos, 1998, 45: 15-17
    97. Martin H, Smithies RH, Rapp R, Moyen JF, Champion D. An overview of adakite, tonalite- trondhjemite-granodiorite(TTG), and sanukitoid:relationships and some implications for crustal evolution. Lithos, 2005,79: 1-24
    98. Maruyama S. Pacifi-type orogeny revisited:Miyashiro-type orogeny proposed. The IslandArc, 1997,6:91-120
    99. Nozaka T, Liu Y. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China,Earth Planet. Sci. Lett. 2002,202:89-104
    100. Petford,N;Cruden,A. R. et. al. , Granite magma formation,transport and emplacement in the Earth crust. Ntaure, 2000,408:669-673
    101. Parfenov L M, Popeko L I, Tomurtogoo O. Problems of the tectonicsof the Mongolia- Okhotsk orogenic belt. Tikhookean. Geol, 1999,18(5): 24-43
    102. Rapp RP, Shimizu N,Norman MD. Growth of early continental crust by partial melting of eclogite. Nature, 2003,425:605-609
    103. Rapp RP, Watson EB,Miller CF. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrian Research, 1991,51: 1-25
    104. Rapp RP, Watson EB. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crustmantle recycling. J. Petrol. , 1995,36: 981-931
    105. Salnikova EB, Kozakov IK, Kotov AB, et al. Age of Palaeozoic granites and metamorphism in the Tuvino- Mongolian Massif of the Central Asian Mobile Belt: Loss of a Precambrian microcontinent. Precambrian Res, 2001,110: 143-164
    106. Salnikova EB, Sergeev SA, Kotov AB, et al. U-Pb zircon dating of granulite metamorphism in the Sludyanskiy Complex, eastern Siberia. Gondwana Research, 1998,1: 195-205
    107. Seng?r A M C,Natalin,Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature . 1993,363:299-307
    108. Soderlund U, Patchett PJ, Vervoort JD, Isachsen CE. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. , 2004,219: 311-324
    109. Sorokin AA, Kudryashov NM, Li JY, et al. Early Paleozoic granitoids in the eastern margin of the Argun’ terrane, Amur area: first geochemical and geochronologic data. Petrology,2004,12(4): 367-376
    110. Sylvester P J , Cambel and BowyerD A. N iobium?u ranium ev2idence fo r early fo rmation of the continentalcrust. Science, 1997,275: 521-523
    111. Taylo r S R andM cL ennan SM. The geochem ical evo lution ofthe continental crust. Rev. Geophys. , 1995,33: 241-265
    112. Veevers, J J, Saeed, A. , Belousova, FA. , et al. , U-Pb ages and source composition by Hf-isotope and trace –element analysis of detrital zircons in Permian sandstone and modern sand from southwestern. Australia and a review of the paleogeographical and denudational history of the Yilgarn craton . Earth-Science Reviews, 2005,68:245-279
    113. Watson E B,Harrison T M. Zircon saturation revisited:temperature and composition effects in avariety of crustal magma types. Earth Plante. Sci. , 1983,64:295-304
    114. Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology, 2004,209: 121-135
    115. Wu FY, Jahn BM Lo CH, Yui TF, Lin Q, Ge WC, Sun DY. Highly fractionated I-type granites in NE China(I):Geochronology and petrogenesis. Lithos, 2003,66:241-273
    116. Wu FY, Sun DY, Li HM ,Jahn BM,Wilde S. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis, Chemical Geology, 2002,187: 143-173
    117. Wu FY, Yang JH, Wilde SA, Zhang XO. Geochronology, petrogenesis and tectonic implications of Jurassi granites in the Liaodong Peninsula, NE China. Chemical Geology, 2005,221: 127-156
    118. Wu FY, Yang YH, Xie LW, Yang JH, Xu P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 2006 ,234:105-126
    119. Wu FY, Wilde SA,Zhang G L,et al. Geochronology and petrogenesis of post-orogenicCu,Ni-bearing mafiultramafic intrusions in Jilin, NE China. Journal of Asian Earth Sciences, 2004,23: 781-797
    120. Yang JH,WuFY,Shao JA,Simon AW,Xie LW,Liu XM. Constraints on the timing of uplift of the Yanshan Fold and thrust belt, North China. Earth and Planetary Letters, 2006,246: 336-352
    121. Zhang YB, Wu FY, Sun DY, Li HM. Single grain zircon U-Pb Ages the “Earcynian” Miantian granites and Zhongping hypersthene diorite in the Yanbian Area. Geological review, 2002a,48(4): 424-429
    122. Zhang JH,Ge WC,Wu FY,Liu XM. Mesozoic Bimodal Volcanic suite in Zhalantun of the Da Hinggan Range and its geological significance:Zircon U-Pb Age and Hf isotopic constraints. Acta geologica sinica, 2006,80(1):58-69
    123. Zhou M F, Zhang H F,Robinson P T. Comments on “Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China” by T. Liu [Earth Planet. Sci. Lett. 202 (2002)89-104]. Earth Planet. Sci. Lett. 2003,217: 207-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700