氯化氧铋及锰基化合物微纳米结构的液相合成及储能性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在探索储能材料BiOCl以及Mn基化合物的控制合成及性能研究。溶剂热条件下控制合成了均一的3D BiOCl微结构,结合其层状结构的特点,研究了电化学储氢性能;并通过溶剂热-前驱物后处理的方式合成了多孔的Mn02片状和球状结构,以及多孔的MnCo2O4和CoMn2O4空心球结构,在纽扣电池模型中研究了其作为锂电池负极材料的电化学性质。本论文的主要内容可以归纳如下:
     1、采用溶剂热法选择性合成了3D的BiOCl微米结构,如2.5μm的牡丹花状,1μm的球花状和3μm的粗糙球状结构。这些结构分别由直径1000nm,300nm,200nm的片堆积而成,表征发现片的生长面均是(001)。基于不同反应时间的产品表征结果,我们提出了“快速成核-定向排列-边界融合”的生长过程。N2吸附脱附曲线表明粗糙球结构具有最大的比表面积数据和孔体积数据,这影响其电化学储氢的性能。电化学储氢测试表明有较大比表面和孔体积的样品具有更大的储氢容量值。考虑到其(001)面较大的层间距,我们推测(001)面的层间空隙储存活性H。此外,我们还研究了生长面为[2(-)21]法向的纳米片堆积而成的微米球结构,结果进一步证实了活性H进入了BiOCl的层间。相关实验结果发表在杂志Journal of Nanoscience and Nanotechnology上。
     2、分别在表面活性剂十二烷基苯磺酸钠(SDBS)和十二烷基磺酸钠(SDS)的辅助下,直径2.3μm厚度200nm的均匀微米片和由厚度50nm的纳米片堆积而成的直径3.1μm的花状球结构的MnCO3,在水热条件下合成出来。合成的MnCO3经400℃煅烧4小时,我们得到了多孔的的y-MnO2片状和花球状结构。前者具有更窄的孔径分布以及更大的比表面积,更利于Li+的存储和传输,而表现出了优良的储锂性能。测试结果显示在100mA/g的电流密度下两种结构的首次放电容量分别为1997mAh/g和1533mAh/g。值得指出的是,γ-MnO2多孔片状结构经100次循环后,其容量仍然保持在626mAh/g,呈现了较优良的循环性能。该项研究成果发表在Journal of Alloys and Compounds上。
     3、通过控制反应物Mn/Co的摩尔比,利用热解碳酸盐前驱体的方法,选择性合成了MnCO2O4和CoMn2O4的多孔空心球结构。首先,采用溶剂热法合成了不同比例金属离子的碳酸盐,形貌均匀,尺寸均一;一定温度下煅烧,由于两种金属离子不同的扩散速率,柯肯达尔效应原理,形成空心球状结构。MnCO2O4具有立方结构,而CoMn2O4是四方结构。初步的电化学性能测试结果显示在电流密度200mA/g下进行充放电测试,立方相的MnCo2O4首次容量为1473mAh/g,循环10次后为978mAh/g,而CoMn2O4首次容量为1357mAh/g,循环10次后为809mAh/g,显示出了潜在的应用价值。
In this dissertation, controlled synthesis and properties were developed to prepare bismuthoxychloride and manganese-based compounds with porous structures. Regular3D BiOC1microstructutes were synthesized solvothermally and porous MnO2microplates and microspheres, MnCo2O4and CoMnO4hollow microspheres were produced through hydro-/solvo-thermal methods followed by the pyrolysis of the precursors. The electrochemical hydrogen storage properties of BiOC1microstructures were investigated in Ni/H battery model. We also study the behaviors of manganese-based compounds as anode in a rechargeable lithium battery. The main points are summarized as follows:
     1. Several3D BiOC1microstructures, such as2500nm peonies,1000nm ball-flowers, and3000nm rough spheres are selectively and solvothermally prepared. These microstructures are composed of nanoplate with size of~1000nm,~300nm and~200nm, respectively, the growth surface of which are all (001). Based on the results of the time-depended experiments, we propose the possible forming mechanism as "fast nucleation-oriented attachment-fusion". N2adsorption desorption isotherms demonstrate that the rough spheres possesse the largest special surface area and pore volume, which affect the electrochemical hydrogen storage behavior. Electrochemical tests indicate that the sample with the larger special surface area and pore volume possesses the higher storage capacity of hydrogen. We assumed that hydrogen entered into the interlayer between (001) facets considerring its largest interplanar spacing. In addition, the hydrogen storage study of BiOCl microspheres composed of nanoplates with exposed facet perpendicular to [2(-)21] axis indicates that hydrogen enters into the interlayer. The above results of research have been in press in the international jounal of Journal of Nanoscience and Nanotechnology.
     2. MnCO3microstructures, including microplates with the average diameter of2.3μm and thickness of about200nm and microspheres with the average diameter of3.1μm stacked with50nm-thick sheets, were hydrothermally prepared in the presence of sodium dodecyl benzene sulphonate (SDBS) and dodecyl sulfonic acid sodium (SDS), respectively. With the as-synthesized MnCO3as precursors followed by annealing at400℃for4h, porous γ-MnO2microplates and microspheres with different pore sizes, which basically remained the initial shapes, were obtained. The former with the narrower pore size diameter and the larger special surface area performs a better behavior for lithium battery. The electrochemical property tests over Li+batteries showed that the initial discharge capacity of the as-prepared γ-MnO2microplates and microspheres were1997mAh·-g-1and1533mAh·g-1. Noticeably, even after100cycles, the discharge capacity of γ-MnO2microplates was still as high as626mAh·g-1, showing the decent cycle behavior. The above results of research have been published in the international jounal of Journal of Alloys and Compounds.
     3. Porous MnCo2O4and CoMn2O4hollow microspheres were synthesized through the pyrolysis of carbonates, which were obtained solvothermally by tuning the ratio of Mn/Co. Firstly, relatively uniform carbonate microspheres with different components were solvothermally produced; after calcining at a centain temperature, porous hollow microspheres were obtained due to the different diffusion rate of the two metal ions (Kirkendall effect). The X-ray diffraction patterns indicate that MnCo2O4is cubic phase, whereas CoMn2O4is a tetragonal structure. The preliminary electrochemical property tests over Li+batteries showed that the initial discharge capacity of the as-prepared MnCo2O4and COMn2O4hollow microspheres were1473mAh·g-1and1357mAh·g-1. After10cycles, the discharge capacity of the MnCo2O4and CoMn2O4hollow microspheres were978and809mAh-g"1, respectively, indicating their potential application in lithium battery.
引文
[1]张立德,牟季美,纳米材料和纳米科技,科技出版社,2001。
    [2]王世敏,徐祖勋,傅晶,纳米材料制备技术,化学工业出版社,2001。
    [3]R. Brringer, H. Gleiter, H. P. Klein, P. Marquit, Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?, Phys. Lett. A 1984,102A(2),365.
    [4]R. A. Webb, Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings, Phys. Rev. Lett.1985,54,2696.
    [5]H. W. Kroto, J. R. Heath, S.C. O'brien, R. F. Curl, R. E. Smalley, C60:Buckminsterfullerene, Nature 1985,318,162.
    [6]A. Henglein, Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev.1989,89,1861.
    [7]L. E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state, J. Phys. Chem.1984,80, 4403.
    [8]L. E. Brus, Electronic wave functions in semiconductor clusters:experiment and theory, J. Phys. Chem.1986,90,2555.
    [9]T. Takagahara, Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots, Phys. Rev. B 1993,47,4569.
    [10]D. D. Awschalom, M. A. Mccord, G. Grinstein, Observation of macroscopic spin phenomena in nanometer-scale magnets, Phys. Rev. Lett.1990,65,783.
    [11]A. J. Legget, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam Garg, W. Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys.1987,59,1.
    [12]S. Linderoth, S. Morup, et al., Amorphous TM1-xBx alloy particles prepared by chemical reduction, J. Appl. Phys.1991,69,5256.
    [13]Y. Ping, G. C. Hdjinanayis, et al., Magnetic properties of fine cobalt particles prepared by metal atom reduction, J. Appl. Phys.1990,67,4502.
    [14]P. Ball, L. Garwin, Science at the atomic scale, Nature 1992,355,761.
    [15]R. Leon, P. M. Petroff, D. Leonard, et al., Spatially Resolved Visible Luminescence of Self-Assembled Semiconductor Quantum Dots, Science 1995,267,1966.
    [16]杨柏,沈家骢,半导体纳米微粒在聚合物基体中的复合与组装,高等学校化学学报,1997,18,1219.
    [17]Q. Li, G. Zeng, S. Xi, Chinese Chem. Bull.1995,6,129.
    [18]温廷琏,氢能,能源技术,2011,22(3),96.
    [19]A. C. Dillon, P. A. Parilla, J. L. Alleman et al, Controlling single-wall nanotube diameters with variation in laser pulse power, Chem. Phys. Lett.2000,316,13.
    [20](a) A. C. Dillion, K. M. Jones, T. A. Kiang, C. H. Bethune, M. J. Heben, Storage of hydrogen in single-walled carbon nanotubes, Nature 1997,386,377; (b) Y. Ye, C. C. Ann, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, R. E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett.1999,74,2307; (c) C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, Hydrogen storage in single-walled carbon nanotubes at room temperature, Science 1999,286,1127.
    [21]Yang, H. G.; Zeng, H. C., Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites. Angewandte Chemie-International Edition 2004,43,5930-5933.
    [22]A. M. Collins, C. Spickermann and S. Mann, Synthesis of titania hollow microspheres using non-aqueous emulsions, J. Mater. Chem.2003,13,1112.
    [23]J. L. Blin, A. Leonard, Z. Y. Yuan, L. Gigot, A. Vantomme, A. K. Cheetham and B. L. Su, Hierarchically Mesoporous/Macroporous Metal Oxides Templated from Polyethylene Oxide Surfactant Assemblies, Angew. Chem., Int. Ed.2003,42,2872.
    [24]Z. Y. Yuan, T. Z. Ren and B. L. Su, Hierarchically Mesostructured Titania Materials with an Unusual Interior Macroporous Structure, Adv. Mater.2003,15,1462.
    [25]J. F. Stampfer Jr., C. E. Holley Jr and J. F. Suttle, The Magnesium-Hydrogen System, J. Am. Chem. Soc.1960,82,3504.
    [26]R. L. Cohen and J. H. Wernick, Hydrogen Storage Materials:Properties and Possibilities, Science 1981,214,1081.
    [27]M. Dinca, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann and J. R. Long, Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites, J. Am. Chem. Soc.2006,128,16876.
    [28]M. Latroche, S. Surble, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J. H. Lee, J. S. Chang, S. H. Jhung and G. Ferey, Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL-100 and MIL-101, Angew. Chem., Int. Ed.2006,45,8227.
    [29]A. G. Wong-Foy, A. J. Matzger and O. M. Y. aghi, Exceptional H2 Saturation Uptake in Microporous Metal-Organic Frameworks, J. Am. Chem. Soc.2006,128,3494.
    [30]J. G. Vitillo, L. Regli, S. Chavan, G. Ricchiardi, G. Spoto, P. D. C. Dietzel, S. Bordiga and A. Zecchiana, Role of Exposed Metal Sites in Hydrogen Storage in MOFs, J. Am. Chem. Soc. 2008,130,8386.
    [31]S. S. Kaye and J. R. Long, Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M=Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc.2005,127,6506.
    [32]S. S. Han, H. Furukawa, O. M. Yaghi and W. A. Goddard Ⅲ, Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials, J. Am. Chem. Soc.2008,130,11580.
    [33]A. Hamaed, M. Trudeau and D. M. Antonelli, H2 Storage Materials (22KJ/mol) Using Organometallic Ti Fragments as σ-H2 Binding Sites,J. Am. Chem. Soc.2008,130,6992.
    [34]R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu and D. Wu, Hydrogen Uptake in Boron Nitride Nanotubes at Room Temperature, J. Am. Chem. Soc.2002,124,7672.
    [35]C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Dresselhaus, Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science 1999,286,1127.
    [36]A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, Storage of hydrogen in single-walled carbon nanotubes, Nature 1997,386,377.
    [37]Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith and R. E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett.1999,74,2307.
    [38]G. P. Dai, C. Liu, M. Liu, M. Z. Wang and Hui-Ming Cheng, Electrochemical hydrogen storage behavior of ropes of aligned single-walled carbon nanotubes, Nano Lett,2002,2,503.
    [39]G. K. Dimitrakakis, E. Tylianakis and G. E. Froudakis, Pillared Graphene:A new 3-D network nanostructure for enhanced hydrogen storage, Nano Lett,2008,8,3166.
    [40]T. Yidirim and S. Ciraci, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium, Phys. Rev. Lett.2005,94,175501.
    [41]E. Durgun, S. Ciraci and T. Yildirim, Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage, Phys. Rev. B 2008,77,085405.
    [42]S. A. Shevlin and Z. X. Guo, Transition-metal-doping-enhanced hydrogen storage in boron nitride systems, Appl. Phys. Lett.2006,89,153104.
    [43]J. W. Lee, H. S. Kim, J. Y. Lee and J. K. Kang, Hydrogen storage and desorption properties of Ni-dispersed carbon nanotubes, Appl. Phys. Lett.2006,88,143126.
    [44]Q. Sun, P. Q. WangJena and Y. Kawazoe, Clustering of Ti on a C6o Surface and Its Effect on Hydrogen Storage, J. Am. Chem. Soc.2005,127,14582.
    [45]C. K. Yang, J. J. Zhao and J. P. Lu, Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes, Phys. Rev. B 2002,66,041403.
    [46]Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben and S. B. Zhang, Hydrogen storage in novel organometallic buckyballs, Phys. Rev. Lett.2005,94,155504.
    [47]J. Chen, N. Kuriyama, H. T. Yuan, H. T. Takeshita, and T. Sakai, Electrochemical hydrogen storage in MoS2 nanotubes, J. Am. Chem. Soc.2001,123,11813.
    [48]X. Chen, X. P. Gao, H. Zhang, Z. Zhou, W. K. Hu, G. L. Pan, H. Y. Zhu,T. Y. Yan, and D. Y. Song, Preparation and wlectrochemical hydrogen storage of boron nitride nanotubes, J. Phys. Chem.B 2005,109,11525.
    [49]B. Zhang, W. Dai, X. C. Ye, W. Y. Hou, and Y. Xie, Solution-phase synthesis and electrochemical hydrogen storage of ultra-long dingle-crystal selenium submicrotubes, J. Phys. Chem. B 2005,109,22830.
    [50]B. Zhang, X. C. Ye, C. M. Wang and Y. Xie, A facile solution-phase deposition approach to porous selenium materials, J. Mater. Chem.2007,17,2706.
    [51]J. M. Ma, Y. P. Wang, Y. J. Wang, Q. Chen, J. B. Lian, and W. J. Zheng, Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties, J. Phys. Chem. C2009,113,13588.
    [52]F. Cao, W. Hu, L. Zhou, W. D. Shi, S. Y. Song, Y. Q. Lei, S. Wang and H. J. Zhang,3D Fe3S4 flower-like microspheres:high-yield synthesis via a biomolecule-assisted solution approach, their electrical, magnetic and electrochemical hydrogen storage properties, Dalton Trans,2009,42,9246.
    [53]B. Zhang, X. C. Ye, W. Dai, W. Y. Hou, and Y. Xie, Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Porous Spongelike Ni3S2 Nanostructures Grown Directly on Nickel Foils, Chem. Eur. J.2006,12,2337.
    [54]B. Zhang, X. C. Ye, W. Y. Hou, Y. Zhao, and Y. Xie, Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods, J. Phys. Chem.52006,110,8978.
    [55]Q. T. Wang, X. B. Wang, W. J. Lou and J. C. Hao, Ionothermal synthesis of bismuth sulfide nanostructures and their electrochemical hydrogen storage behavior, New J. Chem.2010,34, 1930.
    [56]L. S. Li, N. J. Sun, Y. Y. Huang, Y. Qin, N. N. Zhao, J. N. Gao, M. X. Li, H. H. Zhou and L. M. Qi, Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks, Adv. Fund. Mater.2008,18,1194.
    [57]Y. Q. Lei, G. H. Wang, S. Y. Song, W. Q. Fan, M. Pang, J. K. Tang and H. J. Zhang, Room temperature, template-free synthesis of BiOI hierarchical structures:visible-light photocatalytic and electrochemical hydrogen storage properties, Dalton Trans.2010,39,3273.
    [58]P. Gao, M. L. Zhang, Z. Y. Niu and Q. P. Xiao, A facile solution-chemistry method for Cu(OH)2 nanoribbon arrays with noticeable electrochemical hydrogen storage ability at room temperature, Chem. Commun.2007,48,5197.
    [59]Y. Q. Lei, G. H. Wang, L. Zhou, W. Hu, S. Y. Song, W. Q. Fan and H. J. Zhang, Cubic spinel g:electrical transport properties and electrochemical hydrogen storage properties, Dalton Trans.2010,39,7021.
    [60]S. B. W. A. Schalkwijk, Advances in lithium-ion batteries, Kluwer Academic Publications New York,2002.
    [61]J. L. Tirado, Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the art and future prospects, Mater. Sci. Eng 2003,40,103.
    [62]N. A. Kaskhedikar, J. Maier, Lithium storage in carbon nanostructures, Adv. Mater.2009, 21,2664.
    [63]M. S. Whittingham, Lithium batteries and cathode materials, Chem. Rev.2004,104,4271.
    [64]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, LixCoO2 (0    [65]G. G. Amatucci, J. M. Tarascon, L. C. Klein, CoO2, the end member of the LixCoO2 solid solution, J. Electrochem. Soc.1996,143,1114.
    [66]M. M. Thackeray, Manganese oxides for lithium batteries, Prog. Solid State Chem.1997,25,
    [67]P. G. Bruce, B. Scrosati, J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed.2008,47,2930.
    [68]F. F. C. Bazito, R. M. Torresi, Cathodes for lithium ion batteries:the benefits of using nanostructured materials, J. Braz. Chem. Soc.2006,17,627.
    [69]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc.1997,144, 1188.
    [70]J. B. Goodenough, Cathode materials:A personal perspective, J. Power Sources 2007,174, 996.
    [71]C. S. Sun, Z. Zhou, Z. G. Xu, D. G. Wang, J. P. Wei, X. K. Bian, J. Yan, Improved high-rate charge/discharge performances of LiFePO4/C via V-doping, J. Power Sources 2009,193,841.
    [72]N. Meethong, Y. H. Kao, S. A. Speakman, Y.M. Chiang, Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties, Adv. Funct. Mater.2009,19, 1060.
    [73]S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. B. Zhang, A. C. Dillon, Reversible lithium-ion insertion in molybdenum oxide nanoparticles, Adv. Mater.2008,20,3627.
    [74]Y. S. Hu, L. Kienle, Y. G. Guo, High lithium electroactivity of nanometer-sized rutile TiO2, Adv. Mater.2006,18,1421.
    [75]Z. P. Guo, G. D. Du, Y. Nuli, M. F. Hassan, H. K. Liu, Ultra-fine porous SnO2 nanopowder prepared via a molten saltprocess:a highly efficient anode material for lithium-ion batteries, J. Mater. Chem.2009,19,3253.
    [76]M. G. Kim, S. Lee, J. Cho, Highly reversible Li-ion intercalating MoP2 nanoparticle cluster anode for lithium rechargeable batteries, J. Electrochem. Soc.2009,156, A89.
    [77]Y. Sharma, N. Sharma, G. V. S. Rao, B. V. R. Chowdari, Nanophase ZnCo204 as a high performance anode material for Li-ion batteries, Adv. Fund. Mater.2007,17,2855.
    [78]D. Son, E. Kim, T. G. Kim, M. G. Kim, J. H. Cho, B. Park, Nanoparticle iron-phosphate anode material for Li-ion battery, Appl. Phys. Lett.2004,85,5875.
    [79]S. C. Zhang, X. P. Qiu, Z. Q. He, D. S. Weng, W. T. Zhu, Nanoparticled Li(Ni1/3Co1/3Mn1/3)O2 as cathode material for high-rate lithium-ion batteries, J. Power Sources 2006,153,350.
    [80]M. Jo, Y. S. Hong, J. Choo, J. Cho, Effect of LiCoO cathode nanoparticle size on high rate performance for Li-ion batteries, J. Electrochem. Soc.2009,156, A430.
    [81]S. M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett.2009,9,72.
    [82]J. Kim, M. Noh, J. Cho, H. Kim, K. B. Kim, Controlled nanoparticle metal phosphates (metal=Al, Fe, Ce, and Sr) coatings on LiCoO2 cathode materials, J. Electrochem. Soc.2005, 152, A1142.
    [83]T. Fang, J. G. Duh, S. R. Sheen, Improving the electrochemical performance of LiCoO2 cathode by nanocrystalline ZnO coating, J. Electrochem. Soc.2005,152, A1701.
    [84]Y. Wang, G. Z. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries, Adv. Mater.2008,20,2251.
    [85]M. S. Park, G. X. Wang, Y.M. Kang, D. Wexler, S. X. Dou, H. K. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries, Angew. Chem. Int. Ed.2007,46,750.
    [86]M. S. Park, Y. M. Kang, G. X. Wang, S. X. Dou, H. K. Liu, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials, Adv. Fund. Mater.2008, 18,455.
    [87]E. Hosono, T. Kudo, I. Honma, H. Matsuda, H. S. Zhou, Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density, Nano Lett.2009,9,1045.
    [88]Y. J. Lee, M. G. Kim, J. Cho, Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material, Nano Lett.2008,8,957.
    [89]D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, Y. Cui, Spinel LiMn2-4 nanorods as lithium ion battery cathodes, Nano Lett.2008,8, 3948.
    [90]C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim, M. Endo, Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries, Adv. Funct. Mater.2006,16,2393.
    [91]N. Du, H. Zhang, B. Chen, J. B. Wu, X. Y. Ma, Z. H. Liu, Y. Q. Zhang, D. Yang, X. H. Huang, J. P. Tu, Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:a highly efficient material for Li-battery applications, Adv. Mater.2007,19,4505.
    [92]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Self-supported formation of needlelike CO3O4 nanotubes and their application as lithium-ion battery electrodes, Adv. Mater.2008,20, 258.
    [93]K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, A. M. Belcher, Virus-enabled synthesis and sssembly of nanowires for lithium ion battery Electrodes, Science 2006,312,885.
    [94]J. W. Seo, J. T. Jang, S. W. Park, C. J. Kim, B. W. Park, J. W. Cheon, Chains of superparamagnetic nanoparticles, Adv. Mater.2008,20,4294.
    [95]M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, B. V. R. Chowdari, α-Fe2O3 nanoflakes as an anode material for Li-ion batteries, Adv. Funct. Mater.2007,17, 2792.
    [96]W. M. Zhang, X. L. Wu, J. S. Hu, Y. G. Guo, L. J. Wan, Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater.2008,18,3941.
    [97]G. L. Cui, Y. S. Hu, L. J. Zhi, D. Q. Wu, I. Lieberwirth, J. Maier, K. Mullen, A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries, Small 2007,3,2066.
    [98]Y. G. Wang, Y. R. Wang, E. J. Hosono, K. X. Wang, H. S. Zhou, The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method, Angew. Chem. Int. Ed.2008,47,7461.
    [99]Y. K. Sun, S. T. Myung, B. C. Park, J. Prakash, I. Belharouak, K. Amine, High-energy cathode material for long-life and safe lithium batteries, Nat. Mater.2009,8,320.
    [100]B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging, Nature 2009, 458,190.
    [101]K. Zaghib, J. B. Goodenough, A. Mauger, C. Mien, Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries, J. Power Sources 2009,194,1021.
    [102]Y. Wang, H. C. Zeng, J. Y. Lee, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers, Adv. Mater.2006,18,645.
    [103]A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, P. M. Ajayan, Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett.2009,9,1002.
    [104]L. F. Cui, R. Ruffo, C. K. Chan, H. L. Peng, Y. Cui, Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Lett.2009,9,491.
    [105]H. Lee, J. Cho, Sn78Ge22@carbon core-shell nanowires as fast and high-capacity lithium storage media, Nano Lett.2007,7,2638.
    [106]H. Kim, J. Cho, Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material, Nano Lett.2008,8,3688.
    [107]P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera, M. K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity snodes for Li-ion batteries, Nano Lett.2009,9,612.
    [108]D. W. Kim, I. S. Hwang, S. J. Kwon, H. Y. Kang, K. S. Park, Y. J. Choi, K. J, Choi, J. G. Park, Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes, Nano Lett.2007,7,3041.
    [109]X. W. Lou, L. A. Archer, Z. C. Yang, Hollow micro-/nanostructures:synthesis and applications, Adv. Mater.2008,20,3987.
    [110]H. Ma, F. Y. Cheng, J. Chen, J. Z. Zhao, C. S. Li, Z. L. Tao, J. Liang, Nest-like silicon nanospheres for high-capacity lithium storage, Adv. Mater.2007,19,4067.
    [111]H. Kim, J. Cho, Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material, Chem. Mater.2008,20,1679.
    [112]X. W. Lou, L. A. Archer, A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles, Adv. Mater.2008,20,1853.
    [113]X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, L. A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater.2006,18,2325.
    [114]S. Y. Zeng, K. B. Tang, T. W. Li, Z. H. Liang, D. Wang, Y. K. Wang, W. W. Zhou, Hematite hollow spindles and microspheres:selective synthesis, growth mechanisms, and application in lithium ion battery and water treatment, J. Phys. Chem. C 2007,111,10217.
    [115]C. Z. Wu, Y. Xie, L. Y. Lei, S. Q. Hu, C. Z. OuYang, Synthesis of new-phased VOOH hollow "dandelions" and their application in lithium-ion batteries, Adv. Mater.2006,18,1727.
    [116]J. Chen, F. Y. Cheng, Combination of lightweight elements and nanostructured materials for batteries, Acc. Chem. Res.2009,42,713.
    [117]A. M. Cao, J. S. Hu, H. P. Liang, L. J. Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries, Angew. Chem. Int. Ed.2005,44,4391.
    [118]H. L. Zhang, Y. Zhang, X. G. Zhang, F. Li, C. Liu, J. Tan, H. M. Cheng, Urchin-like nano/micro hybrid anode materials for lithium ion battery, Carbon 2006,44,2778.
    [119]J. Shu, Urchin-structured MWNTs/HCS composite as anode material for high-capacity and high-power lithium-ion batteries, Electrochem. Solid State Lett.2008,11, A219.
    [120]B. X. Li, G. X. Rong, Y. Xie, L. F. Huang, C. Q. Feng, Low-temperature synthesis of a-MnO2 hollow urchins and their application in rechargeable Li+ batteries, Inorg. Chem.2006, 45,6404.
    [121]J. C. Park, J. Kim, H. Kwon, H. Song, Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials, Adv. Mater.2009,21,803.
    [122]H. L. Chen, C. P. Grey, Molten salt synthesis and high rate performance of the "desert-rose" form of LiCoO2, Adv. Mater.2008,20,2206.
    [123]Y. Kim, H. Hwang, C. S. Yoon, M. G. Kim, J. Cho, Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 particles:an anode material for lithium-ion batteries, Adv. Mater.2007,19,92.
    [124]K. T. Lee, J. C. Lytle, N. S. Ergang, S. M. Oh, A. Stein, Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries, Adv. Fund. Mater.2005,15,547.
    [125]Z. Y. Wang, F. Li, N. S. Ergang, A. Stein, Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites, Chem. Mater.2006,18,5543.
    [126]Y. G. Guo, Y. S. Hu, W. Sigle, J. Maier, Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks, Adv. Mater.2007,19,2087.
    [127]H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, M. Ichihara, Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance, Adv. Mater.2003,15,2107.
    [128]H. Kim, B. Han, J. Choo, J. Cho, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries, Angew. Chem. Int. Ed.2008,47,10151.
    [129]F. Jiao, P. G. Bruce, Mesoporous crystalline β-MnO2-a reversible positive electrode for rechargeable lithium batteries, Adv. Mater.2007,19,657.
    [130]F. Jiao, J. L. Bao, A. H. Hill, P. G. Bruce, Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries, Angew. Chem. Int. Ed.2008,47,9711.
    [131]F. Jiao, K. M. Shaju, P. G. Bruce, Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction, Angew. Chem. Int. Ed.2005,44,6550.
    [132]L. W. Ji, X. W. Zhang, Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries, Nanotechnology 2009,20,155705.
    [133]K. X. Wang,M. D.Wei, M. A. Morris, H. S. Zhou, J. D. Holmes, Mesoporous titania nanotubes:their preparation and application as electrode materials for rechargeable lithium batteries, Adv. Mater.2007,19,3016.
    [134]J. Zhang, Y. S. Hu, J. P. Tessonnier, G. Weinberg, J. Maier, R. Schlogl, D. S. Su, CNFs@CNTs:superior carbon for electrochemical energy etorage, Adv. Mater.2008,20,1450.
    [1]D. Berlincourt, Piezoelectric ceramic compositional development, J. Acoust. Soc. Am.1992,91, 3034.
    [2]Z. T. Deng, D. Chen, B. Peng, and F. Q. Tang, From bulk metal Bi to two-dimensional well-crystallized BiOX (X=Cl, Br) micro-and nanostructures:synthesis and characterization, Cryst. Growth Des.2008,8,2995.
    [3]S. Yu, Y. Qian, L. Shu, Y. Xie, L. Yang, and C. Wang, Solvent thermal synthesis and characterization of ultrafine powder of bismuth sulfide, Mater. Lett.1998,35,116.
    [4]B. Chen, and C. Uher, Transport properties of Bi2S3 and the ternary bismuth sulfides KBi6.33S10 and K2Bi8S13, Chem. Mater.1997,9,1655.
    [5]K. L. Zhang, C. M. Liu, F. Q. Huang, C. Zheng, and W. D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Appl. Catal. B 2006,110, 24629.
    [6]J. Henle, P. Simon, A. Frenzel, S. Scholz, and S. Kaskel,Nanosized BiOX (X=Cl, Br, I) particles synthesized in reverse microemulsions, Chem. Mater.2007,19,366.
    [7]J. M. Ma, X. D. Liu, J. B. Liang, X. C. Duan, and W. J. Zheng, Ionothermal synthesis of BiOCl nanostructures via a long-chain ionic liquid precursor route, Cryst. Growth Des.2010, 10,2522.
    [8]H. Peng, C. K. Chan, S. Meister, X. F. Zhang, and Y. Cui, Shape evolution of layer-structureed bismuth oxychloride nanostructures via low-temperature chemical vapor transport, Chem. Mater.2009,21,247.
    [9]J. Geng, W. H. Hou, Y. N. Lv, J. J. Zhu, and Y. H. Chen,One-dimensional BiPO4 nanorods and two-dimensional BiOCl lamellae:fast low temperature sonochemical synthesis, characterization, and growth mechanism, Inorg. Chem.2005,44.8503.
    [10]Y. Q. Lei, G. H. Wang, S. Y. Song, W. Q. Fan, and H. J. Zhang, Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties, CrystEngComm 2009, 11,1857.
    [11]X. Zhang, Z. H. Ai, F. L. Jia, and L. Z. Zhang, Generalized one-pot synthesis,characterization, and photocatalyitc activity of hierarchical BiOX (X= Cl, Br, I) nanoplate microspheres, J. Phys. Chem. C 2008,112,747.
    [12]B. Zhang, X. C. Ye, W. Y. Hou, Y. Zhao, and Y. Xie, Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods, J. Phys. Chem.B 2006,110,8978.
    [13]Q. T. Wang, X. B. Wang, W. J. Lou, and J. C. Hao, Ionothermal synthesis of bismuth sulfide nanostructures and their electrochemical hydrogen storage behavior, New J. Chem.2010,34, 1930.
    [14]Y. Q. Lei, G. H. Wang, S. Y. Song, W. Q. Fan, M. Pang, J. K. Tang, and H. J. Zhang, Room temperature, template-free synthesis of BiOI hierarchical structures:visble-light photocatalytic and electrochemical hydrogen storage properties, Dalton Trans.2010,39,3273.
    [15]Q. Yang, K. B. Tang, C. R. Wang, Y. T. Qian, and S. Y. Zhang, PVA-assisted synthesis,and characterization of CdSe and CdTe nanowires, J. Phys. Chem. B 2002,106,9227.
    [16]V. F. Puntes, K. M. Kishnan, and A. P. Alivisatos, Colloidal nanocrystal shape and size control:the case of cobalt, Science 2001,291,2115.
    [17]Y. Lei, S. Song, W. Fan, Y. Xing, and H. Zhang, Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property, J. Phys. Chem. C 2009,113,1280.
    [18]S. L. Shen, J. Zhuang, X. X. Xu, A. Nisar, S. Hu, and X. Wang, Size effects in the oriented-attachment growth process:the case of Cu nanoseeds, Inorg. Chem.2009,48,5117.
    [19]N. Rajalakshmi, K. S. Dhathathreyan, A. Govindaraj, and B. C. Satishkumar, Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage, Electrochem. Actd 2000, 45,4511.
    [20]G. P. Dai, M. Liu, D. M. Chen, P. X. Hou, Y. Tong, and H. M. Cheng, Electrochemical charge-discharge capacity of purified single-walled carbon nanotubes, Electrochem. Solid State Lett.2002,5, E13.
    [21]. N. N. Liu, L. W. Yin, C. X. Wang, L. Y. Zhang, N. Lun, C. B. Wang, and Y. X. Qi, One-pot synthesis of PtRu nanoparticle decorated ordered mesoporous carbons with improved hydrogen storage capacity, J. Phys. Chem. C 2010,114,22012.
    [22]L. S. Li, N. J. Sun, Y. Y. Huang, Y. Qin, N. N. Zhao, J. N. Gao, M. X. Li, H. H. Zhou, and L. M. Qi, Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks, Adv. Func. Mater.2008,18,1194.
    [1]Z. Q. Li, Y. Ding, Y. J. Xiong, Q. Yang, Y. Xie, One-step solution-based catalytic route to fabricate novel alpha-MnO2 hierarchical structures on a large scale, Chem. Commun.2005,918-920.
    [2]F. Y. Cheng, J. Z. Zhao, W. N. Song, C. S. Li, H. Ma, J. Chen, P. W. Shen, Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries, Inorg. Chem.2006,45,2038.
    [3]J. Z. Zhao, Z. L. Tao, J. Liang, J. Chen, Facile synthesis of nanoporous gamma-MnO2 structures and their application in rechargeable Li-ion batteries, Cryst. Growth. Des.2008,8,2799.
    [4]M. Minakshi, M. Blackford, M. Ionescu, Characterization of alkaline-earth oxide additions to the MnO2 cathode in an aqueous secondary battery, J. Alloys Compd. 2011,509,5974.
    [5]S. Jouanneau, S. Sarciaux, A. Le Gal La Salle, D. Guyomard, Influence of structural defects on the insertion behavior of gamma-MnO2:comparison of H+ and Li+, Solid State Ionics 2001,40,223-232.
    [6]D. L. Fang, B. C. Wu, Ai-Qin Mao, Yong Yan, C. H. Zheng, Supercapacitive properties of ultra-fine MnO2 prepared by a solid-state coordination reaction, J. Alloys Compd.2010,507,526.
    [7]Y. J. Yang, E. H. Liu, L. M. Li, Z. Z. Huang, H. J. Shen, X. X. Xiang, Nano structured amorphous MnO2 prepared by reaction of KMnO4 with triethanolamine, J. Alloys Compd.2010,505,555.
    [8]M. Thackeray, Manganese oxides for lithium batteries, Prog. Solid State Chem. 1997,25,1-71.
    [9]G. Q. Zhang, X. G. Zhang, A novel alkaline Zn/MnO2 cell with alkaline solid polymer electrolyte, Solid State Ionics 2003,160,155-159.
    [10]M. Ahn, T. R. Fillry, C. T. Jafvert, L. Nies, L. Hua, J. Cruz, Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment, Environ. Sci. Technol.2006,40,215.
    [11]K. A. Barrett, M. B. Mcbride, Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide, Environ. Sci. Technol.2005,39, 9223.
    [12]Y. Sekine, Oxidative decomposition of formaldehyde by metal oxides at room temperature, Atmos. Environ.2002,36,5543.
    [13]M. Baldi, E. Finocchio, C. Pistarino, G. Busca, Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide, Appl. Catal. A 1998, 173,61.
    [14]M. Te, H. C. Foley, Intrinsic reactivities of manganese oxides for carbon-monoxide hydrogenation catalysis, Appl. Catal. A 1994,119,97.
    [15]J. Post, Manganese oxide minerals:Crystal structures and economic and environmental significance, Proc. Nat1 Acad Sci. U.S.A.1999,96,3447.
    [16]G. J. Moore, R. Portal, A. Le Gal La Salle, D. Guyomard, Synthesis of nanocrystalline layered manganese oxides by the electrochemical reduction of AMnO4 (A=K, Li), J. Power Sources 2001,97-98,393.
    [17]M. Ghaemi, Z. Biglari, L. Binder, Effect of bath temperature on electrochemical properties of the anodically deposited manganese dioxide, J. Power Sources 2001, 102,29-34.
    [18]M. S. Wu, J. T. Lee, Y. Y. Wang, C. C. Wan, Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition, J. Phys. Chem.B 2004,108,16331.
    [19]W. Scott, D. Frank, H. Feddrix, S. Marion, T. Norby, Water and protons in electrodeposited MnO2 (EMD), Solid State Ionics 2002,152-153,695.
    [20]F. Teng, S. Santhanagopalana, Y. Wang, D. D. Meng, In-situ hydrothermal synthesis of three-dimensional MnO2-CNT nanocomposites and their electrochemical properties, J. Alloys Compd.2010,499,259.
    [21]C. Z. Wu, W. Xie, M. Zhang, J. L. Yang, Y. Xie, Environmentally friendly gamma-MnO2 hexagon-based nanoarchitectures:structural understanding and their energy-saving applications, Chem. Eur. J.2009,25,492.
    [22]S. Farhadi, N. Rashidi, Microwave-induced solid-state decomposition of the Bi[Fe(CN)6]center dot 5H2O precursor:A novel route for the rapid and facile synthesis of pure and single-phase BiFeO3 nanopowder, J. Alloys Compd.2010, 503,439.
    [23]M. Popa, J. C. Moreno, Lanthanum ferrite ferromagnetic nanocrystallites by a polymeric precursor route, J. Alloys Compd.2011,509,4108.
    [24]H. Zhang, Y. J. Chen, J. H. Ma, H. X. Tong, J. Yang, D. W. Ni, H. M. Hu, F. Q. Zheng, A simple thermal decomposition-nitridation route to nanocrystalline boron nitride (BN) from a single N and B source precursor, J. Alloys Compd.2011,509, 6616.
    [25]F. Li, J. F. Wu, Q. H. Qin, Z. Li, X. T. Huang, Facile synthesis of y-MnOOH micro/nanorods and their conversion to beta-MnO2, Mn3O4, J. Alloys Compd.2010, 492,339.
    [26]J. B. Fei, Y. Cui, X. H. Yan, W. Qi, Y. Yang, J. B. Li, Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment, Adv. Mater.2008,20,452.
    [27]J. K. Yuan, K. Laubernds, Q. H. Zhang, S. L.Suib, Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres, J. Am. Chem. Soc.2003,125,4966.
    [28]V. Subramanian, H. W. Zhu, B. Q. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nano structures, J. Phys. Chem. B 2005,109, 20207.
    [29]A. Vinu, D. P. Sawant, K. Ariga, M. Hartmann, S. B. Halligudi, Benzylation of
    benzene and other aromatics by benzyl chloride over mesoporous A1SBA-15
    catalysts, Microporous and Mesoporous Mater.2005,80,195.
    [30]M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater.1998,10,725.
    [31]I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami, N. Nakashima, A mesoporous nanocomposite of TiO2 and carbon nanotubes as a high-rate Li-intercalation electrode material, Adv. Mater.2006,18,69.
    [32]S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. M. Tarasconz, On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential, J. Electrochem. Soc.2002,149, A627.
    [33]J. Chen, L. N. Xu, W. Y. Li, X. L. Gou, alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications,Adv. Mater.2005,17,582.
    [34]J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 2001,414,359.
    [35]M. S. Wu, P. C. Chiang, Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries, Electrochem. Commun.2006, 8,383.
    [I]F. Caruso, R. A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science 1998,282,1111.
    [2]X. W. Lou, L. A. Archer, Z. C. Yang, Hollow micro-/nanostructures:synthesis and applications, Adv. Mater.2008,20,3987.
    [3]J. Liu, F. Liu, K. Gao, J. S. Wu, D. F. Xue, Recent developments in the chemical synthesis of inorganic porous capsules, J. Mater. Chem.2009,19,6073.
    [4]Y. Zhao, L. Jiang, Hollow micro/nanomaterials with multilevel interior structures, Adv. Mater. 2009,27,3621.
    [5]J. Liu, S. Z. Qiao, J. S. Chen, X. W. Lou, X. Xing, G. Q. Lu, Yolk/shell nanoparticles:new platforms for nanoreactors, drug delivery and lithium-ion batteries, Chem. Comm.2011,47, 12578.
    [6]H. C. Zeng, Synthesis and self-assembly of complex hollow materials, J. Mater. Chem.2011, 27,7511.
    [7]J. Liu, S. Z. Qiao, S. B. Hartono, G. Q. Lu, Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors, Angew. Chem. Int. Ed. 2010,49,4981.
    [8]J. Liu, S. B. Hartono, Y. G. Jin, Z. Li, G. Q. Lu, S. Z. Qiao, A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres, J. Mater. Chem.2010,20,4595.
    [9]Y. Zeng, X. Wang, H. Wang, Y. Dong, Y. Ma, J. N. Yao, Multi-shelled titania hollow spheres fabricated by a hard template strategy:enhanced photocatalytic activity, Chem. Commun.2010, 46,4312.
    [10]H. X. Li, Z. F. Bian, J. Zhu, D. Q. Zhang, G. S. Li, Y. N. Huo, H. Li, Y. F. Lu, Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity, J. Am. Chem. Soc.2007,129,8406.
    [11]W. Li, Y. Deng, Z. Wu, X. Qian, J. Yang, Y. Wang, D. Gu, F. Zhang, B. Tu, D. Zhao, Hydrothermal etching assisted crystallization:a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells, Journal of the American Chemical Society2011,13,15830.
    [12]X. Wu, G. Q. Lu, L. Z. Wang, Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application, Energy Environ. Sci.2011,4, 3565.
    [13]H. G. Zhang, Q. S. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties, Adv. Funct. Mater.2007,17,2766.
    [14]X. Y. Lai, J. Li, B. A. Korgel, Z. H. Dong, Z. M. Li, F. B. Su, J. A. Du, D. Wang, Genera] synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres, Angew. Chem. Int. Ed.2011,50,2738.
    [15]H. X. Yang, J. F. Qian, Z. X. Chen, X. P. Ai, Y. L. Cao, Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment,J.Phys. Chem. C2007,111,14067.
    [16]X. W. Lou, C. M. Li, L. A. Archer, Designed synthesis of coaxial SnO2@ carbon hollow nanospheres for highly reversible lithium storage, Adv. Mater.2009,21,2536.
    [17]J. Liu, H. Xia, D. F. Xue, L. Lu, Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries, J. Am. Chem. Soc.2009, 131,12086.
    [18]X. Wang, X. L. Wu, Y. G. Guo, Y. T. Zhong, X. Q. Cao, Y. Ma, J. N. Yao, Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres, Adv. Funct. Mater.2010,20,1680.
    [19]Y. L. Ding, X. B. Zhao, J. Xie, G. S. Cao, T. J. Zhu, H. M. Yu, C. Y. Sun, Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium ion batteries, J. Mater. Chem. 2011,21,9475.
    [20]M. Yang, J. Ma, C. L. Zhang, Z. Z. Yang, Y. F. Lu, General synthetic route toward functional hollow spheres with double-shelled structures, Angew. Chem. Int. Ed.2005,44, 6727.
    [21]X. W. Lou, C. L. Yuan, L. A. Archer, Double-walled SnO2 Nano-cocoons with movable magnetic cores, Adv. Mater.2007,19,3328.
    [22]X. W. Lou, C. L. Yuan, L. A. Archer, Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls:cavity size tuning and functionalization, Small 2007,3,261.
    [23]Z. Y. Wang, D. Y. Luan, C. M. Li, F. B. Su, S. Madhavi, F. Y. C. Boey, X. W. Lou, Fast formation of SnO2 nanoboxes with enhanced lithium storage capability, J. Am. Chem. Soc. 2010,132,16271.
    [24]H. L. Xu, W. Z. Wang, Template synthesis of multishelled CU2O hollow spheres with a single-crystalline shell Watt, Angew. Chem. Int. Ed.2007,46,1489.
    [25]Y. Sun, Y. N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science 2002, 295,2176.
    [26]Y. N. Xia, N. J.Halas, Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures, MRS. Bull.2005,30,338.
    [27]Y. J. Xiong, B. Wiley, J. Y. Chen, Z. Y. Li, Y. D. Yin, Y. N. Xia, Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties, Angew. Chem. 2005,117,8127-8131.
    [28]Y. J. Xiong, B. Wiley, J. Y.Chen, Z. Y. Li, Y. D. Yin, Y. N. Xia, Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties, Angew. Chem. Int. Ed.2005,44,7913-7917.
    [29]H. J. Fan, U. Gosele, M. Zacharias, Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes:a review, Small 2007,3,1660.
    [30]J. J. Teo, Y. Chang, H. C. Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres, Langmuir 2006,22,7369.
    [31]H. G. Yang, H. C. Zeng, Self-Construction of Hollow SnO2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites, Angew. Chem.2004,116,6056.
    [32]D. Kim, J. Park, K. An, N. K. Yang, J. G. Park, T. Hyeon, Synthesis of hollow iron nanoframes, J. Am. Chem. Soc.2007,129,5812.
    [33]Y. Liu, Y. Chu, Y. J. Zhuo, L. Dong, L. Li, M. Li, Controlled synthesis of various hollow Cu nano/microStructures via a novel reduction route, Adv. Funct. Mater.2007,17,933.
    [34]T. He, D. R. Chen, X. L. Jiao, Y. L. Wang, Co3O4 nanoboxes:surfactant-templated fabrication and microstructure characterization, Adv. Mater.2006,18,1078.
    [35]X. W. Lou, C. L. Yuan, Q. Zhang, L. A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Angew. Chem. Int. Ed.2006,45,3825.
    [36]F. H. Zhao, W. J. Lin, M. M.Wu, N. S. Xu, X. F. Yang, Z. R. Tain, Q. Su, Hexagonal and prismatic nanowalled ZnO microboxes, Inorg. Chem.2006,45,3356.
    [37]J. B. Fei, Y. Cui, X. H. Yan, W. Qi, Y. Yang, K. W. Wang, Q. He, J. B. Li, Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment, Adv. Mater.2008,20,452.
    [38]J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 2001,414,359.
    [39]Y. Y. Yang, Y. Q. Zhao, L. F. Xiao and L. Z. Zhang, Nanocrystalline ZnMn2O4 as a novel lithium-storage material, Electrochem. Commun,2008,10,1117.
    [40]Y. F. Deng, S. D. Tang, Q. M. Zhang, Z. C. Shi, L. T. Zhang, S. Z. Zhan and G. H. Chen, Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries, J. Mater. Chem.2011,21,11987.
    [41]L. F. Xiao, Y. Y. Yang, J. Yin, Q. Li and L. Z. Zhang, Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage, J. Power Source 2009,194,1089.
    [42]F. M. Courtel, H. Duncan, Y. Abu-Lebdeh and I. J. Davidson, High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A= Co, Ni, and Zn), J. Mater. Chem. 2011,21,10206.
    [43]S. W. Kim, H. W. Lee, P. Muralidharan, D. H. Seo, W. S. Yoon, D. K. Kim and K. Kang, Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries, Nano Res.2011,4,505.
    [44]H. B. Wang, F. Y. Cheng, Z. L. Tao, J. Liang and J. Chen, The synthesis and electrochemical performance of ZnMn2O4 hollow microspheres as anode mterial for lithium-ion batteries, Chin. J. Inorg. Chem,2011,27,816.
    [45]X. W. Lou, L. A. Archer and Z. C. Yang, Hollow micro-/nanostructures:synthesis and applications, Adv. Mater.2008,20,3987.
    [46]J. Liu, F. Liu, K. Gao, J. S. Wu and D. F. Xue, Recent developments in the chemical synthesis of inorganic porous capsules, J. Mater. Chem.2009,19,6073.
    [47]L. Z. Wang, F. Q. Tang, K. Ozawa, Z. G. Chen, A. Mukherj, Y. C. Zhu, J. Zou, H. M. Cheng, G. Q. Lu, A general single-source route for the preparation of hollow nanoporous metal oxide structures, Angew. Chem. Int. Ed.2009,48,7048.
    [48]J. F. Li, B. J. Xi, Y. C. Zhu, Q. W. Li, Y. Yan, and Y. T. Qian, "A precursor route to synthesize mesoporous y-MnO2 microcrystal and their applications in lithium battery and water treatment", Journal of Alloys and Compounds 2011,509,9542-9548.
    [49]J. K. Zhu and Q. M. Gao, Mesoporous MCo2O4(M=Cu, Mn and Ni) spinel:structural replication, characterization and catalytic application in CO oxidation, Microporous and Mesoporous Materials 2009,124,144-152.
    [50]H. T. Zhang and X. H. Chen, Size-dependent x-ray photoelectron spectroscopy and complex magnetic properties of CoMn2O4 spinel nanocrystals, Nanotechnology 2006,17,1384-1390.
    [51]J. F. Marco, J. R. Gancedo, M. Gracia, J. L. Gautier, E. I. Rios, H. M. Palmer, C. Greaves, F. J. Berry Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4, J. Mater. Chem.2001,11,3087.
    [52]T. Baird, K.C. Campbell, P. J. Holliman, R. W. Hoyle, M. Huxam, D. Stirling, B. P. Williams, M. Morris, Cobalt-zinc oxide absorbents for low temperature gas desulfurization, J. Mater. Chem.1999,9,599.
    [53]A. La Rosa-Toro, R. Berenguer, C. Quijada, F. Montilla, E. Morallon, J. L. Vazquez, Preparation and characterization of copper-doped cobalt oxide electrodes, J. Phys. Chem. B2006,110,24021.
    [54]J. F. Marco, J. R. Gancedo, M. Gracia, J. L. Gautier, E. Rios, F. J. Berry, Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods:an XRD, XANES, EXAFS, and XPS study, J. Solid State Chem.2000,153,74.
    [55]W. F. Wei, W. Chen, D.G. Ivey, Rock salt-spinel structural transformation in anodically electrodeposited Mn-Co-O nanocrystals, Chem. Mater.2008,20,1941.
    [56]H. T. Zhang and X. H. Chen, Controlled synthesis and anomalous magnetic properties of relatively monodisperse CoO nanocrystals, Nanotechnology 2005,16,2288
    [57]W. S. Seo, J. H. Shim, S. J. Oh, E. K. Lee, N. H. Hur and J. T. Park, Phase-and size-controlled synthesis of hexagonal and cubic CoO nanocrystals, J. Am. Chem. Soc.2005,127,6188.
    [58]M. Kruk and M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater.2001,13,1369.
    [59]C. Liu, F. Li, L. P. Ma, and H. M. Cheng, Advanced materials for energy storage, Adv. Mater. 2010,22, E28-E62.
    [60]S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. M. Tarascon, On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential, J. Electrochem. Soc. 2002,149, A627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700