硫化铜及钒基化合物的溶剂热合成及锂离子电池性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪日益严重的能源、环境危机使人们对于能源的生产和转换提出了更高的需求。纳米材料由于其高选择性和高效性,成为能源生产和转换材料的首选.如选择纳米材料作为锂离子电池的电极材料,已然成为一个极受关注的研究课题。本文旨在利用溶剂热合成的纳米材料具有结晶性好、纯度高、颗粒团聚少等优点,控制合成不同形貌的过渡金属氧化物、硫化物,如三维的纳米/微米复合结构,二维类似与石墨烯结构的超薄纳米片;讨论了温度、时间等对产物形貌、组成的影响;根据材料本身的特征,研究其在锂离子电池中的电化学行为:并初步讨论不同的形貌结构对材料性能的影响。本论文的主要内容可归纳如下:
     1.利用简单的乙醇-水体系,未添加任何表面活性剂,混合溶剂热条件下得到了由厚10nm的片交叉生长成的直径约为200-300nm的CuS纳米微球。通过发光性能的研究,发现量子效应作用导致光致发光及紫外可见吸收光谱的峰位置普遍发生蓝移。同时对硫化铜CuS纳米微球进行了锂电性能的测试,发现其存在两个稳定的放电平台。首次对其进行了水相锂电性能的测试,发现它存在一个放电平台处于水溶液的电化学稳定窗口内,是一种潜在的水溶液锂离子电池的负极材料。
     2.用简单的低温溶剂热法合成了由大小400nm的纳米立方块组成的乙二醇钒微米球。在乙二醇溶液中,研究了温度对于其价态和形貌的影响,发现随着温度的升高,经历了由四价的球状乙二醇钒向五价片花状(NH4)2V6O16的转变。首次研究了乙二醇钒的电化学性能,发现在60mA/g电流密度下,其首次放电容量可达1826mAh/g,即使在200次循环之后,容量仍可以保持在477mAh/g,表现出较高的放电容量和优良的循环性能,使之有望应用于锂离子电池。并通过“自上而下”热转化法得到不同形貌的V2O3微纳结构也是一种潜在的锂离子电极材料。
     3.以乙醇作为溶剂,不需要任何模板和表面活性剂,利用前驱物热分解的方法控制合成得类似石墨烯厚度的超薄V2O3纳米片。通过测试其电阻和温度的相互关系,发现原本在0-300K存在一级相变的V2O3并没有出现,这种V203极薄的纳米片具有良好的导电性,可能是一种很好的柔性电极材料。通过调节反应的温度、时间,控制合成由厚度不同的纳米片组成的大小和致密程度皆不同的三维片花球状的前驱物。分别在氩气和含10%乙炔气的氩气中退火,可得到主体形貌维持不变的V2O3及V2O3/C微纳结构。通过对比V2O3超薄片、三维片花及其各自的碳包覆材料在锂离子电池中的电化学性质,发现三维花球的V2O3/C微纳结构在0-3V的电压范围内,200mA/g的电流密度下,80次循环过后,仍可保持360mAh/g的放电容量,显示了优异的放电容量和稳定的循环性能。
     4.利用简单的溶剂热,在300℃使用六氯-1.3-丁二烯和金属钠为原料,在聚乙二醇600辅助作用下,一步合成得到1-3层的石墨烯片。
The increasingly serious crises of the energy and environment in the21st century make people have a higher demand on the production and conversion of energy. Due to its high selectivity and high efficiency, nanomaterial is one of the most optimal choices. For example, choosing nanomaterial as the electrode material in the lithium ion battery has become a very popular research subject in the whole world. As we all know, the products of solvothermal synthesis method have a lot of unique merits such as high crystallinity, high purity, less aggregation and so on. The goal of this dissertation is to synthesis transition metal oxides and sulfides with different morphologies controllably, such as3D micro-nanostructures and2D graphene-like structures. According to the characteristics of material itself, we discuss the influences of temperature and time on the morphologies and compositions of these micro-nanostructures, study their electrochemical behaviors in the lithium ion battery, in the further, contrast the properties of materials having different morphologies. The main points are summarized briefly as follows:
     1. We successfully synthesized monodispersed CuS nanospheres with a diameter of about200nm consisted of nanoplates with the thickness of10nm by a hydro/solovthermal strategy without any surfactant. The PL and UV-Vis absorption spectrums both exhibit some degree blue shift attributed to the quantum confinement of the CuS nanoplates. The electrochemical performances of CuS nanospheres were studied both in organic and aqueous lithium-ion batteries. There have two discharging platforms, one of which is in the window of aqueous solution on the electrochemical reaction. It may be a promising candidate of cathode material in aqueous lithium-ion batteries.
     2. Vanadyl ethylene glycolate (VEG) spherical microstructures composed of nanocube-based with an average diameter of-400nm were solvothermally prepared at180℃. The influence of temperature in solvothermal process was investigated. When the temperature rised to250℃, the products transformed from VEG (IV) spheres to (NH4)2V6O16(V) flakes.The electrochemical properties of vanadyl ethylene glycolate in rechargeable lithium batteries were firstly investigated. At a current density of60mA/g the initial specific discharge capacity is1826mA/g and even after200cycles the discharge capacity is still maintained at477mA/g,which exbits high discharge capacity and good cycling stability. V2O3with different morphologies were also prepared by a simple top-down precursor-pyrolyzation strategy, which is also a promising electrode material in lithium-ion batteries.
     3. Without any surfactant, V2O3graphene-like structures by the top-down precursor-pyrolyzation strategy had been synthesized controllably. Interestingly enough, these ultrathin V2O3nanosheets which should exist temperature-induced reversible metal insulator transition represents a brand new two-dimensional material having metallic behavior. Meanwhile, we successfully realized controllable synthesis of3D flower-like structure precursor composed of nanaosheets having different diameter, packing density, and thickness of nanosheets by adjusting temperature and time. Using different gases, the V2O3and V2O3/C with the perfect inheritance of the morphology of their precursors were prepared by top-down precursor-pyrolyzation strategy. Compared with the V2O32D ultrathin sheets,3D flower-like structures and their composites with carbon coating, at the current density of200mA/g, the discharge capacity of V2O3/C3D flower-like micro-nanostructures is still maintained at360mAh/g after80cycles, which exbits excellent discharge capacity and superior cycling stability.
     4. Graphene nanosheets (1-3graphite layers)had been solvothermally synthesized through reducing hexachloro-1,3-butadiene (C4Cl6) by Metallic sodium in polyethylene glycol (PEG-600) at300℃
引文
[I]R. P. Feyman, In Miniaturiation, New York, Reinhold,1961.
    [2]张立德,牟其美,纳米材料和纳米结构,科学出版社,2001。
    [3]王世敏,许祖勋,傅晶,纳米材料制备技术,化学工业出版社,2001。
    [4]朱静等,纳米材料和纳米器件,清华大学出版社,2003。
    [5]黄开金,纳米材料的制备及应用,冶金工业出版社,2009。
    [6]徐云龙,赵崇军,钱秀珍,纳米材料学概论,华东理工大学出版社,2008。
    [7]R. E. Cavieehi, R. H. Sidsbee, Phys. Rev. Lett.1984,52,1453.
    [8]Y Ping, G. C. Hdjinanayis, et al, Appl. Phys.1990,67,4502.
    [9]R. Leon, et al., Scince 1995,267,1966.
    [10]P. Ball, L. Garwin, Nature 1992,355,762.
    [11]A. Henglein, Chem. Rev.1989,89,1861.
    [12]L. E. Brus, J. Phys. Chem.1985,80,4403.
    [13]Y. N. Wang, J. Herron, J. Phys. Chem.1991,95,525.
    [14]A. J. Legget, S. Chakravarty, et al., Rev. Mod. Phys.1987,59,1.
    [15]R. Brringer, H. Gleiter, H. P. Klein, P. Marquit, Phys. Lett.1984,102A,365.
    [16]H. S. Qian, G. F. Lin, Y. X. Zhang, P. Gunawan, R. Xu, Nanotechnology 2007,18,355602.
    [17]S. Y. Yao, Z. H. Xie, J. Materials Processing Technology 2007,186,1.
    [18]M. P. Pileni, Advance in Colloid and Interface Science 1993,16,139.
    [19]B. Wang, F. Gao, D. B. Zhang, H. M. Cheng, J. M. Ma, L. M. Qi, ActaPhysico-Chimica Sinica.2003,19,21-24.
    [20]L. M. Qi, H. Coffen, M. Antomietti, Angew. Chem. Int. Ed.2000,39,1704.
    [21]L. M. Qi, J. M. Ma, H. M. Cheng, Z. G. Zhao, J. Mater. Sci. Lett.1997,16,1779-1781.
    [22]X. T. Dong, G. Y. Hong, et al, J. Mater Sci. Technol.1997,13,113.
    [23]董相廷,洪广吉,于德财,硅酸盐学报1997,25,323。
    [24]T. W. Shaw, et al., J. Am. Ceram. Soc.1986,69,979.
    [25]M. G. Pacheco, et al., J. Mater. Res.1995,10,1264.
    [26]K. S. Mazdiyasni, et al., J. Am. Ceram. Soc.1969,52,523.
    [27]X. Li, H. Zhang, S. Li, B. Xu, M. Zhao, J Matter Chem.1993,3,547.
    [28]H. Gleiter, Prog. Mater. Sci 1990,33,223.
    [29]肖汉宁等,无机化学学报1993,9,96。
    [30]刘杏芹等,应用化学1996,13,65。
    [31]X. C. Jiang, Y. Xie, Y. T. Qian, et al., Adv. Mater.2001,13,1278.
    [32]J. Q. Hu, B. Deng, Q. Y. Lu, K. B. Tang, R. R. Jiang, Y. T. Qian, G. E. Zhou, A. Cheng, Chem. Comm.2000,8,715.
    [33]Q. Tang, W. J. Zhou, J. M. Shen, W. Zhang, L. F. Kong, Y. T. Qian, Chem. Comm.2004,6, 712.
    [34]Q. Tang, Y. T. Qian, et al., J. Mater. Chem.2003,3,3103.
    [35]Z. P. Liu, Y. T. Qian, et al.,Adv. Mater.2003,15,1958.
    [36]J. Y. Li, S. L. Xiong, J. Pan, Y. T. Qian, J. Phys. Chem. C.2010,114,9645.
    [37]W. Kang, et al., The Journal of Physical Chemistry C.2011,115,6250.
    [38]T. Mei, K. B. Tang, Y. C. Zhu, Y. T. Qian, Dalton Trans.2011,40,7645.
    [39]X. Zhang, et al., Crystengcomm.2012,14,1485.
    [40]D. M. Bibby, M. P. Dale, Nature 1985,317,157.
    [41]Y. D. Li, et al., Science 1998,281,246.
    [42]Y. Jiang, et al.,J. Am. Chem. Soc.2000,122,12383.
    [43]M. W. Shao, Q. Li, J. Wu, B. Xie, S. Y. Zhang, Y. T. Qian, Carbon 2002,40,2961.
    [44]Y. L. Gu, L. Y. Chen, L. Shi, J. H. Ma, Z. H. Yang, Y. T. Qian, Carbon 2003,41,2674.
    [45]J. W. Liu, M. W. Shao, Q. Tang, X. Y. Chen, Z. P. Liu, Y. T. Qian, Carbon 2003,41,1682.
    [46]J. W. Liu, M. W. Shao, Q. Xie, L. F. Kong, W. C. Yu, Y. T. Qian, Carbon 2003,41,2101.
    [47]Y. L. Gu, L. Y. Chen, Z. F. Li, Y. T. Qian, W. Q. Zhang, Carbon 2004,42,235.
    [48]J. W. Liu, W. J. Lin, X. Y. Chen, S. Y. Zhang, F. Q. Li, Y. T. Qian, Carbon 2004,42,669.
    [49]M. W. Shao, D. B. Wang, G. H. Yu, B. Hu, W. C. Yu, Y. T. Qian, Carbon 2004,42,183.
    [50]W. Zhang, D. K. Ma, H. W. Liu, L. F. Kong, W. C. Yu, Y. T. Qian, Carbon 2004,42,2341.
    [51]T. Luo, J. W. Liu, L. Y. Chen, S. Y. Zeng, Y. T. Qian, Carbon 2005,43,755.
    [52]J. M. Shen, Z. Huang, J. Y. Li, L. S. Gao, H. Y. Zhou, Y. T. Qian, Carbon 2005,43,2823.
    [53]L. Q. Xu, H. W. Liu, J. Du, Y. Y. Peng, Y. T. Qian, Carbon 2005,43,1560.
    [54]L. Q. Xu, W. Q. Zhang, Q. Yang, Y. W. Ding, W. C. Yu, Y. T. Qian, Carbon 2005,43,1090.
    [55]T. Luo, L. Y. Chen, K. Y. Bao, W. C. Yu, Y. T. Qian, Carbon 2006,44,2844.
    [56]X. C. Ma, F. Xu, L. Y. Chen, Y. G. Zhang, Z. D. Zhang, J. Qian et al., Carbon 2006,44, 2861.
    [57]J. M. Shen, J. Y. Li, Q. Chen, T. Luo, W. C. Yu, Y. T. Qian, Carbon 2006,44,190.
    [58]J. M. Shen, J. Y. Li, Z. Huang, Q. Chen, S. Y. Zhang, Y. T. Qian, Carbon 2006,44,2171.
    [59]G. C. Xi, M. Zhang, D. Ma, Y. C. Zhu, H. B. Zhang, Y. T. Qian, Carbon 2006,44,734.
    [60]W. Q. Zhang, K. B. Tang, Y. K. Liu, Y. C. Zhu, W. C. Yu, Y. T. Qian, Carbon 2007,45, 1571.
    [61]H. B. Li, Y. C. Zhu, Z. H. Mao, J. Gu, J. H. Zhang, Y. T. Qian, Carbon 2009,47,328.
    [62]Q. Li, L. Wang, Y. Zhu, Y. Qian, Mater. Lett.2011,65,2410.
    [63]T. Mei, N. Li, Q. Li, Z. Xing, K. Tang, Y. Zhu, et al., Mater. Res. Bull.2012,
    [64]Y. Xie, Y. T. Qian, W. Z. Wang, Science 1996,272,1926.
    [65]Y. Xie, Y. T. Qian, S. Y. Zhang, Appl. Phys. Lett.1996,69,334.
    [66]J. Q. Hu, B. Deng, W. X. Zhang, Chem. Phys. Lett.2002,351,229.
    [67]Z. P. Liu, S. Li, Y. Yang, S. Peng, Z. K. Huu, Y. T. Qian, Adv. Mater.2003,15,936-940.
    [68]Z. P. Liu, S. Li, Y. Yang, S. Peng, Z. K. Huu, Y. T. Qian, Adv. Mater.2003,15,1946-1948.
    [69]Z. P. Liu, S. Li, Y. T. Qian, Adv. Mater.2003,107,12658.
    [70]Z. P. Liu, Y. T. Qian, New J. Chem.2003,27,1748.
    [71]S. L. Xiong, B. J. Xi, C. M. N. Wang, D. C. Xu, X. M. Feng, Z. C. Zhu, Y. T. Qian, Adv. Funct. Mater.2007,17,2728.
    [72]B. J. Xi, S. L. Xiong, D. C. Xu, J. F. Li, H. Y. Zhou, J. Pan, J. Y. Li, Y. T. Qian, Chem. Eur. J.2008,14,9786.
    [73]郭炳琨,徐徽,肖立新,王先友,锂离子电池,中南大学出版社2002。
    [74]吴宇平,戴晓兵,马军旗,程预江,锂离子电池-应用与实践,化学工业出版社2004。
    [75]吴宇平,万春荣,姜长印,《锂离子二次电池》,化学工业出版社2002。
    [76]戴永年,杨斌,姚耀春等,锂离子电池发展状况,中国储能电池与动力电池及其关键材料学术研讨会.长沙,2005。
    [77]J. M.Tarascon, M. Armand, Nature 2001,414,359.
    [78]T. Nagaura, Proceedings of the 5th International Seminar on Lithium Battery Technology and Applications. Deefield Beach. FL. March 5-7,1990, Florida Education Seminars Inc, BocaRaton, FL.
    [79]M. Armand, J. M. Tarascon, Nature 2001,414,395.
    [80]J. R. Dahn, T. Zheng, Y. Liu, J. S. Xie, Science 1995,270,590.
    [81]T. Ohzuku, Y. Iwakoshi, K. Sawai, J. Electrochem. Soc.1993,140,2490.
    [82]X. Y. Hao, G. S. Gai, Y. F. Yang, Rare. Metal. Mat. Eng.2005,34,167.
    [83]D. Aurbach, M. D. Levi,J. Electrochem. Soc.1998,145,3024.
    [84]J. M. Chen, et al., J. Power Sources 1995,54,494.
    [85]曹高萍.锂离子电池碳负极材料及其改性研究,博士论文,天津大学化工学院,1998。
    [86]E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett.2008,8,2277.
    [87]S. Y. Chew, S. H. Ng, J. Z. Wang, P. Novak, F. Krumeich, S. L. Chou, J. Chen, H. K. Liu, Carbon 2009,47,2976.
    [88]F. A. Hill, T. F. Havel, C. Livermore, Nanotechnology 2009,20,255704.
    [89]C. Masarapu, V.Subramanian, H. W. Zhu, B. Q. Wei, Adv. Funct. Mater.2009,19,1008.
    [90]F. Ji, Y. L. Li, J. M. Feng, D. Su, Y. Y. Wen, Y. Feng, F. Hou, J. Mater. Chem.2009,19, 9063.
    [91]M. H. Liang, L. J. Zhi, J. Mater. Chem.2009,19,5871.
    [92]S. Liu, K. Chen, Y. Fu, S. Yu, Z. Bao, Applied Surface Science 2012,258,5299
    [93]J. L. C. Rowsell, V. Pralong, L. F. Nazar, J. Am. Chem. Soc.2001,123,8598.
    [94]Z. Stoeva, R. Gomez, A. G. Gordon, M. Allan, J. J. Titman, J. Am. Chem. Soc.2004,126, 4066.
    [95]C. H. Hu, Y. Yang, Z. Z. Zhu, Solid State Sci.2009,11,1898.
    [96]W. M. Zhang, J. S. Hu, Y. G. Guo, S. F. Zheng, L. S. Zhong, W. G. Song, L. J. Wan, Adv Mater.2008,20,1160.
    [97]Y. Yu, C. H. Chen, Y. Shi,Adv. Mater.2007,19,993.
    [98]C. Zhang, et al., Carbon 2012,50,1897.
    [99]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature 2000,407,496.
    [100]N. Pereira, L. Dupont, J. M.Tarascon, L. C. Klein, G. Amatucci,J. Electrochem. Soc.2003, 150,A1273.
    [101]H. Li, P. Balaya, J. Maier, J. Electrochem. Soc.2004,151, A1878.
    [102]J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater.2005,17,582.
    [103]G. D. Du, Z. P. Guo, S. Q. Wang, R. Zeng, Z. X. Chen, H. K. Liu, Chem. Comm.2010,46, 1106.
    [104]D. Larcherz, G. Sudant. J. B. Leriche, Y. Chabre, J. M. Tarascon.J. Electrochem. Soc.2002, A234.
    [105]S. Laruelle, S. Grugeon, P. Poizot, M. Dolle. L. Dupont, J. M. Tarascon. J. Electrochem. Soc.2002,149, A627.
    [106]S. Grugeon, S. Laruelle, R. H. Urbina, L. Dupont, P. Pizot, J. M. Tarascon, J. Electrochem. Soc.2001,148,A285.
    [107]S. Grugeon, S. Laruelle, L. Dupont, J. M. Tarascon, Solid State Sciences 2003,5,895.
    [108]L. Tian, et al., Advanced Functional Materials 2010,20,617
    [109]J. Gao, M. A. Lowe, H. C. D. Abruna, Chemistry of Materials 2011,23,3223.
    [110]W. Zhang, et al., Advanced Functional Materials 2011,21,3516.
    [111]J. D. Bernal, Proc. Roy. Soc.1924,749, A106,
    [112]F. Tuinstra, J. Koenig, J. Chem. Phys.1970,96,173.
    [113]K. Dokko, M. Mohamedi, Y. Fujita, T. Itoh, M. Nishizawa, M. Umeda, I. Uchida, J. Electrochem. Soc.2001,148, A 422.
    [114]H. Xia, L. Lu, G. Ceder, J. Power Source 2006,159,1422.
    [115]Y. Jang, B. J. Neudecker, N. J. Dudney, Electrochem. Solid-State Lett.2001,4, A4.
    [116]Y. H. Rho, K. Kanamura, J. Electrochem. Soc.2004,151, A1406.
    [117]W. D. Yang, C. Y. Hsieh, H. J. Chuang, Y. S. Chen, Ceram. Int.2010,36,135.
    [118]X. L. Zeng, Y. Y. Huang, F. L. Luo, Y. B. He, D. G. Tong, J. Sol-Gel Sci. Technol 2010,54, 139.
    [119]C. Q. Zhu, C. H. Yang, W. D. Yang, C. Y. Hsieh, H. M. Ysai, Y. S.Chen, J. Alloys Compd. 2010,496,703.
    [120]H. L. Chen, X. P. Qiu, W. T. Zhu, P. Hagenmuller, Electrochem.Commun.2002,4,488.
    [121]G. G. Amatucci, J. M. Tarascon, D. Larcher, L. C. Klein, Solid State Ionics,1996,84,169.
    [122]T. Fujiwara, M. Yoshimura,J. Electroanal.Chem.2003,559,63.
    [123]X. Qian, X. Cheng, Z. Y. Wang, X. J. Huang, R. Guo, D. L. Mao, C.K. Chang, W. J. Song, Nanotechnology 2009,20,115608.
    [124]H. L. Chen, C. P. Grey, Adv. Mater.2008,20,2206.
    [125]T. Mei, K. B. Tang, Y. C. Zhu, Y. T. Qian, Dalton Trans.2011,40,7645.
    [126]Q. Hao, et al., Electrochim. Acta 2011,56,9027.
    [127]A. Rougier, P. Gravereau, C. Delmas, J. Electrochem. Soc.1996,143,1168.
    [128]M. Wakihara, Mater. Sci. Eng. R.2001,33,109.
    [129]G. Dutta, A. Manthiram, J. B. Goodenough, J. C. Grenier, Solid State Chem.1992,96,123.
    [130]H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, J. Yamaki, Solid State Ionics 1995,80,281.
    [131]J. Morales, C. P. Vicente, J. L. Tirado, Mater. Res. Bull.1990,25,623.
    [132]W. Li, J. N. Reimers, J. R. Dahn, Solid State Ionics 1993,67,123.
    [133]T. Ohzuku, A. Ueda, M. Nagayam, J. Electrochem. Soc.1993,140,1862.
    [134]R. Stoyanova, et al, Solid State Ionics 2003,161,197.
    [135]C. S. Dai, D. L. Wang, F. P. Wang, J. Yang, Chinese Journal of Inorganic Chemistry 2006, 22,2011.
    [136]Z. Yang, B. Wang, W. Yang, X. Wei, Electrochimica Acta 2007,52,8069.
    [137]J. Cabana, S. H. Kang, C. S. Johnson, M. M. Thackeray, C. P. Grey, Journal of the Electrochemical Society 2009,156, A730.
    [138]X. Cao, L. Xie, R. Wang, Journal of Solid State Electrochemistry 2010,15,473.
    [139]M. L. P. Le, P. Strobel, F. Alloin, T. Pagnier, Electrochimica Acta 2010,56,592.
    [140]F. Cao, J. Prakash, Electrochim. Acta,2002,47,1607.
    [141]E. Deiss, Electrochim. Acta,2002,47,4027.
    [142]P. N. Kumta, D. Gallet, A. Waghray, G. E. Bolmgren, M. P. Setter,J. Power Sources 1998, 72,91.
    [143]M. M. Thackeray, W. I. David, P. G. Bruce, J. B. Goodenough, Mater. Res. Bull.1983,18, 461.
    [144]Y. Xia, K. Naoki, Y. Masaki, J. Power Sources.2000,90,135.
    [145]X. Sun, H. S. Lee, X. Yang, J. McBreen, Electrochem Solid-State Lett.2001,4, A184.
    [146]S. T. Myung, S. Komaba, N. Kumagai, J. Electrochem Soc.2001,148, A482.
    [147]A. B.Yuan, L. Tian, W. M. Xu, Y. Q. Wang, J. Power Sources 2010,195,5032.
    [148]L. Zhou, D. Zhao, X. D. Lou, Angewandte Chemie International Edition 2012,51,239
    [149]X. Huang, et al., Journal of Power Sources 2012,202,352.
    [150]Y.K. Sun, et al, Advanced Materials 2012,24,1192.
    [151]C. Feng, et al, Electrochimica Acta 2012,61,87.
    [152]A. S. Andersson, B. Kalska, L. Haggstrom, J. O. Thomas, Solid State Ionics 2000,130,41.
    [153]M. Takahashi, S.Tobishima, K. Takei, J. Power Sources,2001,97,508.
    [154]M. C. Tucker, M. M. Doeff, T. J. Richardson, J. American Chem. Soc.2002,124,3832.
    [155]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc.1997,144, 1188
    [156]H. C. Kang, D. K. Jun, B. Jin, E. M. Jin, K. H. Park, H. B. Gu, K. W. Kim, J. Power Sources 2008,179,340.
    [157]C. H. Mi, X. G. Zhang, X. B. Zhao, H. L. Li, J. Alloys Compd.2006,424,327.
    [158]M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara, J. Power Sources 2003,119, 258.
    [159]H. P. Liu, Z. X. Wang, X. H. Li, H. J. Guo, W. J. Peng, Y. H. Zhang, Q. Y. Hu, J. Power Sources 2008,184,469.
    [160]K. Dokko, S. Koizumi, K. Sharaishi, K. Kanamura, J. Power Sources 2007,165,656.
    [161]M. R. Yang, W. H. Ke, S. H. Wu, J. Power Sources 2005,146,539.
    [162]Y. Yang, X. Z. Liao, Z. F. Ma, B. F. Wang, L. He, Y.S. He, Electrochem. Commun.2009, 11,1277.
    [163]Y. Kadoma, J. M. Kim, K. Abiko, K. Ohtsuki, K. Ui, N. Kumagai, Electrochem. Acta 2010, 55,1034.
    [164]Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu, H. G. Pan, J. Power Sources 2008,184,444.
    [165]A. Fedorkova, A. Nacher-Alejos, P. Gomez-Romero, R. Orinakova, D. Kaniansky, Electrochim. Acta 2010,55,943.
    [166]M. S. Whittingham, J. Electrochem. Soc.1975,122,315.
    [167]P. Ragupathy, S. Shivakumara, H.N. Vasan, N. Munichandraiah, J. Phys. Chem. C,2008, 112,16700
    [168]D. O. Scanlon, A. Walsh, B. J. Morgan, G. W. Watson, J. Phys. Chem. C,2008,112,9903.
    [169]D. W. Murphy, P. A. Christian, F. J. DiSalvo, J. V. Waszczak, Inorg. Chem.1979,18,2800.
    [170]Y. Wang, G. Z. Cao, Chem. Mater. 2006,18,2787.
    [171]C. J. Patrissi, C. R. Martin, J. Electrochem. Soc.1999,146,3176.
    [172]N. Li, C. J. Patrissi, C. R. Martin, J. Electrochem. Soc.2000,147,2044.
    [173]C. R. Sides, C. R. Martin, Adv. Mater.2005,17,125.
    [174]K. Takahashi, S. J. Limmer, Y. Wang, G. Cao, J. Phys. Chem. B,2004,108,9795.
    [175]K. Takahashi, Y. Wang, G. Cao, J. Phys. Chem. B 2005,109,48.
    [176]A. M. Cao, J. S. Hu, H. P. Liang, L. J. Wan,Angew. Chem., Int. Ed.2005,44,4391.
    [177]M. Morcrette, P. Martin, P. Rozier, H. Vezin, F. Chevallier, L. Laffont, P. Poizot, J. M. Tarascon, Chem. Mater.2005,17,418.
    [178]Y. S. Hu, X. Liu, J-O Miiller, R. Schlogl, J. Maier, Angew. Chem. Int. Ed.2009,48,210.
    [179]A. Hammou, A. Hammouche, Electrochim. Acta 1988,33,1719.
    [180]C. Z. Wu, Y. Xie, L. Y. Lei, S. Q. Hu, C. Z. Ouyang, Adv. Mater.2006,18,1727.
    [181]H. M. Liu, Y. G. Wang, K. X. Wang, E. J. Hosono, H. S. Zhou, J. Mater. Chem.2009,19, 2835.
    [182]Z. J. Chen, S. K. Gao, L. L. Jiang, M. D. Wei, K. M. Wei, Mater. Chem. Phys.2010,121, 254.
    [1]K. Takase, et al., Solid State Commun.2002,123,531.
    [2]E. J. Silvester, F. Grieser, B. A. Sexton, T. W. Healy, Langmuir 1991,7,2917.
    [3]R. R. Gainov et al., Physical Review B 2009,79.
    [4]N. S. Pavlov, V. A. Galkin, I. A. Nekrasov, E. Z. Kurmaev, Phys. Solid State 2009,51,2207.
    [5]Y. Wan, C. Wu, Y. Min, S. H. Yu, Langmuir 2007,23,8526.
    [6]L. Reijnen, B. Meester, A. Goossens, J. Schoonman, Chem. Vap. Deposition 2003,9,15.
    [7]S. Jost, et al., Thin Solid Films 2009,517,2136.
    [8]Y. H. Chen, et al., Thin Solid Films 2009,517,4984.
    [9]L. Fei, B. Wentuan, K. Tao, Q. Qinghua, Optical, Cryst. Res. Technol.2009,729.
    [10]X. Y. Wang, Z. Fang, X. Lin, J. Nanopart. Res.2009,11,731.
    [11]L. X. Hong, Z. J. Jie, C. H. Yuan, Materials Science & Engineering B (Solid-State Materials for Advanced Technology) 2001, B85,85.
    [12]C. F. Mu, et al., Colloids and Surfaces a-Physicochemical and Engineering Aspects 2010, 371,14.
    [13]L. Reijnen, B. Meester, F. de Lange, J. Schoonman, A. Goossens, Chem. Mater.2005,2724.
    [14]Y. B. Chen, L. Chen, L. M. Wu, Cryst. Growth Des.2008,8,2736
    [15]L. Gao, et al., Solid State Commun.2004,130,309.
    [16]L. F. Chen, Y. Z. Shang, H. L. Liu, Y. Hu, Materials & Design 2010,31,1661.
    [17]L. Ge, et al., Cryst. Growth Des.2010,10,1688.
    [18]M. Behboudnia, A. Habibi-Yangjeh, Y. Jafari-Tarzanag, A. Khodayari, Journal of Optoelectronics and Advanced Materials 2009,11,134.
    [19]L. Qingyi, G. Feng, Z. Dongyuan, Nano Lett.2002,2,725.
    [20]P. Zhang, L. Gao, J. Mater. Chem.2003,13,2007.
    [21]N. Banerjee, S. B. Krupanidhi, Dalton Trans.2010,39,9789.
    [22]Z. G. Cheng, S. Z. Wang, D. J. Si, B. Y. Geng, J. Alloys Compd.2010,492, L44.
    [23]C. Y. Wu, S. H. Yu, M. Antonietti, Chem. Mater.2006,18,3599.
    [24]J. G. Yu, J. Zhang, S. W. Liu, J. Phys. Chem. C 2010,114,13642.
    [25]S. M. Ou, et al., Mater. Chem. Phys.2005,94,460.
    [26]Y. C. Zhang, X. Y. Hu, Q. A. Tao, Solid State Commun.2004,132,779.
    [27]L. F. Chen, W. Yu, Y. Li, Powder Technol.2009,191,52.
    [28]L. Y. Zhu, Y. Xie, X. W. Zheng, X. Liu, G. E. Zhou, J. Cryst. Growth 2004,260,494.
    [29]A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago, Electrochim. Acta 2004, 50,893.
    [30]H. Mazor, D. Golodnitsky, L. Burstein, E. Peled, Electrochemical and Solid State Letters 2009,12,A232.
    [31]J. S. Chung, H. J. Sohn, J. Power Sources 2002,108,226.
    [32]W. Li, J. R. Dahn, D. S. Wainwright, Science 1994,264,1115.
    [33]J. Y. Luo, Y. Y. Xia, Adv. Funct. Mater.2007,17,3877.
    [34]G. J. Wang, et al., Angewandte Chemie-International Edition 2007,46,295.
    [35]S. D. Zhang, Y. M. Li, C. Z. Wu, F. Zheng, Y. Xie, J. Phys. Chem. C 2009,113,15058.
    [36]J. Y. Luo, W. J. Cui, P. He, Y. Y. Xia, Nature Chemistry 2010,2,760.
    [37]D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, J. Mater. Chem.2004,14,3370.
    [38]F. Zhang, S. S. Wong, Chem. Mater.2009,21,4541.
    [39]J. Liu, D. F. Xue, J. Cryst. Growth 2009,311,500.
    [40]K. J. Xu, W. P. Ding, Mater. Lett.2008,62,4437.
    [41]C. H. Lai, et al., J. Mater. Chem.2010,20,6638.
    [42]A. Debart, L. Dupont, R. Patrice, J. M. Tarascon, Solid State Sci.2006,8,640.
    [1]M. Wise, K. Calvin, A. Thomson, L. Clarke, B. Bond-Lamberty, R. Sands, S. J. Smith, A. Janetos and J. Edmonds, Science 2009,324,1183.
    [2]J. Livage, Coord. Chem. Rev.1999,190,391.
    [3]T. Chirayil, P. Y. Zavalij and M. S. Whittingham, Chem. Mater.1998,10,2629.
    [4]M. S. Whittingham, J. Electrochem. Soc.1976,123,315.
    [5]D. W. Murphy, P. A. Christian, F. J. Disalvo, J. N. Carides, J. Electrochem. Soc.1979,126, 497.
    [6]M. A. Zoubi, H. K. Farag, F. Endres, Journal of Materials Science 2008,44,1363.
    [7]S. J. Zhuo, M. W. Shao, Q. Zhou, F. Liao, Electrochim. Acta 2011,56,6453.
    [8]H. Wang, et al., J. Power Sources 2011,196,788.
    [9]C. Wu, Y. Xie, Energy Environ. Sci.2010,3,1191.
    [10]R. Enjalbert, J. Galy, Acta Cryst. C 1986,42,1986.
    [11]M. S. Whittingham, Chem. Rev.2004,104,4271.
    [12]M. Ganesan, Ionics 2009,15,609.
    [13]Y. Wang, G. Cao, Adv. Mater.2008,20,2251.
    [14]Y. Wang, G. Z. Cao, Adv. Mater.2008,20,2251.
    [15]D. Aurbach, Y. Goffer, in Nonaqueous Electrochemistry, ed. D. Aurbach, Marcel Dekker Inc., New York,1999, vol.146,1355.
    [16]Y. Xie, C. Z. Wu, Dalton Trans.2007,5235.
    [17]A. Talledo, C. G. Granqvist, J. Appl. Phys.1995,77,4655.
    [18]H. P. Wong et al., J. Mater. Chem.1998,8,1019.
    [19]L. J. Fu, et al., Prog. Mater Sci.2005,50,881.
    [20]H. Heli, H. Yadegari, A. Jabbari, J. Phys. Chem. C 2011,115,10889.
    [21]H. Liu, W. Yang, Energy Environ. Sci.2011,4,4000.
    [22]S. Wang, S. Li, Y. Sun, X. Feng, C. Chen, Energy Environ. Sci.2011,4,2854.
    [23]X. Liu, J. Wang, J. Zhang, S. Yang, Journal of Materials Science 2007,42,867.
    [24]J. Liu, Y. Zhou, J. Wang, Y. Pan, D. Xue, Chem. Commun.2011,47,10380.
    [25]H. Liu, Y. Wang, K. Wang, E. Hosono, H. Zhou, J. Mater. Chem.2009,19,2835.
    [26]C. Wu, Y. Xie, L. Lei, S. Hu, C. OuYang, Adv. Mater.2006,18,1727.
    [27]H. Liu, Y. Wang, H. Li, W. Yang, H. Zhou, Chem. Phys. Chem.2010,11,3273.
    [28]P. Ragupathy, S. Shivakumara, H. N. Vasan, N. Munichandraiah, J. Phys. Chem. C 2008,112, 16700.
    [29]Y. Xu, L. Zheng, C. Wu, F. Qi, Y. Xie, Chemistry-A European Journal 2011,17,384.
    [30]R. Lindstrom, et al., Electrochim. Acta 2006,51,5001.
    [31]J. Mendialdua, R. Casanova, Y. J. Barbaux, Electron. Spectrosc. Relat. Phenom.1995,71, 249.
    [32]M. Zhang, Q. Chen, Z. Xi, Y. Hou, Q. Chen, Journal of Materials Science 2011,47,2328.
    [33]S. Zhang, Y. Li, C. Wu, F. Zheng, Y. Xie, J. Phys. Chem. C 2009,113,15058.
    [1]Y. Zhang, et al., Curr. Appl Phys.2011,11,1159.
    [2]T. Yamauchi, H. Ueda, M. Isobe, Y. Ueda, Physical Review B 2011,84.
    [3]H. Wang, et al., J. Power Sources 2011,196,788.
    [4]L. Mai, et al., Nano Lett.2010,10,4750.
    [5]H. Liu, Y. Wang, K. Wang, E. Hosono, H. Zhou, J. Mater. Chem.2009,19,2835.
    [6]S. Wang, S. Li, Y. Sun, X. Feng, C. Chen, Energy Environ. Sci.2011,4,2854.
    [7]Y. L. Cheah, et al., J. Power Sources 2011,196,6465.
    [8]A. M. Cao, J. S. Hu, H. P. Liang, L. J. Wan, Angew. Chem.2005,44,4391.
    [9]H. M. Liu, Y. G. Wang, K. X. Wang, E. Hosono, H. S. Zhou, J. Mater. Chem.2009,19,2835.
    [10]Y. Xu, L. Zheng, C. Wu, F. Qi, Y. Xie, Chemistry-A European Journal 2011,17,384.
    [11]C. Z. Wu, L. Y. Lei, C. Z. Yang, S. Q. Hu, Y. Xie, Adv. Mater.2006,18,1727.
    [12]L. F. Xiao, Y. Q. Zhao, L. Z. Zhang, J. Yin, Chem. Eur. J.2009,15,9442.
    [13]K. S. Novoselov, A. K. Geim, S. V. Morozov, Y. Zhang, D. Jiang, S. V. Dubonos, A. A. Firsov, I. V. Grigorieva, Science 2004,306,666.
    [14]L. Mikhail, Katsnelson, Materials Today 2007,10,20.
    [15]E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai. Nano Lett.2006,6,96.
    [16]C. Lee, X. D. Wei, J. W. Kysar, J. Hone, Science 2008,321,385.
    [17]P. O. Lehtinen, A. S. Foster, A. Ayuela, A. Krasheninnikov, K. Nordlund, R. M. Nieminen. Phys. Rev. Lett.2003,91,017202.
    [18]X. Sun, et al., Nano Res.2008,1,203.
    [19]乔峰,朱海涛,石墨烯制备、表征及应用研究最新进展[J].化工新型材料,2010,38,15.
    [20]J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, et al., J. Am. Chem. Soc.2011,133,17832.
    [21]D. S. Kim, T. C. Ozawa, K. Fukuda, S. Ohshima, I. Nakai, T. Sasaki, Chem. Mater.2011,23, 2700.
    [22]Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc.2008,130,5856.
    [23]Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 2010,4,1963.
    [24]M. J. Yethirai, Solid State Chem.1990,88,53.
    [25]F. J. Morin, Phys. Rev. Lett.1959,3,35.
    [26]C. Santulli, W. Xu, J. B. Parise, L.Wu, M. C. Aionson, F. Zhang, C. Y. Nam, C. T. Blaek, Phys. Chem. Chem. Phys.2009,11,3718.
    [27]M. M. Qazilbash, M. Brellzll, B. G. Chae, P. C. Ho, G. O. Ajldreev, B. J. Kim, S. J. Yun, Science 2007,31,1750.
    [28]B. S. Guiton, Q. Gu, A. L. Prieto, H. K. Park, M. S. Gudikse, J. Am. Chem. Soc.2000,127, 498.
    [29]J. Jaroszynski, D. PoPovic, Phys. Rev. Lett.2007,99,216402.
    [30]H. Liu, Y. Wang, H. Li, W. Yang, H. Zhou, Chem. Phys. Chem 2010,11,3273.
    [31]Y. Sun, S. Jiang, W. Bi, C. Wu, Y. Xie, J. Power Sources 2011,196,8644.
    [32]Y. Xu, L. Zheng, C. Wu, F. Qi, Y. Xie, Chemistry-A European Journal 2011,17,384.
    [33]X. Chen, X. Wang, J. Liu, Z. Wang, J. Wan, Y. T. Qian, Nanotechnology 2004,15,1685.
    [34]J. Mendialdua, Y. J. Barbaux, R. Casanova, Electron. Spectrosc. Relat. Phenom.1995,71, 249.
    [35]G. C. Xi, C. Wang, X. Wang, Y. T. Qian, H. Q. Xiao, J. Phys. Chem. C 2008,112,965.
    [36]D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, J. Mater. Chem.2004,14,3370.
    [37]L. Whittaker, C. Jaye, S. Banerjee,Z. G. Fu, D. A. Fischer, J. Am.Chem. Soc.2009,131, 8884.
    [38]J. Y. Suh, R. Loprz, L. C. Feldman, R. F. Haglund, J. Appl. Phys.2004,96,1209.
    [39]Y. Sun, B. Qu, S. Jiang, C. Wu, B. Pan, Y. Xie, Nanoscale 2011,3,26
    [1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos et al., Science 2004,306,666
    [2]H. Matte, K. S. Subrahmanyam, C. N. R. Rao, J. Phys. Chem. C 2009,113,9982
    [3]J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia et al., Science 2007,315,490
    [4]J. J. Liang, Y. F. Xu, Y. Huang, L. Zhang, Y. Wang, Y. F. Ma et al., J. Phys. Chem. C 2009, 113,9921
    [5]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff, Nano Lett.2008,8,3498
    [6]N. Camara, G. Rius, J. R. Huntzinger, A. Tiberj, N. Mestres, P. Godignon et al., Appl. Phys. Lett.2008,93,
    [7]X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang et al., Science 2009,324,1312
    [8]L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, R. B. Kaner, J. Mater. Chem.2005,15, 974
    [9]H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson et al., J. Phys. Chem. B 2006,110,8535
    [10]M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu et al, Chem. Mater.2007,19,4396
    [11]H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger et al., Nature 2004,427,523
    [12]S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, R. S. Ruoff, J. Mater. Chem. 2006,16,155
    [13]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia et al. Carbon 2007,45,1558
    [14]X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang et al, Nat. Nanotechnol. 2008,3,538
    [15]H. L. Wang, J. T. Robinson, X. L. Li, H. J. Dai, J. Am. Chem. Soc.2009,131,9910
    [16]M. Choucair, P. Thordarson, J. A. Stride, Nat. Nanotechnol.2009,4,30
    [17]W. X. Zhang, J. C. Cui, C. A. Tao, Y. G. Wu, Z. P. Li, L. Ma et al., Angew. Chem. Int. Ed. 2009,48,5864
    [18]X. Y. Yang, X. Dou, A. Rouhanipour, L. J. Zhi, H. J. Rader, K. Mullen, J. Am. Chem. Soc. 2008,130,4216
    [19]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri et al., Phys. Rev. Lett.2006,97,
    [20]I. Calizo, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, Nano Lett.2007,7,2645
    [21]K. S. Subrahmanyam, S. R. C. Vivekchand, A. Govindaraj, C. N. R. Rao, J. Mater. Chem. 2008,18,1517
    [22]C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009,48,7752
    [23]Y. Jiang, Y. Wu, S. Y. Zhang, C. Y. Xu, W. C. Yu, Y. Xie et al., J. Am. Chem. Soc.2000, 122,12383
    [24]Y. D. Li, Y. T. Qian, H. W. Liao, Y. Ding, L. Yang, C. Y. Xu et al., Science 1998,281,246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700