弱酸性条件起始合成脲醛树脂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用现代仪器分析方法(FTIR、13CP/MAsNMR、DSC和LC-ESI/MS)研究弱酸性起始合成脲醛(UF)树脂机理和弱酸性起始合成三聚氰胺-尿素-甲醛(MUF)树脂凝胶机理,并使用响应曲面法优化弱酸性条件起始合成UF树脂工艺。探讨碱性加成阶段尿素添加次数和间隔时间对弱酸性条件起始合成UF树脂固化动力学和不同树种对弱酸性起始合成UF和MUF树脂固化的影响。研究发现弱酸性条件起始合成的UF树脂,在弱酸性条件下,质子化甲醛中碳的正电荷增多,有利于酸性条件下甲醛与尿素亲电取代反应进行。在弱酸性起始反应阶段离子化甲醛是反应主体,3价C+正离子与尿素分子中N原子上孤对电子形成化学键的同时H+发生脱离,生成羟甲基脲。酸性起始阶段生成的羟甲基脲之间发生缩聚反应,生成醚键连接的长链分子。弱酸性反应起始阶段就生成少量分子量1000以上的长链醚键分子。碱性加成阶段尿素与甲醛进行亲核取代反应,在碱性条件下,尿素是反应主体,尿素负离子与极化甲醛反应生成羟甲基脲;而且碱性加成阶段反应液中羟甲基数量开始减少,同时生成少量Uron环。随着亲核取代反应的进行,羟甲基数量减少越多,这证明羟甲基之间发生了缩聚反应,通过13C-NMR谱图证明生成了线性和支链型醚键。碱性加成阶段形成的树脂主要是各种长链羟甲基脲和醚键连接的长分子链混合物。酸性缩聚阶段RCONHCH2OH是反应主体,当RCONHCH2OH与H+结合生成RCONHCH2OH2+时,通过HMO计算,发现CH2+和OH2+都带正电荷;这种结构是不稳定的,容易脱去H20生成RCONHCH2+, RCONHCH2+与其它分子链段上N或者O原子的孤对电子发生亲电取代反应生成亚甲基和醚键相连接的长分子链结构。酸性缩聚阶段生成分子量超过1000大分子数量虽有增加,但不是主要部分。最后碱性阶段,加入的尿素与甲醛反应与碱性加成阶段反应机理相同,尿素与甲醛反应生成羟甲基脲混合物,使树脂分子量平均化。总之,弱酸性起始合成UF树脂是酸碱催化并且酸碱都参与反应进程的高分子合成反应。
     响应曲面法优化弱酸性起始合成UF树脂工艺发现,碱性加成阶段尿素添加次数和尿素添加的间隔时间对UF树脂的固体含量及固化时间影响不大,而对黏度、树脂中羟甲基含量、游离甲醛含量、各主要基团含量和板材的性能有很大的影响。树脂合成工艺中2次添加尿素,间隔时间20mmin时,树脂和板材性能都比较好。尿素添加次数和添加尿素的间隔时间对UF固化反应过程有显著影响,随着尿素添加次数和添加尿素间隔时间增加,UF树脂固化活化能降低。弱酸性条件下合成UF树脂的固化反应是介于0级和1级之间的反应。不同树种影响弱酸性起始合成UF树脂和MUF树脂固化,不同树种木粉与UF树脂和MUF树脂混合后,混合物的固化反应活化能低于UF树脂和MUF树脂,而且碰撞因子也降低。相同条件下,UF树脂和MUF树脂与木粉混合物固化程度低于UF树脂和MUF树脂;在180℃热压后通过FTIR分析表明,木材没有与UF或者MUF树脂发生化学反应。这说明树脂与木材胶合时,主要是树脂成分发生改变,而且木粉与UF树脂或者MUF树脂的固化反应也是介于0级和1级之间的非基元反应。
     通过对弱酸性起始合成MUF树脂研究发现,三聚氰胺加入量影响MUF树脂的耐水性。随着三聚氰胺加入量增多树脂胶接制品耐水性提高,这主要是因为三聚氰胺加入量增多,树脂中三嗪环增多导致树脂固化时交联密度提高;而且三聚氰胺加入量增多树脂酸性水解常数降低,提高了树脂耐水性。弱酸性条件下合成MUF树脂的结构特殊,这对MUF树脂储存稳定性产生影响。弱酸性起始合成MUF树脂在储存过程中树脂中羟甲基数量减少,并发生化学反应导致树脂中分子链的连接发生变化。MUF树脂储存期间,树脂分子链上胺基等活性基团之间或者活性基团与水之间通过氢键力连接的弱聚合体而形成分子链的聚集体是形成分子链团簇的主要原因,而且通过显微镜观察凝胶树脂其胶粒形状几乎都相同.
In this paper the synthesis mechanism of UF resin as well as the storage stability mechanism of MUF resin were studied by FTIR,13CP/MAsNMR, DSC and LC-ESI/MS. The UF resin and MUF resin were synthesized at initial weak acid condition. The technology of UF resin was optimized by response surface method. The curing dynamic of UF resin was affected by the times of urea addition and interval time at base addition phase, and the effect of different wood species on the curing of UF resin and MUF resin were also investigated. It was found that the carbocation of protonation formaldehyde increased under weak acid condition. This condition favored to the electrophilic substitution. The protonation formaldehyde was the main reaction body and three valence carbocation reacted with lone-pair electron N of urea of forming chemical bond. Meantime, H+ broke away and gave birth to methylolurea. A little of exceeded 1000 (molecular weight) long chain molecular was formed, which was linked by ether bond. Urea and formaldehyde processed nucleophilic substitution at base addition phase. Urea was the main reaction body at alkali condition, under which the reaction of negative ion urea and polarization formaldehyde formed methylolourea. Moreover, the amount of methylolurea began to reduce in the reaction solution and a little Uron generated. Besides, with the decreasing of amount of methylolurea, the condensation between methylolurea and methylolurea occurred. The 13C-NMR spectrum proved the condensation generated lined and branched ether. The resin was mainly composed of mixture of various long chain methylolurea and ether compound at addition phase. RCONHCH2OH was the main reaction body at acidic phase. When the integration of RCONHCH2OH and H+ formed RCONHCH2OH2+, The HMO calculation showed the structure of the positive ion CH2+ and OH2+ were not stable. The structure was prone to keep off H2O and finally formed RCONHCH2+. The electrophilic substitution of RCONHCH2+ with N or O of molecular chain brought to methylene and dimethylene linked macromolecule chain. The amount of molecular weight of macromolecule exceeded 1000 with the increasing of acid condensation, which was not the main component. The reaction mechanism of last addition urea and formaldehyde was the same to base addition phase. The reaction of urea and formaldehyde made to the equilibration molecular weight of resin, which formed to mixture of methylolurea. The UF resin was catalysed by acid and base. Moreover, acid and base participated in process of macromolecule synthesis reaction, which was synthesized under initial weakly acid.
     The synthetic technology of UF resin was optimized by response surface method. It was found that the solid content and curing time of UF resin could not be dramatically affected by the times of additions, the interval of urea, and the viscosity and hydromethyl content, free formaldehyde content of the UF resin and properties of plywood were prominently affected by the number of additions and the interval between additions of urea. The main chemical groups of UF resin were influenced by the number of additions and the interval of urea. When the times of addition was two and the interval of urea was 20 min, the performance of urea-formaldehyde resins and the properties of plywood were much better. The addition times and interval notably affected curing reaction. With the increase of the additional and interval, times, the apparent activation energy of curing system of resin was reduced. The curing reaction grade of UF resin was between 0 and 1, when the UF resin was synthesized under initial weak acidity condition. Different wood species affected the curing of UF resin and MUF resin. After different wood species powder mixed with UF resin and MUF resin, the curing activation energy of compound was lower than UF resin and MUF resin. Furthermore, collision factor of compound decreased. The curing degree of compound was also lower than UF resin and MUF resin, which was the UF resin and MUF resin mixed with wood powder. After the compound was heared to 180℃, the compound was investigated by FTIR. The result showed that wood powder did not react with UF resin and MUF resin. When wood was glued by resin, resin component mainly changed. The curing reaction grade of compound was between 0 and 1 non-elementary reaction.
     It was found that melamine content affected the water resistance of MUF resin. With the melamine content increased, the water resistance of MUF resin bonded product improved. Moreover, the curing crosslinking density of MUF resin was enhanced, owing to the increasing of triazine. Meantime, the reduction of acidic hydrolysis constant of resin improved the water resistance. The structure of MUF resin was special, which was synthesized under initial weak acidity. This impacted on storage stability of MUF resin. The amount of methylol decreased, which was resulted to the chemical reaction at MUF resin storage. The chemical reaction leaded to the change of linking molecular chain. The weak aggregates molecular chain was the main reason of forming molecular cluster, which was connected by hydrogen bond among the amine group in the molecular chain, or active group and water. The results showed the shape of colloidal particle was the same through microscope examined the MUF resin.
引文
[1]杨斌峰.低甲醛释放量刨花板用UF树脂的机理和工艺.中国林业科学研究院研究生博士学位论文,1992
    [2]杜官本.UF树脂结构形成研究以及木材表面微波等离子体处理.南京林业大学研究生博士学位论文,1998
    [3]E.罗发埃尔著,王定选等译.人造板和其他材料的甲醛散发.北京:中国林业出版社,1990:56,61-83
    [4]雷隆和.UF树脂及其应用.四川省林产工业公司林产工业情报分站,1982
    [5]顾继友.DN-6号胶生产应用研究.建筑人造板.1993,(4):23-25,44
    [6]孙振鸢,吴书泓.UF树脂的结构与形态-UF树脂胶体理论及其进展.林业科学,1993,29(1),49-52
    [7]刘光远.消除游离甲醛的新方法.林产工业,1995,22(3):18-19
    [12]邬国铭.高分子材料加工工艺学.北京:中国纺织工业出版社,2000
    [14]J.R Ebdon, P.E Heaton. Characterization of Urea-Formaldehyde Adducts and Resins by 13C-N MR Spectroscopy. Polymer,1977,18(9):971-974
    [15]B. Tomita, S. Hatono. Urea-Formaldehyde Resin. Ⅲ. Constitutional Characterization by 13C Fourier Transform NMR Spectroscopy. Journal of Polymer Science Polymer:Polymer Chemistry Edition,1978,16(10):2509-2525
    [16]G.E Myers. Investigation of Urea-Formaldehyde Polymer Cure by Infrared. Journal of Applied Polymer Science,1981,28(3):747-64
    [17]GE. Maciel, N.M. Szeverenyi, TA Early, GE. Myers.13C-NMR Studies of Solid Urea-Formald-ehyde Resins Using Cross Polarization and Magic-Angle Spinning. Macromolecules,1983,16 (4):598-604
    [18]J.R. Ebdon, P.E.Heaton, T.N. Huckerby. Characterization of Urea-Formaldehyde and Melami-ne-Formaldehyde Adducts and Resins by15N-NMR Spectroscopy. Polymer,1984,25(6):821-825
    [19]S.S. Jada. The Structure of Urea-Formaldehyde Resins. Journal of Applied Polymer Science, 1988,35(6):1573-1592
    [20]E E Ferg, A. Pizzi, D.C. Levendis.13C-NMR Analysis Method for Urea-Formaldehyde Resin Strength and Formaldehyde Emission. Journal of Applied Polymer Science,1993,50:907-915
    [21]I.S Chung, GE. Maciel. Natural Abundance 15N Cross-Polarization/Magic-Angle Spinning Nuclear Magnetic Resonance Study of Urea-Formaldehyde Resins. Polymer,1994,35(8): 1621-1628
    [22]E. Minopoulou, E. Dessipri et al. Use of NIR for Structural Characterization of Urea-Formald-ehyde Resins. International Journal of Adhesion and Adhesives,2003,23(6):473-484
    [23]I.S. Chuang, G.E Maciel.13C CP/MAS NMR Study of The Structural Dependence of Urea Fo-rmaldehyde Resins on Formaldehyde to Urea Molar rations at Different Urea Content Rations and pH Values. Macromolecules,1992,25(12):3204-3226
    [24]I.S. Chuang, G.E. Maciel. NMR Study of The Stabilities of Urea Formaldehyde Resins Comp-ounds Toward Hydrolytic Treatments. Journal of Applied Polymer Science,1994a,52(11): 1637-1645
    [25]I.S. Chuang. G.E. Maciel.13Cross Polarization/Magic Angle Spinning Nuclear Magnetic Reso-nance Investigation of Urea Formaldehyde Resins Made from N,N Dimethylolurea or from Paraformaldehyde. Polymer,1994b,35(8):1602-1620
    [26]J.I. De Jong, J De Jonge. The Reaction of Urea with Formaldehyde. Recueil des Travaux Chi-miques des Pays-Bas,1952,71(a):643-660
    [27]J.I. De Jong, J. De Jonge. The Formation and Decomposition of Dimethylolurea. Recueil des Travaux Chimiques des Pays-Bas,1952,71(b):661-667
    [28]J.I. De Jong, J. De Jonge. The Reaction Between Urea and Formaldehyde in Concentrated Sol-utions. Recueil des Travaux Chimiques des Pays-Bas,1952,71(c):891-898
    [29]J.I. De Jong, J.De Jonge. Kinetics of the Formation of Methylee Linkages in Solution of Urea and Formaldehyde. Recueil des Travaux Chimiques des Pays-Bas,1953,72(a):139-156
    [30]J.I. De Jong, J. De Jonge. The chemical compositions of some condensates of urea and Forma-ldehyde. Reel Trav Chim Pays-Bas,1953,72(b):1027-1036
    [31]B. Meyer. Urea-Formaldehyde Resins. Addison-Wesley Publishing Company Inc., Mass-achu seffs,1979
    [32]R.M Rammon. W.E. Johns, J. Magnuson et al. The Chemical Structure of UF Resins. The Jou-mal of Adhesion,1986,19(2):115-135
    [33]林爱娇,杜光山.低含醛量UF树脂黏合剂的研究.福州大学学报(自然科学版),1996,2(24):111-113
    [34]#12
    [35]S. Chow, P.R. Steiner. Catalytic, Exothermic Reaction of Urea Formaldehyde Resin. Holforsc-hung,1975,29(1):4-10
    [36]F.P. Kollmann, E.W. Kuenzi, A. Stamm. Principles of Wood Science and Technology, Vol Ⅱ, Wood Based Materials-Chapter 5. Springer Verlag, New York,1975,464-536
    [37]D. Levendis, A. Pizz, E. Ferg. The Correlation of Strength and Formaldehyde Emission with of the Crystalline/Amorphous UF Resins. Holzforschung,1992,46:263-269
    [38]T. J. Pratt, W. E. Jhons, R. M. Rmnmon et al. A Novel Concept on the Structure of Cured Urea Formaldehyde Resin. The Journal of Adhesion,1985,17(4):275-295
    [39]T.J. Pratt. Urea-Formaldehyde Resins Theories Challenged. Chemical and Engineering. News, 1984,62(10):25-26
    [40]A.K Dunker, W.E. Johons, R. Rammon et al. Slightly Bizarre Protein Chemistry:Urea-Forma-ldehyde Resin from a Biochemical Perspective. The Journal Adhesion,1986,19:153-176
    [41]W.E. Johns, W. K Motter. Conformation Characterization of Urea Formaldehyde Condensates Proceedings 22nd International Particleboard/Composite Materials Symposium,1998, W. S. U.151-155
    [42]W.K. Motter. The Formation of the Colloidal Phase in Low Mole Ratio Urea-Formaldehyde Resins, Dissertation.1990, WSU
    [43]A. Pizzi. A Molecular Mechanics Approach to the Adhesion of Urea Formaldehyde Resins to Cellulose. Journal of Adhesion Science and Technology,1990,4(7):589-595
    [44]K Siimer, T Pehk, P. Christjanson. Study of the Structural Changes in Urea-Formaldehyde Co-ndensates During Synthesis. Macromolecular Symposia,1999,148(1):149-156
    [45]郭伟玲,张长武,何灵芝.UF树脂分子量分布与胶合性能关系的研究.林业科技,2000,25(4):30-34
    [46]P. Christjanson, K. Siimer, T. Pehk et al. Structural Changes in Urea Formaldehyde Resins Du-ring Storage. HolzalsRoh-unWerkstoff,2002,60(1):379-384
    [47]M.G Kim. Examination of Selected Synthesis Parameters for Typical Wood Adhesive Type Urea-Formaldehyde Resins by13C-NMR Spectroscopy Ⅱ. Journal of Applied Polymer Science,2000,75(10):1243-1254
    [48]S Chow, P. R. Steiner. Comparison of the Phenol-Formaldehyde Novolac and Resol Systems by Different Scanning Calorimeter. Journal of Applied Polymer Science,1979,23(7):1973- 1985
    [49]M.G. Kim, H. Wan, B. Y. No, W. L. Nieh. Examination of Selected Synthesis and Room-Tem-perature Storage Parameters for Wood Adhesive-Type Urea-Formaldehyde Resins by 13C-NMR Spectroscopy IV Journal of Applied Polymer Science,2001,82(5):1155-1169
    [50]M.G.. Kim. Examination of Selected Synthesis Parameters for Typical Wood Adhesive Type Urea-Formaldehyde Resins by 13C-NMR Spectroscopy I. Journal of Polymer Science Part A: Polymer Chemistry,1999,37(7):995-1007
    [51]张振峰,梁彩云.绿色环保UF树脂的制备及反应机理的研究.中国胶黏剂,2004,13(3):37-39
    [52]孙乐芳.UF树脂胶的技术现状及发展对策.化工科技市场,2002,(7):26-28
    [53]B.D. Park, Y.S. Kim, A.P. Singh et al. Reactivity, Chemical Structure, and Molecular Mobility of Urea-Formaldehyde Adhesives Synthesized Under Different Conditions Using FTIR and Solid-State 13C-CP/MAS NMR Spectroscopy. Journal of Applied Polymer Science,2003, 88(11):2677-2687
    [54]杨明平,彭荣华,李国斌.环保型UF树脂胶黏剂合成工艺的研究.湘潭矿业学院学报,2003,18(3):92-94
    [55]刘兰香,毕玉遂.改性UF树脂胶黏剂制备的研究.山东工程学院学报,2001,15(3):65-67
    [56]赵瑛,张海燕,齐国庆低醛UF树脂的制备.石化技术与应用,2000,18(5):272-274
    [57]杜官本.缩聚条件对UF树脂结构的影响.黏接,2000,(1):12-16
    [58]Kads Ⅱ, Secelean V, Jesse A. Rasina Ureo-Formaldehidica Fentru Placi Aglomerate de Lemn-si Procedeu de Obtinere a Acesteia. RO114801,1999.
    [59]刘国军.浅谈影响UF树脂胶贮存性能的因素.林业科技情报,2004,36(3):85-86
    [60]B.Y. No, M.G. Kim. Syntheses and Properties of Low Level Melamine-Modified Urea-Melam-ine-Formaldehyde Resins. Journal of Applied Polymer Science,2004,93(6):2559-2569
    [61]H. Yamaguchi, M. Higuchi, I. Sakata. Hydrolytic Dissolution Behavior of a Hardened Urea-Formaldehyde Resin. Journal of the Japan Wood Research Society,1980,26:199-204
    [62]冷延国,王惠忠,裴梅山.UF树脂胶黏剂研究进展.化学建材,1996,(2):85-86
    [63]M. Higuchi, I. Sakata. Studies on the Improvement of Urea-Formaldehyde Resin Adhesives,1: A Possibility of Water-Resistance Improvement. Journal of the Japan Wood Research Society, 1979,25(7):496-502
    [64]M. Higuchi, K. Kuwazuru, I. Sakata. Studies on the Improvement of Urea-Formaldehyde Resi-n Adhesives,3:Water-Resistance Improvement by an Acid Scavenger. Journal of the Japan Wood Research Society,1980,26(5):310-314
    [65]J. Dutkiewicz. Preparation of Cured Urea-Formaldehyde Resins of Low Formaldehyde Emissi-on. Journal of Applied Polymer Science,1984,29(1):45-55
    [66]李启辉,何惠东.用草木灰和氧化淀粉改性释醛树脂胶粘剂的研究.粘接,1996,(5):12-1
    [67]王艳良,李光沛.浅谈木材用胶黏剂的发展.林业机械与木工设备,2005,33(9):10-13
    [68]ETN. Bisanda, W.O. Ogola, J.V. Tesha. Characterisation of Tannin Resin Blends for Particle-board Applications. Cement and Concrete Composites,2003,25(6):593-598
    [69]王晓立,丁宝宏,程闯.丙烯酸-UF树脂交联共混改性乳白胶.中国胶黏剂,2003,12(2):30-32
    [70]C. Simon, B. George, A. Pizzi. Copolymerization in UF/pMDI Adhesives Networks. Journal of Applied Polymer Science,2002,86(14):3681-3688
    [71]I.Y. Slonim, S.G Alekseyeva, B.M Arshava. et al.13C-NMR Study of Modification of Urea Formaldehyde Resins by Furfuryl Alcohol. Polymer Science USSR,1985,27(8):1993-1999
    [72]C. Kamoun, A. Pizzi. Particle Board I.B. Forecast by TMA Bending in MUF Adhesives Curin-ng. HolzRoh-Werkstoff,2000,58(4):288-289
    [73]A. Pizzi. Wood Adhesives 2000. Forest Products Society, Madison, Wisconsin,2001:219-239
    [74]刘福生,王晟,宰德欣.人造板用UF胶面临的问题及对策.南京林业大学学报(自然科学版),2005,(1):93-97
    [75]J. Dutkiewicz. Preparation of Cured Urea-Formaldehyde Resins of Low Formaldehyde Emiss-ion. Journal of Applied Polymer Science, Journal Applied Polymer Science,1984,29(1):45-55
    [76]李子东.实用胶黏剂手册.上海:上海科学技术文献出版社,1987:238-239
    [77]杨进元,李新法,沈百栓.胶合板用UF胶黏剂制造方法的研究.中国胶黏剂,1995,4(3):20-22
    [78]古绪鹏,陈同云,张永光.UF树脂胶黏剂耐水性与稳定性.化学建材,1995,(4):159-160
    [79]翟怀风,李东光.实用木材黏合剂生产与检验.北京:金盾出版社,1995:27
    [80]谭德智.甲醛在UF树脂胶黏剂中的功与过.北京木材工业,1995,15(3):27-30
    [81]傅深渊,张新庆,方崇荣.气膜法低醛化UF树脂合成及木材胶合性能.化学与黏合,2004,(3):123-126
    [82]R.O. Ebewele, G.E. Myers, B.H. River et al. Polyamine-Modified Urea-Formaldehyde Resins I. Synthesis, Structure, and Properties. Journal of Applied Polymer Science,1991,43:2997-3012
    [83]R.O. Ebewele, B.H. River, G.E. Myers et al. Polyamine-Modified Urea-Formaldehyde Resins. II. Resistance to Stress Induced by Moisture Cycling of Solid Wood Joints and Particleboard. Journal of Applied Polymer Science,1991,43:1483-1490
    [84]R.O. Ebewele, B. H. River, G. E Myers. Polyamine-Modified Urea-Formaldehyde-Bonded Wood Joints. III. Fracture Toughness and Cyclic Stress and Hydrolysis Resistance. Journal of Applied Polymer Science,1993,49:229-245
    [85]R.O. Ebewele, B.H. River, G.E. Myers. Behavior of Amine-Modified Urea-Formaldehyde Bonded Wood Joints at Low Formaldehyde/Urea Molar Ratios. Journal of Applied Polymer Science,1994,52:689-700
    [86]R.O. Ebewele. Differential Scanning Calorimetry and Dynamic Mechanical Analysis of Amine-Modified Urea-Formaldehyde Adhesives. Journal of Applied Polymer Science,1995,58(10): 1689-1700
    [87]S. Wang, A. Pizzi. Succinaldehyde Induced of UF Wood Adhesives Water Resistance Improv-ements. Holz als Roh-und Werkstoff,1997,55:9-12
    [88]储九荣.有机填料改性的无毒耐水UF树脂胶.化学与黏合,1999,(4):176-177
    [89]M. Gutcho, S. Torrey.. Adhesives Technology. Park Ridge, N. J, Noyes Data Corporation,1983,215-217
    [90]刘启明,薛松,冯辉明.花生壳制木材用胶黏剂的研究.中国胶黏剂,1994,3(3):117-121
    [91]李西忠.花生壳在胶合板生产中的应用.山东林业科技,1993,(3):40-42
    [92]寇喜眷.SUF-胶黏剂的研制.化学与黏合,1990,(4):198-200
    [93]李建章,周文瑞,屈永军等.胶合板用低游离甲醛UF树脂的研究.黏接,1996,17(3):7-9
    [94]王永秋,胡美平.改性5011UF树脂黏合剂.黏接,1997,18(6):13-14
    [95]储九荣.低毒耐用水UF树脂胶的研究.中国胶黏剂,1999,8(2):4244
    [96]田海江,李照远,吴景荣.玉米蛋白增量剂对UF树脂胶合性能的影响.林业科技,1999,24(3):29-31
    [97]陈军.UF树脂改性玉米淀粉黏合剂的研制.中国胶黏剂,1998,7(2):29-36
    [98]周毓同.纸浆废液改性UF树脂胶试制草质板的研究.化学与黏合,1992,(3):159-162
    [99]吕时峰,黄忠荣.UF树脂改性钙基硫酸废液作为刨花板胶黏剂的研究.林产工业,1989,(6):18-23
    [100]张艳芳,曾祥钦.磺化木质素改性UF树脂的研制.贵州工业大学学报:自然科学版,2004,33(1):82-84.
    [101]童汗垦.用膨润土做胶合板胶黏剂填料初试.林产工业,1995,22(2):40-41
    [102]杜官本.胶合板用UF醛树脂矿物填料的应用.中国胶黏剂,1995,4(1):39-42
    [103]舟公冈创平.无臭木质板板用接着剂.日本特许公开2001-69508,2001
    [104]李西忠,刑存章.膨润十改性UF树脂胶黏剂研究.林业科技开发.1997,(1):34-35
    [105]H. Yamaguchi, M. Higuchi, I. Sakata. Hydrolytic Dissolution Behavior of a Hardened Urea-Formaldehyde Resin. Journal of the Japan Wood Research Society,1980,26(3):199-204
    [106]M. Holmstrom, B. Wilhemssom. Respiratory Systems and Pathophysiological Effects of Oc-cupational Exposure to Formaldehyde and Wood Dust.Scand work Environment Health, 1988,14:306-310
    [107]J. Frederick, Passman. Biocide Toxiyt:A Comparison of the Toxin Cological Properties of Common Metalworking Fluid Biocides. The Industrial Metalworking Environment: Assessment and Control,1995:13-16
    [108]Willima E L. Toxic Tips:Formaldehyde. Chemical Health and Safety,2003,10(3):29-30
    [109]翟淑妙,徐晓俨.甲醛的暴露与健康效应.环境与健康杂志,1994,11(5):238-240
    [110]刘金玲,崔毅,贾崇奇等.甲醛职业暴露与胃癌关系的回顾性队列研究.中国慢性病预防与控制,1998,6(4):175-176
    [111]袭著革,戴树桂,孙咏梅.典型醛类污染物与细胞DNA分子的结合作用.环境科学,2001,22(1):19-22
    [112]J. D Thrasher, K. H. Kilburn. Embryo Toxicity and Teratogeniciy of Formaldehyde Arch. Environ Health,2001,56(4):300-311
    [113]V. J. Peron, J. H. Artls, C. F. Kuper et al. Health Risks Associated with Inhaled Nasal Toxic-ant. Critical Reviews in Toxicology,2001,31(3):313-347
    [114]金永堂,张海燕,祁家骥.室内空气甲醛污染对神经及呼吸系统症状的影响.卫生研究,1995,24(4):221-223
    [115]王澎.室内空气质量及污染控制.环境科学与技术,2001,24(2):26-27
    [116]徐强,张秀珍,钱松等.室内空气中甲醛污染对健康的影响及其控制.江苏预防医学,1996,3:50-52
    [117]Myers G E. Mechanisms of formaldehyde release from Bonded Wood Products. Formaldehy-de Release From Wood Products. ACS,1986,87
    [118]Walker J. F. Formaldehyde.3rd ed. New York:Reinhold Publishing Corporation,1964
    [119]A. Knop, L.A. Pilato. Phenolic Resins. Berlin:Springer-Verlag,1985
    [120]马心,颜镇.游离甲醛和人造板释放甲醛.木材工业,1997,11(2):27-29
    [121]杜官本.UF胶合制品释放甲醛的机理及降低途径.黏接,1991,12(4):13-16
    [122]E.M. George, GE. Myers. Formaldehyde Liberation and Cure Behavior of Urea-Formaldehy-de Resins. Holzforschung,1990,44(2):117-126
    [123]G. E. Myers. Resin Hydrolysis and Mechanisms of Formaldehyde Release from Bonded Wo-od Products in Wood Adhesives. Madison:WI,1985
    [124]D. Fengel, G. Wegener. Wood Chemistry, Ultrastructure, Reactions. Walter de Gruyter,1984, berlin.293
    [125]陶绪泉,崔慧,张立云等.UF胶黏剂研究进展.黏接,1998,19(5):19-24
    [126]M. Dunky. Urea-Formaldehyde Adhesive Resins for Wood. Journal of Adhesion and Adhesi-ves,1998,18(3):95~107
    [127]S.A. Kurta, S.V. Fedorchenko, M.V. Chaber. Investigation of the Stability of the Modified Ur-ea Formaldehyde Resin. Polymers,2004,49(1):49-51
    [128]S. Kim, HJ. Kim. Comparison of Standard Methods and Gas Chromatography Method in De-termination of Formaldehyde Emission from MDF Bonded with Formaldehyde-Based Resins. Bioresource Technology,2005,96(13):1457-1464
    [129]S.S. Jada. The Structure of Urea-Formaldehyde Resins. Journal Applied Polymer Science, 1988,35:1573-1592
    [130]S. Tohmura, A.Inoue, S.H. Sahari. Influence of the Melamine Content in Melamine-Urea-Formaldehyde Resins on Formaldehyde Emission Journal of Wood Science,2001,47 (6): 451-457
    [131]Breyer, A Robert, Arndell, et al. Method of Scavenging Formaldehyde Using a Low Mole Ra-tio Melamine-Urea-Formaldehyde Resin. USP5684118,1997
    [132]G Han, S. Kawai, K. Umemura et al. Development of High-Performance UF-Bonded Reed and Wheat Straw Medium-Density Fiberboard. Journal Wood Science,2001,47(5):350-355
    [134]夏至远等.木材工业实用大全·胶黏剂卷.北京:中国林业出版社,1996
    [135]Roota, P Sarino. The Curing of UF Resins Studied by Low 1H-NMR. Journal of Applied Pol-ymer Science,2000,75(6):754-765
    [136]A. Pizzi, P. Tekey, L.A. Panagama. A Different Approach to Low Formaldehyde Emission A-minoplastic Wood Adhesives. Holzforschung,1996,50(5):481-485
    [137]M.G.. Kim. Examination of Selected Synthesis Parameters for Typical Wood Adhesive Type Urea Formaldehyde Resins by 13C-NMR Spectroscopy. Journal of Polymer Science Part A: Polymer Chemistry,1999,75(10):1243-1254
    [138]A. Pizzi, L. Lipschitz, J. Valenzuela. Theory and Practice of the Preparation of Low Formalde-hyde Emission UF Adhesives. Holzforschung,1994,48(3):254-261
    [139]R.A. Breyer, S.G Hollis, J.J. Jural et al. Low Mole Ratio Melamine-Urea-Formaldehyde Resi-n.USP 5,681,917,1997
    [140]上田恭市ら.合板及びその造方法.日本特许开平11-254403,1999
    [141]杜官本等.尿素-三聚氰胺-甲醛共缩聚树脂应用进展.林产工业,2002,29(2):13-16
    [143]S. Tohmura, A. Lnoue, S.H. Sahari. Influence of the Melamine Content in Melamine-Urea-Formaldehyde Resins on Formaldehyde Emission and Cured Resin Structure. Journal of Wood Science,2001,47(6):451-457
    [144]陈维宁,林景武.低毒改性UF的研制.木材胶黏剂及人造板表面加工学术讨论会论文集(木材工业,Vol.10,专集),1996,1-5
    [145]#12
    [146]S. Mukherjee. Binder Composition with Low Formaldehyde Emission and Process for Its Pre-paration. USP 4,992,519.1991
    [147]吉绪鹏,邵百花.低毒稳定型UF胶黏剂的制备.黏接,2000,(1):32-34
    [148]李天茂.游离甲醛含量低的UF树脂生产方法.中国胶黏剂,1994,1(6):20-21
    [149]崔会旺,杜官本.我国低毒脲醛树脂研究进展.黏接,2007,28(2):41-43
    [150]常君成.改性UF胶黏剂的研制.黏接,1992,13(1):1-2
    [151]陈维宁.中温合成改性低黏度UF的实验研究.林业科技开发,1996,1:18-19
    [152]张杏全,施英俭.降低高配比UF中游离甲醛含量的新工艺.中国胶黏剂,1992,1(6):20-21
    [153]R.A. Breyer, B.R Amdell et al. Method of Scavenging Formaldehyde Using a Low Mole Rat-io Melamine-Urea-Formaldehyde Resin. USP,5,684,118,1997.
    [154]小野幸治.无臭木质板用接着剂.日本特许公开2001-279213,2001
    [155]舟公冈创平.无臭木质板用接着剂.日本特许公开2001-254064,2001
    [158]Y.H. Chung, Z.Y. Xia, B.Tomita. Effect of Reaction pH on Properties and Performance of Urea-Formaldehyde Resins, Holzforschung,1994,48(3):527-532
    [159]李庆章,顾继友.刨花板甲醛释放量与后期热处理工艺关系的研究.林产工业,1993,20(1):1-5
    [160]朱丽滨,顾继友.低毒改性脲醛树脂胶粘剂的研究.林产工业,2003,30(3):30-32
    [161]中火田茂ら.木质材料の制造方法.日本特许开平11-240002,1999
    [162]#12
    [165]#12
    [166]杉本和俊,石垣达彦.脱臭ボド及びそ の造方法.日本特许公开2000-127274,2000
    [168]上坂昌之.防臭ツト.日本特许开平10-329274,1998
    [169]矶部觉.接着剂组成物.日本特许公开2000-282003,2000
    [170]李兰亭.胶黏剂与涂料.北京:中国林业出版社,1989:4042
    [171]R.M. Rammon. The Chemical Structure of UF Resins. Jounal Adhesion,1986,19:115-135
    [172]O. Levenspiel. Chemical Reaction Engineering. Wiley Eastern:New Delhi,1969
    [173]A. Pizzi. Advanced Wood Adhesives technology. Marcel Dekker:New York,1994:19-87
    [174]C. Soulzrd, C. Kamoun, A. Pizzi. Uron and Uron-Urea-Formaldehyde Resins. Journal of Ap- plied Polymer Science,1999,72(2):227-289
    [175]董炎明.高分子材料实用剖析技术.北京:中国石化出版社,1997:156-183
    [176]S. Das, LM. Matuana, P. Heiden. Thermoplastic Polymers as Modifiers for Urea-Formalde-hyde Wood Adhesives. Ⅲ. In Situ Thermoplastic-Modified Wood Composites. Journal of Applied Polymer Science,2008,107(5):3200-3211
    [177]H.Lei, G. Du, A. Pizzi. Influence of Nanoclay on Urea-Formaldehyde Resins for Wood Adhe-sives and Its Model. Journal of Applied Polymer Science,2008,109(4):2442-2451
    [178]U. Shigehisa, E Matsushimab, N. Kitaoa, H. Tokunagab et al. Effect of Natural Compounds on Reducing Formaldehyde Emission from Plywood. Atmospheric Environment,2007, 41(38):8825-8830
    [179]J. H. E. Arts, M. A. J.Rennen, C. de Heer. Inhaled Formaldehyde:Evaluation of Sensory Irrit-ation in Relation to Carcinogenicity. Regulatory Toxicology and Pharmacology.2006,44: 144-160
    [180]V. Ezratty, M. Bonay, C. Neikirch, etal. Effect of Formaldehyde on Asthmatic Responses to Inhaled Allergen Challenge. Environmental Health Perspectives,2007,115(2):210-214
    [181]闫冰,欧义芳,曹德榕,马志君等.低甲醛释放UF树脂胶黏剂研究进展.林产化学与工业,2004,24(2):97-101
    [182]H.E. Kissinger. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 1957,29:1702
    [183]H. Friedman. Evaluation of Activation Energy. Journal of A Polymer Science, Part C,1963, 6:183
    [184]T. Ozawa. Kinetic Analysis of Derivative Curves in Thermal Analysis. Journal of Thermal Analysis,1970,2:301-303
    [185]R.O. Albritton, P.H. Short. Effect of Extractives from Pressure Refined Hardwood Fiber on the Gel Time of Urea-Formaldehyde Resin. Forest Products Journal,1979,29(2):40-41
    [186]W.E. Johns, K.A. Niazi. Effect of pH and Buffering Capacity of Wood on the Gelation Time of Urea-Formaldehyde Resin. Wood and Fiber,1980,12(4):255-263
    [187]彭海源,李坚.东北经济用材的pH值,缓冲容量及其对脲醛树脂胶凝胶时间的影响.东北林学院学报.1984,11(4):100-105
    [188]郭爱龙,张海生,冯利群等.六种沙生灌木pH值、缓冲容量及对脲醛树脂胶(UF)固化时间的影响.木材工业,12(5):18-20
    [189]C. Xing, S. Y. Zhang, J. Deng. Effect of Wood Acidity and Catalyst on UF Resin Gel Time. Holzforschung,2004,58(4):408-412
    [190]S. Medved, J. Resnik. Influence of the Acidity and Size of Beech Particles on the Hardening of the Urea-Formaldehyde Adhesive. Acta Chimica Slovenica,2004,51:353-360
    [191]R.F. Blomquist, W.Z.Olson. Durability of Fortified Urea-Resin Glues in Plywood Joints. For- est Product,1955,5:50-56
    [192]E. kehr, G. Riehl, E. Hoferichter, E.Roaffael etal. Moisture and Hydrolysis Resistance of Parti-cleboards, Bonded with Unmodified and Modified Low Formaldehyde UF-Resins Using Different Catalyst Systems. European Journal of Wood and Wood Products,1999,52(4):253-260
    [193]谢庭义.对供装饰板和装饰纤维板使用的三聚氰氨尿素甲醛树脂生产工艺的探讨.林产工业,1989,(1):29-30
    [194]B.Y. No, M.G. Kim. Syntheses and Properties of Low-Level Melamine-Modified Urea-Mela-mine-Formaldehyde Resins. Journal of Applied Polymer Science,2004,93(6):2559-2569
    [195]R.F. Charles. Model for Understanding the Durability Performance of Wood Adhesives 30th Annual Meeting of the Adhesion Society, Inc.2007,222-224
    [196]C. Xing, S.Y. Zhang, J. Deng, S. Wang. Urea-Formaldehyde-Resin Gel Time As Affected by the pH Value, Solid Content, and Catalyst. Journal of Applied Polymer Science,2007,103: 1566-1569
    [197]S. Medved, J. Resnik. Influence of the Acidity and Size of Beech Particles on the Hardening Urea-Formaldehyde Adhesive. Acta Chimica Slovenica,2004,51:353-360
    [198]B.D. Park, Y.S. Kim, B. Riedl. Effect of Wood-Fiber Characteristics on Medium Density Fi-berboard (MDF) Performance. Journal of Korean Wood Science and Technology,29:27-35.
    [199]C. Xing, S.Y. Zhang, J. Deng et al. Medium-Density Fiberboard Performance as Affected by Wood Fiber Acidity, Bulk Density, and Size Distribution. Wood Science Technology, 2006,40(8):637-646
    [200]W.H. Poblete, S. A. Pinto. Avances Sobre el Efecto del Catalizador en el Fraguadode Urea Formaldehido en Tableros de Tepa [J].Bosque,1993,14(1):55-61
    [201]G.E. Myers, J.A. Koutsky. Formaldehyde Liberation and Cure Behavior of Urea-Formaldeh-yde Resins. Holzforschung,1990,44(2):117-126
    [202]AA Elbert. Influence of Hardener Systems and Wood on the Formaldehyde Emission from Urea-Formaldehyde Resin and Particleboards. Holzforschung,1995,49(4):358-362
    [203]M. Szesztay, Z. Laszlo-Hedvig, P. Nagy et al. DSC Characterisation of Urea/Formaldehyde Condensates, Ⅱ. Experiences with High Pressure DSC Cell. Holz als Roh-und Werkstoff, 1996,54(6):399-402
    [204]B.D. Park, Y.S. Kim, A.P. Sing et al. Reactivity, Chemical Structure, and Molecular Mobility of Urea-Formaldehyde Adhesives Synthesized Under Different Conditions Using FTIR and Solid-State 13C CP/MAS NMR Spectroscopy. Journal of Applied Polymer Science, 2003,88(11):2677-2687
    [205]B.A.K. Andrews, R.M. Reinhardt, J.G. Frick et al. In:Formaldehyde Release From Wood Products, ACS Symposium, Series,1986,316:52-66
    [206]G.E. Myers. In:Wood Adhesives in 1985:Status and Needs, Forest Products Research Socie-ty, Madison WI,1985,119-156
    [207]M.Dunky. Urea-Formaldehyde (UF) Adhesive Resins for Wood. International Journal of Adh-esion and Adhesives,1998,18(2):95-107
    [208]C.E. Nordman, S.M. Blinder. Collision Theory of Chemical Reactions. Journal of Chemistry Education,1974,51:790-793
    [209]A. Pizzi, M. Beaujean, C. Zhao. et al. Acetal-Induced Strength increases and Lower Resin Content of MUF and Other Polycondensation Adhesives. Journal of Applied Polymer Science,2002,84(13):2561-2571
    [210]M. Zanetti, A. Pizzi, M. Beaujean et al. Acetals-Induced Strength Increase of Melamine-Urea-Formaldehyde (MUF) Polycondensation Adhesives. Ⅱ. Solubility and Colloidal State Disruption. Journal of Applied Polymer Science,2002,86(8):1855-1862
    [211]M. Zanetti, A. Pizzi. Upgrading of MUF Polycondensation Resins by Buffering Additives. II. Hexamine Sulfate Mechanisms and Alternate Buffers. Journal of Applied Polymer Science, 2002,90(1):215-216
    [212]C. Kamoun, A. Pizzi, M Zanetti. Upgrading Melamine Urea Formaldehyde Polycondensation Resins with Buffering Additives. I. The Effect of Hexamine Sulfate and Its Limits. Journal of Applied Polymer Science,2003,90(1):203-214
    [213]A. Pizzi, M. Zanetti. Structure Effects of Additives in Performance Improvement of Aminopl-astic Adhesive Resins. Journal of Applied Polymer Science,2003,89(1):284-286
    [214]M. Zanetti, A. Pizzi, C. Kamoun. Upgrading of MUF Particleboard Adhesives and Decrease of Melamine Content by Buffer and Additives.Holz Roh Werkstoff,2003,61(11):55-65
    [215]M. Zanetti., A. Pizzi. Low-Volatility Acetals to Upgrade the Performance of Melamine-Urea-Formaldehyde Wood Adhesive Resins. Journal of Applied Polymer Science,2004,92(1): 672-675
    [216]A. Pizzi, M. Beaujean, C. Zhao, et al. Acetals-Induced Strength Increases and Lower Resin Content in MUF and PE Wood Adhesives. HolzRoh Werkstoff,2003,61(6):419-422
    [217]M. Zanetti, A. Pizzi. Dependance on the Adhesive Formulation of the Upgrading of MUF Particleboard Adhesives and Decrease of Melamine Content by Buffer and Additives. Holz Roh Werkstoff,2004,62(6):445-451
    [218]A. Pizzi, A. Stephanou. A13C NMR Study of Polyflavonoid Tannin Adhesive Intermediates. I. Noncolloidal Performance Determining Rearrangements. Journal of Applied Polymer Science,1994,51(13):2109-2124
    [219]K. Gay, A. Pizzi. Homogeneous Catalysis of Slow PF Adhesives Hardening by Hydroxygro-ups-Rich Polymers. European Journal of Wood and Wood Products,1996,54:278
    [220]M. Zanetti, A. Pizzi. Colloidal Aggregation of MUF Polycondensation Resins:Formulation Influence and Storage StabilityJournal of Applied Polymer Science,2004,91(4):2690-2699
    [221]S. Yin, A. Pizzi.Temperature-Dependence Modeling of Highly Crosslinked Polymer Networ-ks. Journal of Applied Polymer Science,2003,88(10):2416-2426
    [222]M. G. Kim, H. Wan, B. Y. No et al. Examination of Selected Synthesis and Room-Temperat-ure Storage Parameters for Wood Adhesive-Type Urea-Formaldehyde Resins by 13C-NMR Spectroscopy. IV.2001,82(5):1155-1169
    [223]M.G. Kim, BY. No., S. M. Lee et al. Examination of Selected Synthesis and Room-Temperat-ure Storage Parameters for Wood Adhesive-Type Urea-Formaldehyde Resins by 13C-NMR Spectroscopy V. Journal of Applied Polymer Science,2003,89(7):1896-1917
    [224]J. Mijatovic, W. H. Binder, F. Kubel etal. Studies on the Stability of MF Resin Solutions: Investigations on Network Formation. Macromolecular Sympymposia,2002,181(1):373-382
    [225]K. Siimer, P. Christjanson, T Kaljuvee et al. TG-DTA Study of Melamine-Urea-Formaldehy-de Resins. Journal of Thermal Analysis and Calorimetry,2008,92(1):19-27
    [226]C.AJ. Hoeve.Water in Polymers (Rowland SP, Ed.), ACS Symposium Series,1980,127-135
    [227]张季爽,申成.基础结构化学.北京:科学出版社,2006:212-213
    [228]顾继友,朱丽滨,小野掂邦.低甲醛释放脲醛树脂固化反应历程的研究.林产化学与工业,2005,25(4):11-16
    [229]金立维,王春鹏,储富祥等.E1级MDF用三聚氰胺改性脲醛树脂的定量13C-NMR结构研究.林产工业,2006,33(6):38-41
    [230]杜官本.尿素与甲醛加成及缩聚产物13CNMR研究.中国木材工业,1999,13(4):9-13
    [231]J. Gu, M. Higuchi, M. Morita et al. Synthetic Conditions and Chemical Structures of Urea-Formaldehyde Resins Ⅰ. Properties of the resins synthesized by three different Procedures. Mokuzai Gakkaishi,1995,41(12):1115-1121.
    [232]刘子真.熵及其在化学中应用.北京:高等教育出版社,1993:4041
    [233]G Muller, C. Schopper, H.Vos et al. FTIR-ATR Spectroscopic Analysis of Changes in Wood Properties During Particle and Fiberboard Production of Hard Softwood Trees. Bioresources, 2009,4(1):49-71
    [234]尚振海.有机反应中的电子效应.北京:高等教育出版社,1992:50-51,286-287

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700