水稻广亲和基因的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻籼粳亚种间具有很强的杂种优势,然而,由于杂种的半不育特性,限制了其优势的进一步利用。值得庆幸的是水稻育种家们发现有些水稻品种与籼稻或粳稻杂交育性均表现正常,这样的品种称为广亲和品种,这一发现为籼粳亚种间杂种优势的利用提供了可能。研究表明控制这一性状的广亲和基因S5n位于水稻第6号染色体上。
     本实验室先前的研究将S5n精细定位到分子标记J13和J17之间,物理距离为50 Kb。对此区间的序列进行预测,确定了两个广亲和候选基因,Asp和CG2,分别编码天冬氨酸蛋白酶和一个功能未知的蛋白。对每一个候选基因,我们都构建二类表达载体,即过量表达载体和功能互补测验载体,而后将这些表达载体通过农杆菌介导转入到不含有广亲和基因的受体材料中,检测后代小穗育性,确定广亲和基因。结果如下:
     1.直接以‘Balilla’ב南京11’的杂交种为受体获得6个转化系,在海南种植,并检查小穗育性。候选基因Asp的转基因植株与未转任何载体的组培材料相比,小穗育性无明显差异;转基因植株与转空白载体的阴性对照相比,小穗育性明显提高,差异达显著水平,但平均育性仍然很低。
     2.以二个粳稻品种,‘Balilla’和‘武香粳’,为受体获得转基因植株,将这些转基因材料与籼稻品种‘南京11’杂交,同时检测杂交后代的基因型和小穗育性。结果表明只有一株转基因‘武香粳’(转Asp过量表达载体)与‘南京11’的杂种后代中,携带候选基因的杂种比同背景的不带候选基因的杂种平均育性提高14.15%,达极显著水平,并且平均育性高于50%。初步结果推测编码天冬氨酸蛋白酶的基因Asp可能与水稻的广亲和特性有关,具体的机理有待进一步研究。
Strong heterosis has been observed in rice inter-subspecific hybrids, however, such heterosis could not find its application in rice production due to an occurrence of semi-sterility spikelets. Fortunately, the rice breeders found some very unique varieties, called wide-compatibility varieties, that could lead to normal fertility in the hybrids when crossing to either indica or japonica rice subspecies. This discovery made it possible to utilize the strong heterosis of inter-subspecific hybrids. The S5n gene, located on chromosome 6, has previously been manifested to be responsible for the wide-compatibility in rice.
     In our previous report, the S5n gene has been mapped within a 50 kb interval delimited by the left marker J13 and the right marker J17. Sequence analysis of the 50 kb region revealed two candidate genes, coding an aspartyl protease and a hypothetical protein. In the present study, we constructed the two kinds of express vectors, over-expression vector and functional complementary test vector, for each candidate gene. All the express vectors were transformed into the rice receptors for determining the gene responsible for the wide-compatibility in rice.
     The results for transformation are summarized as follows:
     1. By using the‘Balilla×Nanjing11’F1 hybrid seeds as receptors, six transgenic lines were obtained and grew in Hainan winter nursery for investigating the spikelet fertilities. Comparing the transgenic lines with the candidate genes with those transformants carrying no vector, no any difference has been observed in the
引文
1. Khush G S (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35:25-34
    2. 袁隆平,杂交水稻育种的战略设想,杂交水稻,1987,1:1-3
    3. 吴万春,徐雪宾,对稻二亚种命名的意见,中国水稻科学,1988,2(1):36-39
    4. 丁颖,中国古来粳籼稻种栽培及分布之探讨与现在栽培稻种分类法预报,中山大学农艺专刊,1949,6:1-32
    5. 杨守仁,籼粳杂交育种研究,作物学报,1962,1(2):97—102
    6. 曾世雄,杨秀青,卢庄文,栽培稻籼粳亚种间杂种一代优势的研究,作物学报, 1980,6(4):193-202
    7. 肖金华,袁隆平,水稻籼粳亚种间杂种一代优势及其与亲本关系的研究,杂交水稻,1998,1:5-9
    8. 晏月明,牟致远,籼粳稻亚种间杂种一代优势的研究,四川农业学报,1988,3(2):6-10
    9. Kato S, Kosaka H, Hara K (1928) On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ 3: 132-147
    10. 俞履沂,林权,中国栽培稻亲缘关系的研究,作物学报,1962,1: 233-258
    11. 杨守仁,沈锡英,顾慰连等,籼粳稻杂交育种研究,遗传学通讯,1973,2:34-38
    12. 杜尔滨,H.B 编,植物细胞质雄性不育的遗传学原理,北京:农业出版社,1980:17-18
    13. Oka H (1953) The mechanism of sterility in the intervarietal hybrid. Phylogenetic differentiation of the cultivated rice plants. Japan J Breed 2: 217-224
    14. Henderon MT (1964) Cytogenetics studies at the Louisiana agricultural experiment station on the nature of intervarieties hybrids sterility in O.sativa. Genetics and cytogenetics 1: 147-153
    15. Yao SY, Henderson (1958) Cryptic structural hybridity as a proable cause of sterility in intervarietal hybrids of cultivater rice, Oryza sativa. Cytologia 23: 46-55
    16. Ikehashi H, Araki H (1984) Variety screening of compatibility types revealed in F1 fertility of distant cross in rice. Japan J Breed 34:304–313
    17. 李晓玲,水稻籼粳亚种间杂种不育性的研究进展,农业生物技术科学,2004,20(5):45-49
    18. Kitamura E (1962) Studies on cytoplasmic sterility of hybrids in distantly related varieties of rice (Oryza sativa L.) I. Fertility of the F1 hybrids between strains derived from a certain Philippines x Japanese variety crosses and Japanese varieties. Japan. J. Breed 12(2): 81-84.
    19. Ikehashi H (1982) Prospects for overcoming barriers in the utilization of indica-japonica crosses in rice breeding. Oryza 19:69-77
    20. Ikehashi H, Wan J (1996) Differentiation of alleles at six loci for hybrid sterility in cultivated rice (Oryza sativa L). In: IRRI, ed. Rice GeneticsⅢ, pp404~408.
    21. 张桂权,卢永根,栽培稻杂种不育性的遗传研究Ⅰ. 等基因 F1 不育系杂种不育性的双列分析,中国水稻科学,1989,3(3):97~ 101
    22. Ikehashi H, Araki H (1986) Genetics of F1 sterility in remote crosses of rice. In: Rice Genetics. IRRI Los Banos Philippines,pp119-130
    23. Ikehashi H, Araki H (1987) Screening and genetic analysis of wide compatibility in F1 hybrids of distant crosses in rice, Orazy sativa L. Tech Bull Trop Agr Res Center. Japan. 23
    24. 李和标,汤陵华,邹江石,水稻广亲和性的标记性状分析,杂交水稻,1991(3):22-24
    25. 刘蔼民,李和标,张启发等,水稻广亲和基因在 RFLP 图谱上的初步定位,华中农业大学学报,1992,11(3):213-219
    26. 郑康乐,沈波,钱惠荣,王建林,应用 RFLP 标记研究水稻的广亲和基因,中国水稻科学,1992,6(4):145-150
    27. 顾兴友,顾铭洪,潘学彪,水稻品种轮回 422 的广亲和基因定位研究,江苏农学院学报,1993,14(4):7-14
    28. Yanagihara S, Mccouch SR, Ishikawa K et al(1995) Molecular analysis of the inheritance of the S-5 Locus, conferring wide compatibility in Indica/Japonica hybrids of rice (O. Sativa L.). Theor Appl Genet 90: 182-188
    29. 陆驹飞,严长杰,汤述翥等, 云南水稻品种花糯广亲和性的遗传分析, 扬州大学学报(自然科学版), 1998, 4: 31-35
    30. 严长杰,陆驹飞,汤述翥等,云南稻品种窝爱嘎的广亲和性初步分析,扬州大学学报(自然科学版),1999,2(1):38-41
    31. 严长杰, 梁国华, 朱立煌等, 秋稻品种‘Dular’的广亲和基因的RFLP分析, 遗传学报, 2000, 27: 409-417
    32. 陈忠明,谷福林,朱立煌等,秋稻品种 Aus373 广亲和基因的 RFLP 分析,江苏农业学报,1997,13(1):1-5
    33. Liu KD, Wang J, Li HB, Xu CG, Liu AM, Li XH, Zhang QF (1997) A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet 95:809–814
    34. Wang J, Liu KD, Xu CG, Li XH, Zhang QF (1998) The high level of wide-compatibility of variety ‘Dular’ has a complex genetic basis. Theor Appl Genet 97:407-412
    35. Wan J, Tmbe T, Horisue N, et al (2002) Fine mapping of seven hybrid sterility gene loci in cultivated rice(Oryza sativa L.). The 3 th Conference of Plant Genomics in China,Beijing
    36. Ji Q, Lu JF, Chao Q, Gu MH, Xu ML (2005) Delimiting a rice wide-compatibility gene S5n to a 50 kb region. Theor Appl Genet 111(8):1495 – 1503
    37. Qiu SQ, Liu KD, Jiang JX, Song X, Xu CG, Li XH, Zhang QF (2005) Delimitation of the rice wide compatibility gene S5n to a 40-kb DNA fragment, Theor Appl Genet 111(6):1080 – 1086
    38. 刘巧泉,张景六,王宗阳,洪孟民,顾铭洪,根癌农杆菌介导的水稻高效转化系统的建立,植物生理学报,1998,24(3):259-271
    39. Marton L, Wullenms GL, Molendijk L, et al (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129-131
    40. Zambryski P, Joos H, Genetello C, et al (1983) Ti plasmid vector for the introduction DNA into plant cells without alteration of their normal regeneration capacity. The EMBO J 2:2143-2150
    41. Horsch RB, Fry JE, Hofimann NL, Eichholtz DE, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229-1231
    42. Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/technology 8: 33–38
    43. Chan MT, Chang HH, Ho SL, Tong WF Yu SM (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene . Plant Mol Biol 22: 491-506
    44. Potrykus I (1990) Gene transfer to cereals: an assessment. Bio/Technol 8:535-542
    45. 孔英珍,周功克,王根轩,王亚馥,影响根癌农杆菌转化的因素及其在单子叶作物上的应用,应用生态学报,2000 ,11 (5) ∶791~794
    46. Hiei Y, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271–282
    47. Dong J, Teng W, Buchholz WG, Hall TC (1996) Agrobacterium mediated transformation of Javanica rice. Molecular Breeding 2: 267–2
    48. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology 14: 745-750
    49. Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum L). Plant Physiol 102:1077-1084
    50. Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka CM, Duncan DR, Conner TW and Wan YC (1997) Genetic transformation of wheat mediated by Agrobacterium-tumefaciens. Plant Physiol 115:971-980
    51. Xia GM, Li ZY, He CX, et al (1999) Transgenic plant regeneration From wheat (Triticum aestivum L) mediated by Agrobacterium tumefaciens. Acta Phytophysiologica sinia 25(1):22-28.
    52. 李宝健,欧阳学智,许耀,应用农杆菌 Ti 质粒系统将外源基因转入籼稻细胞研究,中国科学(B 辑),1990(2):144-149
    53. Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep 15: 727–730
    54. Klee HJ, White FF, Iyer VN, Gordon MP, Nester EW (1983) Mutational analysis of the virulence region of an Agrobacterium tumefaciens Ti plasmid. J Bacteriol 153: 878–883
    55. An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual A3. Kluwer Academic Press, Dordrecht, pp1–19
    56. Zambryski P (1988) Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Ann Rev Genet 22 :1~30
    57. Stachel SE ,Zambryski PC (1986) VirA and virG control the plant-induced activation of the T-DNA transfer process of A.tumefaciens. Cell 46 :325~333
    58. Villemont E , Dubois F , Sangwan RS, Vasseur G, Bourgeois Y, Sangwan-Norreel BS (1997) Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201 :160~172
    59. Stachel SE, Messens E, Montagu MV and Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624-629
    60. Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983-984
    61. Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35 :301~309
    62. Alt-Morbe J, Kulhmann H, Schroder J (1989) Differences in induction of Ti-plasmid virulence genes virG and virD, and continued control of virD expression by four external factors. Mol Plant-Microbe Interact 2: 301–308
    63. Turk SCHJ, Melchers LS, Dulk-Ras HD, Regensburg-Tuink AJG, Hooykaas PJJ (1991) Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the Vir A sensor protein. Plant Mol Biol 16:1051–1059
    64. Alt-Moerbe J, Neddermann P, Lintig JV, Weiler EW, Schroder J (1988) Temperature-sensitive step in Ti plasmid vir-region induction and correlation with cytokinin secretion by Agrobacteria. Mol Gen Genet 213: 1–8
    65. 王忠华,夏英武,水稻农杆菌介导转化法关键因子研究进展,生物技术,1998,8(3):5-8
    66. Aldemita RR and Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612-617
    67. Christou P, Ford TL, Koform TM (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9: 957-962
    68. Datta SK, Datta K, Soltanifar N, Donn G, Potrykus I (1992) Herbicide-resistantIndica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol Biol 20: 619–627
    69. Hamilton CM , Frary A , Lewis C et al (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. PNAS 93 :9975~9979
    70. Budar F, Thia-Toong L, Montagu MV, Hernalsteens JP (1986) Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics 114: 303–313
    71. Spiker S, Thompson WF (1996) Nuclear Matrix Attachment Regions and Transgene Expression in Plants. Plant Physiol 110:15-21
    72. 王关林,方宏筠编,植物基因工程,北京:科学出版社,2002,647-648
    73. Guo S, Kemphues KJ (1995) Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611-620
    74. Zhang JJ (2003) Overexpression analysis of plant transcription factors. Current Opinion in Plant Biology 6:1-11
    75. 吉青,水稻广亲和相关基因的精细定位和分离,扬州大学硕士学位论文,2005
    76. 刘明华,楼小明,王宗阳,张景六,洪孟民,玉米转座因子 Ac/Ds 导入水稻花药悬浮细胞并再生植株,植物生理学报,1995,21:195-205
    77. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321-4325
    78. 熊绍轲,水稻杂交技术,湖北省农业科学院研究所,1973,5:37-39
    79. 黄红梅,水稻不同来源广亲和基因 S5n遗传效应比较研究,扬州大学硕士学位论文,2004
    80. Oka H (1974) analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics 77:521-534
    81. 张桂权,卢永根,栽培稻杂种不育性的遗传研究Ⅱ.F1 花粉不育性的基本模式,遗传学报,1993,20(3):222-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700