二化螟对Cry1Ab抗性风险评估和Cry1A毒素与二化螟中肠BBMV配基结合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二化螟Chilo suppressalis(Walker)是严重威胁我国水稻生产的重要害虫之一。近年来,受耕作制度和种植结构的变化、高产优质水稻品种的大面积种植、气候等原因的影响,二化螟的发生逐年加重,并且由于化学农药的长期大量使用,二化螟的抗药性呈明显上升趋势,给防治工作来了困难。转Bt CryAb基因水稻的出现为防治二化螟提供了一种新的有效方法,但是从生物学和进化角度来看,二化螟对转Bt基因水稻也可以产生抗性是一种胁迫进化现象。因此,研究Bt毒素对二化螟的杀虫机理及二化螟对Bt产生抗性的可能机制,将为制定转基因水稻的抗性治理策略、延长转基因水稻的使用寿命等提供重要的理论依据。本文建立了3种CrylA毒素对二化螟的敏感毒力基线,评估了二化螟及对Cry1Ab的抗性风险,利用配基印迹法研究了Cry1A毒素同二化螟中肠BBMV受体蛋白的结合谱,并通过RT-PCR获得了4个APN基因的cDNA片段。
     1.二化螟对Cry1Ab的抗性筛选及抗性风险评估
     用毒蛋白涂表法测定了2002年采自浙江苍南的二化螟室内品系对Cry1Aa、Cry1Ab和Cry1Ac活化毒蛋白的敏感性水平,建立了3种毒素对二化螟的敏感毒力基线。结果表明,Cry1Ab对该品系的毒力最高(LC_(50)为0.14μg/cm~2),其次是Cry1Ac(LC_(50)为0.37)和Cry1Aa(LC_(50)为0.49μg/cm~2)。用Cry1Ab对2006年采自江苏句容、安徽合肥和宣城、浙江杭州的田间二化螟混合种群(JAZ)进行12代的抗性筛选,其对Cry1Ab的敏感性下降了3.3倍。平均抗性现实遗传力h~2为0.068,表明抗性风险较低。根据平均抗性现实遗传力、毒力回归线平均斜率进行估算,在50%-95%的选择压力下,二化螟对Cry1Ab的抗性上升10倍需要26至8代。
     2.二化螟中肠受体与Cry1A毒素结合分析
     配基结合分析结果表明二化螟CN品系幼虫中肠刷状缘膜囊泡(BBMV)中有6个Cry1Ac结合蛋白(分子量分别为180,160,120,90,70和50 kDa),其中180、160和90 kDa结合蛋白的条带明显深于其他结合蛋白的条带,表明这3个受体蛋白结合浓度较高。同源竞争结合结果表明,180和90 kDa结合蛋白为Cry1Ac的低亲合性结合蛋白,其他4个为高亲合性结合蛋白。为了研究Cry1Ac和Cry1Ab受体结合部位的交叉反应,本文还进行了异源竞争结合研究。研究结果表明,Cry1Ab可以与Cry1Ac所有的6个结合蛋白进行竞争性结合,其中与180、120、70和50 kDa结合蛋白具有高亲合性,而与160和90 kDa结合蛋白具有低亲合性.上述结果表明,Cry1Ac与Cry1Ab在二化螟幼虫中肠BBMV上具有多个共享的结合位点,但对每个结合位点的亲合力有差异。基于毒素结合部位的相似性,Cry1Ac和Cry1Ab不宜同时用于转基因Bt水稻来控制二化螟。进一步分离、鉴定二化螟幼虫中肠BBMV中Cry1A毒素的受体蛋白将有助于研究Cry1A毒素的作用机理和二化螟对Cry1A毒素的抗性机理。
     3.二化螟中肠APN类受体基因片段cDNA的克隆
     氨肽酶N(aminopeptidase N,APN)受体是昆虫体内Bt毒素的重要作用靶标。本研究利用简并引物,从二化螟中肠中获得4个不同的APN类受体基因cDNA片段。该片段长约600bp,编码约200个氨基酸残基,分别命名为CsAPN1、CsAPN2、CsAPN3和CsAPN4。CsAPN1同家蚕APN(GenBank No.:BAA32140)氨基酸序列相似性高达73%,CsAPN2同二化螟APN(GenBank No.:ABC69855)的相似性高达100%,CsAPN3同棉铃虫APN2(GenBank No.:AAP37951)相似性为68%,CsAPN4同欧洲玉米螟APN3(GenBank No.:ABL01483)相似性为77%。
The rice stem borer C.suppressalis(Walker) is one of the most serious pests threaterning rice production in China.Recently,C.suppressalis has become more serious because of cropping system and farming pattern changes,extensive planting of high yield and high quality rice,and suitable weather conditions.Resistance of C.suppressalis to chemical insecticides has obviously increased and let it more difficult to be controlled.Bt transgenic rice offers a new effective and safe weapon to control the rice stem borer.But from the evolutionary biology view,the target pests will inevitably evolve resistance to Bt toxins expressed in the Bt rice after extensive planting of Bt rice cultivars.Therefore, researching the mode of action of Bt toxins to C suppressalis and the potential resistance mechanisms will be important for developing resistance manangement strategy and prolonging the using longevity of Bt rice.In this study,we assessed resistance risk to Cry1Ab,analysized binding of Cry1A toxins to the midgut BBMV of C.suppressalis.The cDNA fragments of four APN genes from the midgut of C.suppressalis were cloned and sequenced.
     1.Laboratory selection for Cry1Ab resistance and resistance risk assessment
     Susceptibility base-lines of activated Cry1Aa,Cry1Ab and Cry1Ac against a laboratory strain(CN) of C.suppressalis were determined using a surface contamination assay.Cry1Ab was more toxic than Cry1Ac,and Cry1Ac was more toxic than Cry1Aa against the third instar larvae of the CN strain.A mixed field population(JAZ) of C. suppressalis collected from Anhui,Jiangsu and Zhejiang provinces during 2006 was selected with activated Cry1Ab for 12 generations,and its susceptibility to Cry1Ab decreased 3.3-fold.The realized heritability(h~2) of Cry1Ab resistance was estimated as 0.068,indicating resistance development potential of Cry1Ab was low.According to the mean realized heritability and the mean slope of LD-P lines,10-fold resistance to Cry1Ab will be developed after 26 generations under selection pressure of 50%,and 8 generations under selection pressure of 95%.
     2.Ligand blot analysis of Cry1A toxins to midgut BBMV proteins
     Ligand blot analysis showed that there were 6 major binding proteins(50,70,90,120, 160 and 180 kDa) of Cry1Ac in the midgut brush border membrane vesicles(BBMV) of the CL strain.Binding protein bands of 180,160 and 90 kDa were much darker than the others,indicating their high binding concentration.Homologous competition binding results indicated that 180 kDa and 90 kDa protein bands were of low binding affinity and the other four protein bands(160,120,70 and 50 kDa) were of high binding affinity. Heterologous competition binding assays were conducted to study the binding site cross-reactivity between Cry1Ab and Cry1Ac.Cry1Ab competed for all binding sites recognized by Cry1Ac,with high affinity to 180,120,70 and 50 kDa proteins and low affinity to 160 and 90 kDa proteins.These data suggested that Cry1Ac and Cry1Ab shared several common binding sites in the midgut BBMV of C.suppressalis,but they had different binding affinity for each binding site.Considering the similarity in binding sites, Cry1Ab and Cry1Ac should not be used together in the transgenic Bt rice to control the target pest C.suppressalis.Isolation and identification of the binding proteins of Cry1A toxins in the midgut BBMV of C.suppressalis will facilitate our understanding of mode of action and resistance mechanism of Cry1A toxins.
     3.Cloning of cDNA fragments of APN genes of C.suppressalis
     Aminopeptidase N is one kind of the important receptors of Bt toxins.A 600kb cDNA fragment of APN genes of C.suppressalis was amplified by RT-PCR with degenerate primers.The fragment was cloned and sequenced,and four cDNA sequences(named as CsAPN1,CsAPN2,CsAPN3 and CsAPN4) of about 600kb bases encoding APN genes were obtained.CsAPN1,CsAPN2,CsAPN3 and CsAPN4 shared 73%,100%,68%and 77% amino acid sequence similarity with Bombyx mori APN(GenBank accession No. BAA32140),C.suppressalis APN(GenBank accession No.ABC69855),Helicoverpa armigera APN2(GenBank accession No.AAP37951),and Ostrinia furnacalis APN (GenBank accession No.ABL01483).
引文
1.彭宇,陈长琨,韩召军,等.二化螟对3种杀虫剂的抗性测定及增效作用研究.湖北大学学报,2001,23(3):265-268
    2.彭宇,陈长琨,韩召军,等.江苏省水稻二化螟的抗药性测定及甲胺磷的抗性机制.植物保护学报,2001,28(2):173-177
    3.蔡之华,洪要文,曹炳宏.沿淮稻区三化螟重发原因与综防对策.安徽农学通报,2002,8(4):52-61
    4.曹明章.二化螟抗药性监测、对三唑磷和杀虫单抗性遗传分析及对氟虫睛抗性风险评估.博士论文.南京农业大学,2005
    5.曹明章,沈晋良,张金振,等.二化螟抗药性监测和对三唑磷抗性的遗传分析.中国水稻科学,2004,18(1):73-79
    6.陈长锟,李国清,韩召军,等.新疆棉铃虫自然敏感种群对常用杀虫剂浸叶法测定毒力基线.植物保护学报,2000,27(2):168-172
    7.陈海燕,杨亦桦,吴益东,等.棉铃虫田间种群Bt毒素Cry1Ac抗性基因频率的估算.昆虫学报,2007,50(1):25-30
    8.陈之浩,裴华,刘小涛,等.水稻二化螟抗药性研究初报.西南农业学报,1990,3(2):100-102
    9.崔金杰,夏敬源.转Bt基因棉对棉铃虫抗性的时空动态.棉花学报,1999,11(3):141-146
    10.刁春友,王茂涛,朱叶芹等.苏南稻二化螟上升原因及对策探讨.植保技术与推广,2001:21(1):7-9
    11.龚林根,张念环,张景七,等.水稻二化螟大发生源头分析及防治对策.上海农业科技,2001,(2):38-39
    12.郭三堆.植物Bt抗虫基因工程研究进展.中国农业科学,1996,28(5):8-13
    13.韩启发.二化螟对杀螟硫磷抗药性机制的机理.昆虫学报,1995,38(3):266-272
    14.姜卫华,韩召军,张国华.氟虫睛对二化螟抗、感种群的亚致死效应.南京农业大学学报,2004,27(2):51-54
    15.李宝健,欧阳学智,许耀.应用农杆菌质粒系统将外源基因转入籼稻细胞.中国科学,1990,20(2):144-149
    16.李桂英,许新萍,夏嫱,等.转GNA+SBTi双价基因抗虫水稻的遗传分析及抗虫性研究.中山大学学报,2003,142(11):125-126
    17.李国敬,胡鹏,易行云,等.2001年水稻二化螟、三化螟大发生原因分析及综防对策.湖北植保,2002,(1):15-16
    18.李秀峰,韩召军,陈长琨,等.二化螟对杀虫单抗性及其机理初探.南京农业大学学报,2001,24(1):43-46
    19.梁革梅,谭维嘉,郭予元,等.棉铃虫Bt抗感种群间数种解毒酶和中肠蛋白酶活性的比较.植物保护学报,2001,28(2):133-138
    20.梁革梅,王桂荣,徐广,等.昆虫Bt毒素受体蛋白的研究进展.昆虫学报,2003,46(3):390-396
    21.刘凯于,郑进,彭蓉,等.苏云金芽抱杆菌Cry1A毒素抗性相关受体类钙粘蛋白的研究进展.中国生物防治,2004,20(3):145-149
    22.刘永杰,沈晋良.甜菜夜蛾对氯氟氰菊酯机制抗性的表皮穿透机理.昆虫学报,2003,46(3):288-291
    23.刘卓荣,梅胜芳,涂海龙,等.赣西北稻区二化螟发生特点及抗药性治理对策.江西植保,2001,24(3):80-81
    24.贾士荣,郭三堆等主编.转基因棉花.北京科学出版社,2001
    25.贾士荣.转基因植物的环境及食品安全性.生物工程进展,1997,17(6):37-42
    26.孟凤霞.棉铃虫对转Bt基因棉的抗性:抗性品系选育与抗性遗传,南京农业大学博士论文,2001
    27.钱冬兰.稻螟发生演化及防治对策探讨.植保技术与推广,1999,19(5):12-14
    28.钱迎倩,魏伟.转基因作物对生物多样性的影响.生态学报,2001,(3):337-343
    29.邱道寿,喻子牛.棉铃虫对苏云金芽胞杆菌室内抗性初报.广东农业科学,2004:63-65
    30.曲明静,韩召军,许新军,等.二化螟对三唑磷的抗性发生动态与风险评估.南京农业大学学报,2005,28(3):38-42
    31.曲明静.二化螟对三唑磷的抗性及其机理研究.博士学位论文,2005
    32.尚稚珍,王银淑,邹永华.二化螟饲养方法的研究.昆虫学报,1979,22(2):164-167
    33.盛承发,宜维健,焦晓国,等.我国稻螟暴发成灾的原因、趋势及对策.自然灾害学报,2002,11(3):103-108
    34.盛承发,王红托,盛世余,等.我国稻螟灾害的现状及损失估计.昆虫知识,2003,40(4):289-294
    35.唐健,叶恭银.稻蓟马危害转Bt基因水稻克螟稻2号研究初报.中国水稻科学,2000,14(4):241-241
    36.唐振华编著.昆虫抗药性及其治理.北京:农业出版社,1993
    37.潭声江,陈晓峰,李典谟.Bt对昆虫毒素抗性机理研究进展.昆虫知识,2001,38(1):12-17
    38.谭荫初,邹剑明,林美嫦,等.杂交水稻二化螟的发生情况.昆虫学报,1983,26(1):14-116
    39.唐振华,周新,王萌长主编.杀虫药剂分子毒理学及昆虫抗药性.北京:中国农业出版社,1996
    40.韦永保,王新翠,黄正清.皖南单季稻区近年二化螟回升原因分析及治理对策.安徽农学通报,2002,8(2):48-50
    41.王传全,王翔.贵池市水稻二化螟发生动态分析.安徽农业大学学报,1997,24(4):336-339
    42.王国英.转基因植物的安全性评价.农业生物技术学报,2001,9(3):205-207
    43.谢道昕,贩云六,倪万朝,等.苏云金芽胞杆菌杀虫晶体蛋白基因导入棉花植株.中国科学,1991,(4):367-373
    44.徐新植,邓小强.江西省二化螟抗药性及其防治对策.江西农业学报,1992,4(1):42-50
    45.吴孔明.Bt抗虫棉棉花害虫的发生规律及控制技术.转基因棉花.科学出版社,2001,218-224
    46.吴青君,张文吉,张友军,等.表皮穿透和GABAA受体不敏感性在小菜蛾对阿维菌素抗性中的作用.昆虫学报,2002,45(3):336-340
    47.吴益东,沈晋良,尤子平.棉铃虫对氰戊菊酯的抗性机理研究.南京农业大学学报,1995 181(2):63-68
    48.汪伦记,纠敏.害虫对苏云金芽孢杆菌的抗性及其延缓措施.安徽农业科学,2005,33(8):1378-1379
    49.余健秀,余榕捷,庞义,等.昆虫对苏云金杆菌抗性的研究进展、抗性的特点及其机制.昆虫天敌,1997,19(4):173-179
    50.喻子牛主编.素云菌杆菌.北京:科学出版社,1999
    51.赵学平,王强,吴长兴,等.二化螟对杀虫剂的敏感性及抗药性研究.浙江农业学报,2000,12(6):382-386
    52.杨昌举,宋林,王竹.转基因大豆对生物多样性的影响.自然生态保护,2002,11:24-27
    53.于光,程罗根,陈之浩.小菜蛾抗杀螟丹生理机制的研究.江苏农业科学,2005,5:51-53
    54.张明洲.农杆菌介导高粱转化体系的建立与Bt抗虫基因的导入.浙江大学博士论文,2002
    55.张中社,赵俊侠.苏云金杆菌的研究进展.陕西林业科技,2001,(4):65-68
    56.张孝羲主编.昆虫生态及预测预报北京:中国农业出版社,第一版1985
    57.张孝羲土编.昆虫生态及预测预报北京:中国农业出版社,第二版2002
    58.赵建周,赵奎军.Bt棉不同品系对棉铃虫杀虫效果的比较.中国农业科学,2000,33(5):100-102
    59.周社文,肖一龙.二化螟种群突增机制及控制对策研究.植保技术与推广,2000,20(3):5-7
    60.周忻.防治稻螟四十年.昆虫知识,1990,27(3):178-181
    61.褚柏.六省市二化螟对常用杀虫剂敏感度的调查.农药,1987,29(6):6-8
    62.Adang M J,Brody M S,Cardinesu G,et al.The reconstruction and expression of a Bacillus thuringiensis crylllA gene in protoplasts and potato plants.Plant Mol Biol,1993,21:1131-1145
    63.Ahmad M,McCaffery A R.Resistance to insecticides in a Thailand strain of Heliothis armigera (H(o|¨)bner)(Lepidoptera:Noctuidae).J Econ.Entomol,1988,81(1):45-48
    64.Algimantasp Valaitls,Kyong M I,et al.Brush Border Membrane Aminopeptidase-N in the midgut of the Gypsy moth serves as the receptor for the Cry1Ac 口-endotoxin of Bacillus thuringiensis.Insect Biochem Molec Biol,1995,25(10):1143-1151
    65.Armstrong C L,Parker G.B,Pershing J C,et al.Fidld evaluation of European com borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis.Crop Sci,1995,35:550-557
    66.Aronson A I,Chaoxian Geng,Lan Wu.Aggregation of Bacillus thuringiensis Cry1A Toxins upon Binding to Target Insect Larval Midgut Vesicles.Applied and Environmental Microbiology,1999,65(6):2503-2507
    67.Ballester V,Cranero F,Tabashnik B E,et al.Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth(Plutella xylostella).Appl Environ Microbiol,1999,65(4):1413-1419
    68.Banks D J,Jurat-Fuentes J L,Dean D H,et al.Bacillus thuringiensis Cry1Ac and Cry1Fa deltaendotoxin binding to a novel 110 kDa aminopeptidase in Heliothis virescens is not Nacetylgalactosamine mediated.Insect Biochem Mol Biol,2001,31(9):909-918
    69.Banks D J,Hua q and Adang M J.Cloning of a Heliothis virescens 110 kDa aminopeptidase N and expression in Drosophila S2 cells.Insect Biochem Molec Biol,2003,33:499-508
    70.Barbka R L,Jurka K,Bogdan K.Lapstatin,a new aminopeptidase inhibitor produced by Streptomyces rimosus,inhibits autogenous aminopeptidases.Arch Microbiol,1999,171:197-404
    71.Barton K A,Whiteley H R,Yang N S.Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to Lepidoptera insects.Plant Physiology,1987,85:1103-1109
    72.Bauer L S.Resistance:a threat to the insecticidal crystal proteins of Bacillus thuringiensis.Fla Entomol,1995,78:414-443
    73.Baxter S W,Zhao J Z,Gahan L J,et al.Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella.Insect Mol Biol,2005,14(3):327-334
    74.Beegle C C,Yamamoto T.History of Bacillus thuringiensis Berliner research and development.Entomol,1992,124:587-616
    75.Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the protein-dye binding.Anal Biochem,1976,72:248-254
    76.Bravo A,Gomez I,Conde J,Miranda R.Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains.Biochim Biophys Acta,2004,1667(1):38-46
    77.Chan M T,Chang H H,Ho S L,et al.Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha amylase promoter beta glucuronidase gene.Plant Mol Biol,1993,22:491-506
    78.Chaufaux J,JM(u|¨)ller-cohn,C Buisson,et al.Inheritance of resistance to the Bacillus thuringiensis Cry1C toxin in Spodoptera littoralis(Lepidoptera:Noctuidae).J Econ Entomol,1997,90(4):873-878
    79.Chen P,Johnson P,Sommer T,et al.Multiple ubiquitin-conjugating enzymes participate in the vivo degradation of the yeast MAT口2 repressor.Cell,1993,74:357-369
    80.Chen X Y,Lee M K,Dean D H.Site-directed mutations in a conserved region of Bacillus thuringiensis 口-endotoxin affect inhibition of short circuit current across Bombyx mori midgets.Proc Natl Acad sci USA,1998,90:9041-9045
    81.Cheng X Y,Sardana X,Kaplan R,et al.Agrobacterium-transformed rice plants expressing synthetic crylA(b) and crylA(c) gene are highly toxic to striped stem borer and yellow stem borer.PNAS,1998,(95):2767-2772
    82.Coates B S,Sumerford D V,Hellmich R L,et al.Sequence variation in the Cadherin gene of Ostrinia nubilalis:a tool for field monitoring.Insect Biochem Mol Biol,2005,35(2):129-139
    83.Cowles E A,Yunovitz H,Charles J F,et al.Comparison of toxin overlay and solid-phase binding assays to identify diverse CryIA(c) toxin-binding proteins in Heliothis virescens midgut.Appl Environ Microbiol,1995,61(7):2738-2744
    84.Crickmore N,Zeigler D R,Feitelson J,et al.Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Protein.Microbiol Molec Biol Rev,1998,62(3):807-813
    85.Cummings C E,Amstrong G,Hodgman T C.Strucral and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensis 口-endotoxin.Insect Mol Memb Biol,1994,11:87-92
    86.Donegan I C K,Palm C J,Fieland V J,et al.Changes in levels and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var kurstaki endotoxin.Appl Soil Ecol,1995,2:111-124.
    87.Dorsch J A,Candas M,Griko N B,et al.Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R1 in Manduca sexta:involvement of a cadherin in the entomopatho-genicity of Bacillus thuringiensis.Insect Biochem Mol Biol,2002,2(9):1025-1036
    88.Drobniewski A,Ellar D J.Investigation of the membrane lesion induced in vitro by two mosquitocidal 口-endotoxins of Bacillus thuringiensis.Curr Microbiol,1988,16(4):195-199
    89.Du C,Nickerson K W.The Bacillus thuringiensis insecticidal toxin binds biotin containing proteins.Appl Environ Microbiol,1996,62:2932-2939
    90.Edwin P,Alcantara,Remedios M,et al.Bacillus thuringiensis 口-Endotoxin binding to brush border membrane vesicles rice stem borers.Archives of Insect Biochemistry and Phsiology 2004,55:169-177
    91.Ellar D J.Pathogenicity determinants of entompatho-genic bacteria.Proc 5th Int Colloquimon Invertebrate Pathology and Microbial Control,adelaide Australia,1989:20-24
    92.Emmerling D C,Mark Sandeman.Molecular Cloning Of Three cDNA Encoding Aminopeptidases From The Midgut Of Helicoverpa Punctigera,The Australian Native Budworm.Insect Biochem Mol Biol,2001,31:899-907
    93.Estada U,Ferr J.Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper,Trichoplusia ni(Lepidoptera:Noctuidae),and selection for resistance to one of the crystal proteins.Applied and Environmental Microbiology,1994,60:3840-3846
    94.Fabricka B E,Tabashnik.Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm.Insect Biochemistry and Molecular Biology,2007,37:97-106
    95.Falconer D S.Introduction to Quantitative Genetics.2nd ed New York:longman,1981,316
    96.Fast P G.The crystaltoxin of Bacillus thurinensis.In:Microbial control of pests and plant diseases 1970-1980.Burges,D.ed.Academic Press,N.Y.1981.
    97.Feitelson J S,Payne J,Kim L.Bacillus thuringiensis:Insects and beyond.Bio Technol,1992,10:271-275
    98.Fernandez L E,Aimanova K,Gill S S,et al.A GPI-anchored alkaline in Aedes aegypti larvae phosphatase is a functional midget receptor of Cry1 1Aa toxin.Bio chem.2006,15(394):77-84
    99.Ferre J,Real M D.Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due a change in a midgut membrane receptor.Proc Natl Aced Sci,USA,1991,88:5119-5123
    100.Ferre J,van Rie J.Biochemistry and genetics of insect resistance to Bacillus thuringiensis.Annual Review of Entomology,2002,47:501-533
    101.Forcada C,Alcacer E,Garcer M D.Resistance to Bacillus thuringiensis Cry1Ac Toxin in three strains of Heliothis virescerrs:proteolytic and SEM study of the larval midget.Archives of insect Biachem Physiol,1999,42:51-63
    102.Foumier D,Mutero A.Modification insecticides Comp Biochem Physiol of acetylcholine esterase as a mechanism of resistance.Comparative biochemistry and physiology.1994,106:19-31
    103.Fromm M E,Taylor L P,Walbot V.Stable transformation of maize after gene transfer by electroporation.Nature,1986,319:791-793
    104.Fujimoto H K,Itoh M Yamamoto,J Kyozuka et al.Insect resistant rice generated by introduction of a modified 口-endotoxin gene of Bacillus thuringiensis.Biol Tech,1993,11:1151-1155
    105.Gahan L J,Gould F,Heckel D G.Identification ofa gene associated with Bt resistance in Heliothis virescens.Science,2001,293:857-860
    106.Galitski V M,Larkin A I,Larkin R.Disorder and quantum fluctuations in superconducting films in strong magnetic fields.Plays Rev Lett,2001,89:85-89
    107.Garczynski S F,Crim J W,Adang M J.Identification of putative insect brush border membrane binding molecules specific to Bacillus thuringiensis 口-endotoxin by protein blot analysis.Appl Env Microbiol,1991,57:2816-2820
    108.Ge A Z,Shivarova N I,Dean D H.Location of the Bomoyx mori specificity domain on a Bacillus thiringiensis 口-endotoxin.Proc Natl Acad Sci,1989,86:4037-4041
    109.Gerschenfeld H M.Chemical transmission in invertebrate central nervous system and neuromu -scular junctions.Physiol Rev,1973,53:1-119
    110.Ghareyazie B,Alinia F,Menguito C A,et al.Enhanced resistance to two stem borers in an aromatic rice cotaining a synthetic cry1Ab gene.Molecular Breeding,1997,3:401-404
    111.Gill S S,Cowles E A,Pietrantonio P V.The mode of action of Bacillus thuringiensis endotoxins.Annu Rev Entomol,1992,37:615-636
    112.Gill S S,Cowles E A,Francis V.Identification,isolation,and cloning of a Bacillus thuuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens.Biol Chem,1995,270:27277-27282
    113.Gill M,Ellart D.Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac.Insect Molecular Biology,2002,11(6):619-625
    114.Gomez I,Olteean D,Gill S S,et al.Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display.Biol Chem,2001,276:28906-28912
    115.Gomez I,Miranda-Rios J,Rudino-Pinera E,et al.Hydropathic complementarity determines interaction of epitope ~(869)HITDTNNK~(876) in Manduca sexta Bt-R1 receptorwith loop 2 of domain Ⅱ of Bacillus thuringiensis Cry1A toxins.Biol Chem,2002,277(33):30137-30143
    116.Gomez L,Pardo-Lopez C,Munoz-Garay L E,et al.A Bravo Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis peptides.2007,28:169-173
    117.Gould F,Anderson A,Martinez-Ramirez A,et al.Moar Broad-Spectrum Resistance to Bacillus thuringiensis Toxins in Heliothis virescens.PNAS,1992,89(17):7986-7990
    118.Gould F.Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology. Annu Rev Entomol,1998,43:701-726
    119.Gould F,Blair N,Reid M,et al.Published online Bacillus thuringiensis-toxin resistance management:Stable isotope assessment of alternate host use by Helicoverpa zea before print December,PNAS,2002,999(26):16581-16586
    120.Griffins J S,Whitacre J L,Stevens D E,et al.Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme.Science,2001,293(5531):860-864
    121.Griffitts J S,Haslam S M,Yang T,et al.Glycolipids as receptors for Bacillus thuringiensis crystal toxin.Science,2005,307:922-925
    122.Grochulski P L,Masson S,Borisova M,et al.Bacillus thuringiensis Cry1Aa insecticidal toxins:crystal structure and channel formation.Mol Biol,1995,254:447-464
    123.Haider M Z,Ellar D J.Functional mapping of an entomocidal delta-endotoxin,Single amino acid changes produced by site-directed mutagenesis influence toxicity and specificity of the protein.Mol Biol,1989,208(1):183-194
    124.Haider M Z,Smith G P,Ellar D J.Delineation of the toxin coding fragments and an insectspecificity region of a dual toxicity Bacillus thuringiensis crystal protein gene.FEMS Microbiol Let,1989,49(2-3):157-163
    125.Heckel D G.The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects.Biocontrol Science and Technology,1994,4:405-417
    126.Heckel D G,Ganhan L J,Gauld F.Pestc Sci,1997,51:251-258
    127.Heckel D G,GahanL C,Gould F,et al.Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis Cry2Ac endotoxin in the tobacco budworm(Lepidoptera:Noctuidae).Econ Entomol,1997b,90:75-86
    128.Heckel D G,Gahan L,Gould P,et al.Genetics of Heliothis and Helicoverpa resistance to chemical insecticides and to Bacillus thuringiensis Cry1Ac.Pestic Sci,1997,51:251-258
    129.Heimbach U,G Kral,P Niemann.EU regulatory aspects of resistance risk assessment.Pest Manag Sci,2002,58:935-938
    130.Herrero S,Oppert B,FerreJ.Different mechanisms of resistance to Bacillus thuringiensis toxins in the Indianmeal Moth.Appl Envrion Microbiol,2001,67(3):1085-1089
    131.Hiei Y,Ohta S,Komari T,et al.Efficient transformation office(Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.Plant J,1994,6(2):271-182
    132.Hilbeck A,Baumgartner M,Fried P M,et al.Effects of transgenic Bacillus thuringiensis corn-fedprey on mortality and development time of immature Chrysoperla carnea(Neuroptera: Chrysopidae).Environ Entomol,1998,27:480-487
    133.Hofmann C,Vanderbruggen H,Hofte H.Specificity of Bacillus thuringiensis 口-endotoxin is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts.Proc Natl Acad Sci,USA,1998,85:7844-7848
    134.Hofmann C,Luthy P,Hutter R,et al.Binding of the delta-endotoxin from Bacillus thuringiensis to brush border membrane vesicles of the cabbage butterfly(Pieris brassicae).Eur J Ciochem,1988,173:85-91
    135.Hofte H,Whiteley H R.Insecticidal Crystal proteins of Bacillus thuringiensis.Microbiologieal Reviews,1989,03:242-255
    136.Horsch R B,Fry J E,Hotfrnan N L et al.A simple and general ethod for transferring genes into plants.Science,1985,227:1229-1231
    137.Hossain D M,Shitomi Y,Moriyama K.Characterization a novel plasma membrane protein,expressed in the midgut epithelia of Bomry mori,that binds to CryIA.Appl Environ Microbiol,2004,70:604-612
    138.Hua G,Tsukamoto K,Rasilo M L,et al.Molecular cloning ofa GPI-anchored aminopeptidase N from Bombyx mori midgut:a putative receptor for Bacillus thuringiensis Cry1A toxin.Gene,1998,214:177-185
    139.Hua G,Tsukamoto K,Taguchi R,et al.Characterization of aminopeptidase N from the brush border membrane of the larvae midgut of silk worm,Bombyx mori as a zinc enzyme.Biochim Biophys Acta,1998,1383(2):301-310
    140.Hua G,Jurat-Fuentes J L,Adang M J.Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity.J Biol Chem,2004,279(27):28051-28056
    141.Huang F,Buschman L L,Higgins R A,et al.Inheritance of resistance to Bacillus thuringiensis toxin(Dipel ES) in the European corn borer.Science,1999,284:965-967
    142.Huang H S,Hu N T,et al.Molecular cloning and heterologous expression of a glutathion Stransferase involved in insecticide resistance from the diamondback moth,PluteUa xylostella.Insect Biochem.Mol.Biol.1998,28(9):651-658
    143.Jenkins C,Wilson R,Roberts J,Miller H,et al.Walker Antioxidants:Their Role in Pregnancy and Miscarriage.Antioxidants & Redox Signaling,2000,623-628.
    144.Jenkins J L,Dean D H.Exploring the mechanism of action of insecticidal proteins by genetic engineering methods.Genet Eng,2000,22:33-54
    145.Jone D R,C D Perttunen,B E Stuckman.Global Optimization:Beyond the Lipschitzian Model,Procn IEEE Systems,Man & Cybernetics Cord,Chicago,Illinois,1992,18-21.
    146.Juan L,Jurat-Fuentesa,Michael J Adang.A proteomic approach to study Cry1Ac binding proteins and their alterations in resistant Heliothis virescens larvae.Journal of Invertebrate Pathology,2007,95:187-191
    147.Jurat-Fuentes J L,Adang M J.Importance of Cry1 delta-endotoxin domain Ⅱ loops for binding specificity in Heliothis virescens(L.) Appl Environ Microbiol Vol,2001,67(1):323-329
    148.Jurat-Fuentes J L,Gould F L,Adang M J.Altered Glycosylation of 63-and 68kDa Microvillar Proteins in Heliothis virescens Correlates with Reduced Cry1 Toxin Binding,Decreased Pore Formation,and Increased Resistance to Bacillus thuringiensis Cry1 Toxins.Applied and Environmental Microbiology,2002,68(11):5711-5717
    149.Jurat-Fuentes J L,Adang M J.Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae.Eur J Biochem,2004,271(15):3127-3135
    150.Jurat-Fuentes J L,Adang M J.Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae.Journal of invertebrate pathology,2006,92(3):166-171
    151.Jutsum A R,S P Heaney,B M Perrin,et al.Pesticide resistance:assessment of risk and the development and implementation of effective management strategies.Pestle Sci,1998,54:435-446
    152.Kao C H,Cheng E Y.Insecticide resistance in Plutella xylostella L.XI.Resistance to newly introduced insecticides in Taiwan.Journal of Agricultural Research of China,2001,50(4):80-89
    153.Ke Luo,Michael J,Adang.Binding of Bacillus thuringiensis Cry1ac toxin to Aminopeptidase In Susceptible And Resistant Diamond Back Moths(Plutella xylostella).Applied And Environmental Microbiology,1997,63(3):1024-1027
    154.Klein T M,Wolfe D,Wu R,et al.High-velocity microjectiles for delivering nuleic acids into living cells.Nature,1987,327-7073
    155.Knight P J K,Crickrnore N,Ellar D J.The receptor for Bacillus thurigiensis Cry1Ac hlanduca delta-endotoxin in the brush border membrane of lepidopteran Sexta is aminopeptidase N.Mol Microbiol,1994,11(3):429-436
    156.Knight P J K,Knowles B H,Ellar D J.Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis Cry1A(c) toxin.J Biol Chem,1995,270:17765-17770
    157.Knight P J,Carroll J,Ellar D J.Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis Cry1Ac toxin.Insect Biochem Mol Biol,2004,34(1):101-112
    158.Knowles B H,Ellar D J.Characterization and partial purification of a plasma membrane receptor for Bacillus thuringienis 口-endotoxins with different insect specificity.Biochem Biophys Acta, 1986,924:509-518
    159.Knowles B H,Ellar D J.Collid-osmotic lysis is a general feature of the mechanismof action of Bacillus thuringiensis 口-endotoxins with different insect specific.Biochim Biophys Acta,1987,924(3):509-518
    160.Knowles B H,Dow J A T.The crystal 口-endotoxins of Bacillus thuringiensis:models for their mechanism of action on the insect gut.Bioassays,1993,15:469-476
    161.Konno Y,Shishido T.Metabolism of fenitrothion in the organophosphorus resistant and susceptible strains of rice stem borer,Chilo suppressalis.J Pesti Sci 1987,12(3):469-476.
    162.Konno Y.Studies on the resistance mechanism and synergism in the OP-resistant rice stem borer,Chilo suppressalis Walker.J Pesti Sci,1989,14(3):373-381
    163.Konno Y.Carboxylesterase of the rice stem borer,Chilo suppressalis Walker(Lepidoptera:Pyralidae),responsible for fenitrothion resistance as sequestering protein.J Pesticide Sci,1996,21(4):425-429
    164.Lee M K,Ross E M,Ge A Z,et al.Location of a Bombyx mori receptor binding region on a Bacillus thunngiensis 口-endotoxin.Journal of Biological Chemistry,1992,267(5):3115-3121
    165.Lee M K,et al.Aminopeptidase-N purified from gyspy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis Cry1Ac toxin.Appl Env Microbiol,1996,62:2845-2849
    166.Lee M K,Aguda R M,Cohen M B,et al.Determination of binding of Bacillus thuringiensis 口-endotoxin receptors to rice stem borer midguts.Appl Environ Microbiol,1997,63:1453-1459
    167.Lee M K,Rajamohan F,Jenkins J,etaL Role of two arginine residues in domain Ⅱ,loop 2 of Cry1Ab and Cry1Ac Bacillus thuringiensis delta-endotoxin in toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N.Mol Microbiol,2000,38(2):289-298.
    168.Li G P,Wu K M,Gould F,et al.Frequency of Bt resistance genes in Helicoverpa armigera populations from the Yellow River cotton-farming region of China.Entomologia Expefimentalis et Applicata,2004,112(2):135-143
    169.Li J,Henderson R,Carroll J,Ellar D.X-ray analysis of the crystalline parasporal inclusion in Bacillus thuringiensis var.tenebrionis.J Mol Biol,1988,199(3):543-544
    170.Li J,Carroll J,Ellar D J.Crystal structure delta-endotoxin from Bacillus thuringiensis at 2.5口resolution.Nature,1991,353:815-821
    171.Li J,Koni P A,Ellar D J.Crystallization of a membrane pore-forming protein with multiple specificities.J Biol Chem,1995,270:20309-20315
    172.Li J,Koni P A,Ellar D J.Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp.kyushuensis and implications for membrane pore formation.J Mol Biol,1996,257(1):129-152
    173.Liu M Y,Sun C N,Huang S W.Absence of synergism of DTT by piperonyl butoxide and DMC in larvae of the diamondback moth(Lepidoptera:Ypononeutidae).J Econ Entomol 1982,75:964-965
    174.Liu Y B,Tabashnik B E,Meyer S K.Genetics of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac.J Econ Entomol,2001,94(1):248-252
    175.Liu Z W,Williamson M S,Lansdell St J,et al.A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens(brown planthopper).PNAS,2005,102(24):8420-8425
    176.Loseva O,Ibrahim M,Candas M,et al.Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle:implications for insect resistance to Bacillus thuringiensis toxins.Insect Biochem Mol Biol,2002,32(5):567-577
    177.Losey J E,Rayor L S,Carter M E.Transgenie pollen harms monarch butterfly.Nature,1999,399:214
    178.Lorenee A,Darszon A,Bravo A.Aminopeptidase dependent pore formation of Bacillus thuringiensis Cry1Ac toxin on Trichoplusia ni membrane.FEBS Letters,1997,414:303-307
    179.Lu M G,Rui C H,Zhao J Z,et al.Selection and inheritability of resisance to Bacillus thuringiensis subsp kurstaki and transgenie cotton in Helicoverpa armigera(Lepidoptera:Noetuidae).Pest Manag Sci,2004,60:887-893
    180.Luo K,Lu Y,AdangM J.A 106 kDa formof aminopeptidase is a receptor for Bacillus thuringiensis Cry1C 口-endotoxin in the brush border membrane of Manduca sexta.Insect Biochern Mol Biol,1996,26:783-791
    181.Luo K,Sangadala S,Masson L,et al.The Heliothis virescens 170 kDa aminopeptidase functions as "receptor A" by mediating specific Bacillus thuringiensis Cry1A delta-endotoxin binding and pore formation.Insect Biochem Mol Biol,1997a,27:735-743
    182.Luo K,Tabashnik B B.Binding of Bacillus thuringiensis Cry1Ac toxin to aminopeptidase in susceptible and resistant diamondback moths(Plutella xylostella).Appl Eneoron Microbbiol,1997b,63:1024-1027
    183.Luo S D,Wang G R,Liang G M,et al.Binding of t here Cry1A toxins in resistant and susceptible st rains of cot ton bollworm(Helicoverpa armigera).Pesticide Biochem Physiol,2006,85:104-109
    184.Mang K Q.A discussion on the biosafety of transgenic plants.Prog iotechnol,1996,16(4):2-6
    185.Mario Soberon,Luisa E,Fernandez,Claudia Perez,et al.Mode of action of mosquitocidal Bacillus thuringiensis toxins.Toxicon,2006,597-600
    186.Martinez-Ramirez A C,Gonzalez-Nebauer S,Escriche B,et al.Ligand blot identification of a Manduca sexta midgut binding protein specific to three Bacillus thuringiensis CryIA-type ICPs.Biochem Biophys Res Commun,1994,201(2):782-787
    187.Martinez-Ramirez A C,Gould F,Ferre J.Histopathological effects and growth reduction in a usceptible strain of Heliothis virescens(Lepidoptera:Noctuidae) caused by sublethal doses of pure CryIA crystal proteins from Bacillus thuringiensis.Biocontrol Sci Techno,1999(9):239-246
    188.Masson L,Mazza A,Gringorten L,et al,Specificity domain Localization of Bacillus thuringiensis insecticidal toxins is highly dependent on the bioassay system.Mol Microbiol,1994,14:851-860
    189.Masson L,Lu Y J,Mazza A.The CryIA(c) receptor purified from Manduca sexta displays multiple specificities.J Biol Chem,1995,270:20309-20315
    190.McGaughey W H.Insect resistance to the biological insecticide Bacillus thuringiensis.Science,1985,229:193-194
    191.McGaughey W H,Whalon M E.Managing insect resistance to Bacillus thuringiensis toxins.Science,1992,248:1441-1444
    192.McGaughey W H,Johnson D E.Indianmeal moth(Lepidoptera:Pyralidae) resisance to different strains and mixtures of Bacillus thuringiensis.J Econ Entomol,1992,85:1594-1600
    193.McGaughey W H,Johnson D E.Influence of crystal protein composition of Bacillus thuringiensis strains on cross-resistance in indiamean moths(Lepidoptera:Pyralidae).J Econ Entomol,1994,87:535-540
    194.McNall R J,Adang M J.Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis,insect Biochem Mol Biol,2003,33:999-1010
    195.Meng F X,Wu K M,Gao X W,et al.Geographic Variation in Susceptibility of Chilo suppressalis (Lepidoptera:Pyralidae) to Bacillus thuringiensis Toxins in China.J.Econ.Entomol,2003,96(6):1838-1842
    196.Meng F,Shen J,Zhou W,et al.Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa arraigera(H(o|¨)bner)(Lepidoptera:Noctuidae).Pest Manag Sci,2004,60:167-172
    197.Mohammed S I,Johnson,D E,Aronson A I.Altered binding of the Cry1Ac toxin to larval membranes but not to the toxin-binding protein in Plodia interpunctella selected for resistance to different Bacillus thuringiensis isolates.Appl Environ Microbiol,1996,62(11):4168-4173
    198.Morin S,Biggs R W,Sisterson M S,et al.Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm.Proc Natl Acad Sci USA,2003,100(9):5004-5009
    199.Motoyama H.Theories of the Chakras:Bridge to Higher Consciousness.1984,Wheaton:Quest
    200.Nagamatsu Y,Toda S,Koike T.Cloning sequencing and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIAa toxin.Biosci Biotechnol Biochem,1998,62:727-734
    201.Nagamatsu Y,Koike T,Sasaki K,et al.The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin.FEBS Lett,1999,460(2):385-390
    202.Nayak P,Basu D,Das S,et al.Transgenic elite indica rice plants expressing CryIAc delta-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer(Scirpophaga incertulas).Proc Natl Acad Sci USA,1997,4:2111-2116
    203.Oddou P,Hartmann H,Geiser M.Identification and characterization of Heliothis virescens midgut membrane proteins binding Bacillus thuringiensis delta-endotoxins.Eur J Biochem,1991,202:673-680
    204.Oddou P,Hartmann H,Radecke F.Immunologically unrelated Heliothis sp.and Spodoptera sp.midgut membrane-proteins bind Bacillus thuringiensis CryIAb delta-endotoxin.Eur J Biochem,1993,212:145-150
    205.Oltean D I,Pullikuth A K,Lee H K,et al.Partial purification and characterization of Bacillus thuringiensis Cry1A toxin receptor A from Heliothis virescens and cloning of the corresponding cDNA.Appl Environ Microbiol,1999,65:4760-4766
    206.Oppert B,Kramer K J,Beeman R W,et al.Proteinase-mediated insect resistance to Bacillus thuringiensis toxins.J Biol Chem,1997,272:23473-23476
    207.Ortego F,Novillo P.Characterization and distribution of digestive proteases of the stalk corn borer,Sesamia nonagrioides Lef Arc.Insect BiochemPhysiol,1996,33:163-180
    208.Papir G,Spungin-Bialik A,Ben-Meir D.Inhibition of Streptomyces griseus aminopeptidase and effects of calcium ions on catalysis and binding-comparisons with the homologous enzyme Aeromonas proteolytica aminopeptidase.Eur Biochm,1998,258(2):313-319
    209.Qu Mingjing,Han Zhaojun,Xu Xinjun.Triazophos Resistance Mechanismin Rice Stem Borer (Chilo suppressalis Walker).Pesticide Biochemistry and Physiology,2003,77:99-105
    210.Rahardja U,Whalon M E.Inheritance to resistance to Bacillus thuringiensis subsp.Tenebrionis Cry3A 口-endotoxins in Colorado potato beetle(Coleoptera:Chrysomelidae).J Econ Entomol,1995,88:21-26
    211.Raineri D M,Bottino P,Gordon M P,et al.Agrobacterium-mediated transgenic rice(Oryzasativa L.).Bio Technol,1990,8:33-38.
    212.Rajamohan F,Contrill JA,Could F,et al.Role of domain Ⅱ,loop2 residues of Bacillus thuringiensis cry1Ab 口-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens.J Biol Chem,1996,271:2390-2396
    213.Rajamohan F,Lee M K,Dean D H.Bacillus thurtngiensis proteins:molecular model of action.Nueleic Acid Res Mol Biol,1998,60:1-27
    214.Rajagopal R,Sivakumar S,Agrawal N,et al.Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor.J Biol Chem,2002,277(49):46849-46851
    215.Rajagopal R,Neema Agrawal,Angamuthu Selvapandiyan,et al.Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera(American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins.Biochem J,2003,370:971-978
    216.Sambrook J,Fritsch E F,Maniatis T.Molecular clong a laboratory mannal(2nd).American:Cold Spring Harbor Laboratory Press,1989,304-340
    217.Schnepf H E,Tomczak K,Ortega J P.Specificity-determining regions of lepidopteran specific proteins produced by Bacillus thuringiensis.J Biol Chem,1990,265:20923-20930
    218.Schnepf E,Crickmore N,van Rie J.Bacillus thuringiensis and its pesticidal crystal proteins.Microbio Mole Biol Rev,1998,62:775-806
    219.Schuler T H,Potting R P J,Denholm I,et al.Parasitoid behaviour and Bt plants.Nature,1999,400:825
    220.Shao Z,Cui Y,Liu X,et al.Processing of delta-endotoxin of Bacillus thuringiensis subsp,kurstaki HD-1 in Heliothis armigera midgut juice and the effects ofprotease inhibitors.J Invertebr Patho,1998,72(1):73-81
    221.Singsit C,Adang M C,Lynch R E,et al.Expression of a Bacillus thuringiensis cry1Ac gene in transgenic peanut plants and its efficacy against lesser cornstalk borer.Transgen Res 1997,6:169-176
    222.Simpson R M,Newcomb R D.Binding of Bacillus thuringiensis delta-endotoxins Cry1Ac and Cry1Ba to a 120-kDa aminopeptidase-N of Epiphyas postvittana purified from both brush border membrane vesicles and baculovirus-infected Sf9 cells.Insect Biochem Mol Biol,2000,30(11):1069-1078
    223.Sonoda K,Miyamoto S,Hirakawa T,et al.Invasive potency related to RCAS1 expression in uterine cervical cancer.Gynecol Oncol,2005,99(1):189-193
    224.Stewart J,Amir S.Resrtting of circadian clock by a conditioned stimulus.Nature,1996,379:542-545
    225.Tabashnik B E.Implications of gene amplification for evolution and management of insectide resistance.J Econ Entomol,1990,84(3):834-841
    226.Tabashnik B E,Finson N,Johnson M W.Managing resistance to Bacillus thuringiensis:Lessons from the diamondback moth(Lepidoptera:PluteUiae).J Econ Entomol,1991,84:49-55
    227.Tabashnik B E.Resistance risk assessment:Realized heritability of resistance to Bacillus thuringiensis in diamondback moth(Lepidoptera:Plutellidea),tobacco bud worm(Lepidoptera:Noctuidae),and Colorado potato beetle(Coleoptera:Chrysomelidae).J Econ Entomol,1992a,85(5):1551-1559
    228.Tabashnik B E,Schwartz J M,Finson N.Inheritance of resistance to Bacillus thuringiensis in diamondback moth(Lepidoptera:Plutellidae).J Econ Entomol,1992b,85(5):1046-1055
    229.Tabashnik B E.Evolution of resistance to Bacillus thuringiensis.Annu Rev Entomol,1994,39:47-79
    230.Tabashnik B E,McGaughey W H.Resistance risk assessment for single and multiple insecticides:responses of indianmeal moth(Lepidoptera:Pyralidae) to Bacillus thuringiensis.J Econ Entomol,1994,87(4):834-841
    231.Tabashnik B E,Liu Y B,Finson N,et al.One gene in diamondback moths confers resistance to four Bacillus thuringiensis toxins.Proc Natl Acad Sci USA,1997,94:1640-644
    232.Tabashnik B E,Liu Y B,Dennehy T J.Inheritance of resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm(Lepidoptera:Gelechiidae).Econ Entomol,2002,95(5):1018-1026
    233.Tsuda Y,Nakatani F,Hashimoto K,et al.Cytotoxie activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with Cadherin-like Cry receptor gene of Bombyx mori(silk worm).Biochem J,2003,369(3):697-703
    234.Terra W,Ferreira C.Insect digestive enzymes:properties,compartamentalization and function.Comp Biochem Physiol B,1994,109:1-62
    235.Uchimiya H,Fushimi T,Hashimoto H,et al.DNA-treated protoplasts of rice Expression of a foreign gene in callus derived from(Oryza sativa L.).Mol Gen Genet,1986,204:204-207
    236.Vadlamudi R K,Ji T H,Bulla L A.A specific Binding Protein from Manduca sexta for the insecticidal toxin of Bacillus thuringienis subsp bediner.J Biol Chem,1993,268:12234-12340
    237.Vadlamudi R K,Weber E,Ji T H.Cloning and expression of a receptor for an insectidal toxin of Bacillus thuringiensis.J Biol Chem,1995,270:5490-5494
    238.Vaeck M,Reynaerts A,Hofte H,et al.1987.Transgenic plants protected from insect attack.Nature,328:3337
    239.Valaitis A P,Lee M K,Rajamohan F,et al.Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIAc delta-endotoxin of Bacillus thuringiensis.Insect Biochem Mol Biol,1995,25:1143-1151
    240.Valaitis A P,Jerkins J L,Lee M K.Isolation and partial characterization of gypsy moth BTR-270,an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis CrylA toxins with high afrinity.Arch Insect Biochem Physiol,2001,46:186-200
    241.Van Rie J,Jansens S,Hofte H.Specificity of Bacillus thuringiensis delta-endotoxins:mportance of specific receptors on the brush norder membrane of the midgut of target insects.Eur J Biochem,1989,186:239-247
    242.Wang G.R,Wu K M,Liang G M,et al.Gene cloning and erpression of cadherin in midgut of Helicoverpa armigera and its CrylA binding region.Science in China Ser C Life Sciences,2005:346-356
    243.Wang P,Zhang X,Zhang J.Molecular characterization of four midgut aminopeptidase N isozymes from the cabbage looper,Trichoplusia ni.Insect Biochem MolBiol,2005,35(6):611-620
    244.Ward S,Ellar D J,Chilcott C N.Single amino acid changes in the Bacillus thurlngiensis var israelensis 口-endotoxin affect the toxicity and expression of the toxin.J Mol Biol,1988,202:527-35
    245.Watrud L S,Seidler R J.Nontarget ecological effects of plant,microbial,and the chemical introductions to terrestrial systems.Soil Science Society of American,Madison,Wisconsin.1998,313-340
    246.Wolfersberger M,Luehty P,Maurer A,et al.Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Poeris brassicae),Comp.Biochem Phyisol 86A,1987:301-308
    247.Wolfersberger M G.The toxicity of two Bacillus thuringiensis-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush norder membranes for the toxins.Experientia,1990,46:475-477
    248.Xiaotan Li,Qingchun Huang,Zhenhua Tang.Fipronil resistance mechanisms in the rice stem borer,Chilo suppressalis Walker.Pesticide Biochemistry and Physiology,2007,89(3):169-174
    249.Xinjun Xu,Yidong Wu.Disruption of Ha_BtR alters binding of Bacillus thuringiensis 口-endotoxin Cry1Ac to midgut BBMVs of Helicoverpa armigera Journal of Invertebrate Pathology,2008,97(1):27-32
    250.Wunn J,Kloti A,Burkhardt P K.Transgenic India rice breeding line IR58 expressing a synthetic cryl(A)b gene from Bacillus thuringiensis.Bio Technology,1996,14:171-176
    251.Wu C,Fan Y,and Zhang C.Transgenic fertile japonic rice plants,expressing a modified cryl(A)b gene resistance to yellow stemborer.Plant Cell Reports 1997,17:129-1322
    52.Xu X J,Yu L Y,Wu Y D.Disruption of a cadherin gene associated with resistance to Cry1Ac endotoxin of Bacillus thuringiensis in Helicoverpa armigera.Appl Environ Microbio,2005,71(2):948-954
    253.Xuebin Zhang,Natalya B,Griko,et al.Enhanced exocytosis of the receptor BT-R1 induced by the CrylAb toxin of Bacillus thuringiensis directly correlates to the execution of cell death.Comp Biochem Physiol B Biochem Mol Biol,2008,12:182-186
    254.Yaoi K,Kadotani T,Kuwana H,et al.Aminopepti-dase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis CrylAa toxin.Eur J Biochem,1997,246:652-657
    255.Yaoi K,Nakanishi K,Kadotani T,et al.cDNA cloning and expression of Bacillus thuringiensis CrylAa toxin binding 120 kDa aminopeptidase N from Bombyx mori.Biochim Biophys Acta,1999,1444(1):131-137
    256.Zhao J Z,Collins H L,Tang J D.Development and characerization of diamondback moth resisance to transgenic broccoli expressing high levels of CrylC.Appl Environ Microbiol,2000,66:3784-3789
    257.Zhao J Z.Insect resistance to transgenic Bt crops:lessons from the laboratory and field.J Econ Entomol,2003,96(4):1031-1038
    258.Zhao J Z,Cao J,Collins H L,et al.Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants.Proc Natl Acad Sci USA,2005,102(24):8426-8430
    259.Zhou GY et al.Introduction of exogenous DNA into cotton embryos.Meth.Enrymol,1983,101:433-448
    260.Zhn Y C,Oppert B,Kramer K J,et al.cDNAs for a chymotrypsinogen-like protein from two strains of Plodia interpunctella.Insect Biochem Mol Biol,1997,27(12):1027-1037
    261.Zhu Y C,Kramer KJ,Oppert B,et al.cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins.Insect Biochem Mol Biol,2000,30(3):215-224
    262.Zhang H M,Yang H,Rech EL,et al.Transgenic rice plant produced by electroporation-mediated plasmid uptake into protoplasts.Plant Cell Rep.,1988,7:379-384.
    263.Zhang M,Oltean D I,Gmmez I,et al.Soberon M,Bravo A,Gill S S.Heliothis virescens and Manduca sexta lipid rafts are involved in CrylA toxin binding to the rnidgut epithelium and subsequent pore formation.J Biol Chem,277(16):13863-13872
    264.Zhang W,Wu R.Efficient regeneration of transgenic plant from rice protoplasts and correctly regulated expression of the foreign gene in the plant.Theo Appl Genet,1988,76:835-840.
    265.Zhuang Lei,Ming-xing Xie,Wei-juan Wang,et al.Quantitative assessment of myocardial perfusion defects woth real-time three-dimensional myocardial contrast echocardiography.Chinese medical sciences journal,2006,21(3):1-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700