野葛异黄酮类化合物生物合成新途径酶学证据的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阐明植物的次级(生)代谢过程,是利用植物次生代谢产物进行医药工程及天然产物开发研究的前提和基础。与初级代谢相比,次级代谢是一个公认研究难度大,但又是潜力极大的研究领域。而在植物次生代谢的研究中,生物合成途径的研究属于机理研究范畴,是次级代谢研究的核心问题。因此,进行植物黄酮类化合物生物合成途径的研究,不仅可以揭示不同化学成分在植物体中的形成、转化及其相互关系的本质规律;而且对进一步利用现代生物技术方法进行黄酮化合物的生产也有着实际的意义。
     野葛[Pueraria lobata(Willd)Ohwi.]分类学上属于豆科植物,是原产于我国的一种重要的野生植物资源,其主要生物活性成分为葛根素、大豆甙和大豆甙元等异黄酮化合物,含量(干重)高达7-8%以上,是大豆异黄酮含量(0.1-0.2%干重)的几十倍。野葛中异黄酮含量高的特点,易于次级代谢研究中产物的分离和检测;野葛悬浮细胞和野葛愈伤组织的成功培养,为开展的次级代谢研究建立了适宜的研究体系并提供了良好的研究基础,是进行植物黄酮类化合物生物合成途径研究的良好试材。
     本论文实验以野葛培养细胞和野葛愈伤组织为研究体系,通过对预苯酸脱氢酶和对羟基苯丙酮酸还原酶活性与野葛离体培养体系中异黄酮化合物的生物合成的相关性研究,以及通过苯丙氨酸解氨酶(PAL)和对香豆酸连接酶(4CL)的专一性抑制剂处理实验,研究野葛离体培养体系中异黄酮化合物的生物合成以及异黄酮生物合成中可能的前体化合物预苯酸、对羟基苯丙酮酸和对羟基苯丙乳酸的积累情况,为以预苯酸为前体化合物,经对羟基苯丙酮酸、对羟基苯丙乳酸和香豆酸的中间代谢过程的一条异黄酮化合物生物合成新途径的证实提供酶学证据。实验取得以下主要结果:
     在野葛细胞培养周期中,随着预苯酸脱氢酶和对羟基苯丙酮酸还原酶活性的提高,细胞培养体系中异黄酮的积累逐步增加,但异黄酮积累滞后于酶活的提高。通过对预苯酸脱氢酶和对羟基苯丙酮酸还原酶活性变化与野葛异黄酮化合物生物合成的相关性分析,结果表明两者具有较高的相关性,相关系数分别为0.8812和0.8046。
     以野葛愈伤组织为试验材料,分别对PAL酶活性测定条件以及TTC法测定细胞活力条件进行了研究,结果表明,PAL的最适底物浓度为2mM,最适pH值为8.8,最适反应温度为60℃,酶促反应产物可在2.5h内保持稳定。细胞活力测定的最适TTC浓度为0.6%(w/v),最适pH值为7.5,TTC溶液处理的适宜时间范围为12~16h。
     通过不同浓度的PAL专一性抑制剂(AOA)和4CL专一性抑制剂(MDCA)的处理实验,研究野葛愈伤组织的鲜重、干重、酶活、细胞活力和异黄酮含量的变化情况,得出AOA处理的适宜浓度为10μM,MDCA处理的适宜浓度为25μM。
     选取10μM为AOA处理的适宜浓度,设计了三种不同的AOA处理,即①培养0天的野葛愈伤组织、②培养24天(无AOA处理)以及③培养24天(10μM AOA处理),分别收集样品,进行异黄酮含量的分析测定,结果显示,处理③较处理①异黄酮含量高出6.141mg.g~(-1),且有显著差异;而处理②较处理③高出18.197mg.g~(-1),两者间具有极显著差异;研究表明野葛愈伤组织中可能存在其他异黄酮合成途径。同时,异黄酮含量(处理③-处理①)与异黄酮含量(处理②-处理③)的差异,则反映了两条不同途径在野葛异黄酮生物合成中的贡献大小,即通过苯丙氨酸-肉桂酸-香豆酸-香豆酰辅酶A-查耳酮的异黄酮生物合成途径为野葛愈伤黄酮生物合成的主要途径,而本项目研究的可能存在的异黄酮生物合成途径为野葛愈伤黄酮合成的辅助途径。其外,10μMAOA处理条件下,野葛愈伤组织的预苯酸、对羟基苯丙酮酸和对羟基苯丙乳酸的含量都较对照的含量高,且差异极显著;表明AOA处理抑制了PAL酶活性以及异黄酮的生成,但具体机理不详。
     培养第24天(25μM MDCA处理)野葛愈伤组织样品的异黄酮含量较培养0天的野葛愈伤组织样品中异黄酮含量高出2.217mg.g~(-1),但两者差异不显著。同时,培养第24天的野葛愈伤组织(无MDCA处理)样品较培养第24天的野葛愈伤组织(25μM MDCA处理)样品高出22.251mg.g~(-1),且两者具有极显著差异。表明4CL酶是异黄酮合成的关键酶,专一性抑制剂MDCA处理严重阻断了野葛愈伤体内异黄酮的生物合成。其外,25μM MDCA处理条件下,野葛愈伤组织的预苯酸含量都较对照的含量高,但差异不显著;而对羟基苯丙酮酸和对羟基苯丙乳酸含量都较对照的含量高,且差异极显著。同样表明MDCA阻断了香豆酸-香豆酰辅酶A的反应,进而阻断了黄酮化合物生物合成的途径,降低了异黄酮化合物的积累;并进一步通过反馈抑制作用,使得预苯酸、对羟基苯丙酮酸和对羟基苯丙乳酸含量都较对照有所增加。该研究结果也进一步证实了预苯酸、对羟基苯丙酮酸和对羟基苯丙乳酸为异黄酮生物合成的可能前体化合物。
To illustrate the plant secondary metabolism is a principal and basic work which is helpful for utilizing plant secondary metabolites to improve medicine production and push the research work about natural products.Compared with the primary metabolism,the secondary metabolism is very difficult to be recognized,but at the same time it is also an important research area with great potential.The research work about biosynthesis pathway is regarded as that in the area of mechanisms in the study of plant secondary metabolism,and it is also the core of the secondary metabolism.Thus,it is of great significance to study the biosynthesis pathway of plant flavonoids,not only for revealing the chemical composition of different plant in the formation,transformation and the relationship of different chemicals,but also in the production of flavonoids using modern biotechnique methods.
     Kudzu[Pueraria lobata(Willd) Ohwi.]originating in China is a perennial leguminous plant and is also an important wild plant resource.The main components of biological activity are puerarin,daidzin and daidzein.Isoflavonoid Content(dry weight) is high up to 7-8 percent,is several times that of soybean isoflavonoids(0.1 to 0.2 percent dry weight),which is helpful for studying on the separation and detection of secondary metabolism.The establishment of kudzu cell suspension culture and kudzu callus provides a good research basis and the research system for secondary metabolism,and can be used as the good materials for illustrating the flavonoid biosynthesis pathway in plants.
     In this paper,kudzu cell suspension cultures and callus cultures are selected as the materials,the correlation was examined between the activities of prephenate dehydrogenase and p-hydroxyphenylpyruvate reductase and the accumulation of isoflavonoids in kudzu in vitro,as well as the correlation of the isoflavone biosynthesis and the accumulation of the possible precursor compounds such as prephenate, p-hydroxyphenylpyruvate and p-hydroxyphenyllactate in kudzu in vitro is examined in the experiment about the PAL specific inhibitor and the 4CL specific inhibitor,which provide the enzymological evidences for verifying the novel possible pathway of isoflavone biosynthesis,and confirming the existence of the precursor compounds such as prephenate, p-hydroxyphenylpyruvate,p-hydroxyphenyllactate and p-coumaric acid during the production of kudzu isoflavonoids.The main results are as following:
     With the increase of the activities of prephenate dehydrogenase and p-hydroxyphenylpyruvate reductase in the life cycle of kudzu cell culture,the accumulation of isoflavonoids increased gradually,and was examined several days later of the increase of enzyme activities.The correlations between the activities of prephenate dehydrogenase and p-hydroxyphenylpyruvate reductase and the accumulation of kudzu isoflavonoids are high,and the coefficients are 0.8812 and 0.8046,respectively.
     The assay for the PAL activity and the TTC viability in kudzu callus were examined, the results showed that the optimum concentration of L-Phe is 2mM,the optimum pH value is 8.8,the optimum temperature is 60℃,and the reaction products of PAL could maintain stability within 2.5h.The optimum TTC concentration for kudzu viability is 0.6% (w/v),the optimum pH value is 7.5,and the appropriate time range is12~16h.
     In the experiments using different concentrations of PAL-specific inhibitor(AOA) and 4CL-specific inhibitor(MDCA),the changes of the fresh weight,dry weight,the PAL activity,kudzu viability and the isoflavonoid content in kudzu callus were examined,the results showed that the optimal concentrations of AOA and MDCA were 10μM and 25μM,respectively.
     Three different treatments were performed with the AOA concentration of 10μM,and were as followings:①kudzu callus sample after 0 day without AOA treatment,②kudzu callus sample after 24 day without AOA treatment,and③kudzu callus sample after 24 day with 10μM AOA treatment.Samples were collected for the analysis of the isoflavonoid contents.The results showed that the isoflavonoid content in the third sample was 6.141 mg.g~(-1) higher than that in the first sample,and showed the significant difference (P=0.05).The isoflavonoid content in the second sample was 18.197 mg.g~(-1) higher than that in the third sample,and also showed the significant difference(P=0.01).The above data suggested that the other pathway of isoflavone biosynthesis might exist in kudzu callus.At the same time,the difference between the isoflavonoid content(③-①) and the isoflavonoid content(②-③) reflected the contributions of two different pathways to the isoflavone biosynthesis in kudzu callus.The main pathway of flavonoids biosynthesis in kudzu callus was from phenylalanine,through cinnamate,p-coumaric acid and p-coumarate:coenzyme A to chalcone,and the novel possible pathway of isoflavone biosynthesis may be the auxiliary pathway in kudzu callus.Under the condition of 10μM AOA treatment,the contents of prephenate,p-hydroxyphenylpyruvate and p-hydroxyphenyllactate in kudzu callus were higher than the control,and showed the significant difference(P=0.01).The results show that AOA treatment inhibited the PAL activity,but the specific mechanism is unknown.
     The isoflavonoid content in kudzu callus sample with 25μM MDCA treatment after 24 days was 2.217 mg.g~(-1) higher than that in the sample after 0 day,but showed no significant difference.At the same time,the isoflavonoid content in kudzu callus sample after 24 days without MDCA treatment was 22.251mg.g~(-1) higher than that after 24 days with 25μM MDCA treatment,and showed the significant difference(P=0.01).From which 4CL was the key enzyme of isoflavonoid biosynthesis,and specific inhibitor MDCA seriously blocked the isoflavone biosynthesis in kudzu Callus.Furthermore,the content of prephenate in kudzu callus with 25μM MDCA treatment was much higher than that in control,but showed no significant difference,and the contents of p-hydroxyphenylpyruvate and p-hydroxyphenyllactate were higher than control,and showed the significant difference(P=0.01).The results also showed that MDCA blocked the reaction from p-coumaric acid to p-coumarate:coenzyme A,and blocked the pathway of isoflavonoid biosynthesi,and reduced the accumulation of isoflavonoids,which further increased the content of prephenate,p-hydroxyphenylpyruvate and p-hydroxyphenyllactate in kudzu callus through feedback inhibition.The comparing results also further confirmed prephenate,p-hydroxyphenylpyruvate and p-hydroxyphenyllactate might be the precursors of isoflavone biosynthesis.
引文
[1]诸姮,胡宏友,卢昌义,等.植物体内的黄酮类化合物代谢及其调控研究进展[J].厦门大学学报(自然科学版),2007,46(1):136-143
    [2]高锦明主编.植物化学.北京:科学出版社,2003,156-193
    [3]刑建民,赵德修,李茂寅.植物细胞培养生产黄酮类化合物研究进展[J].生物工程进展,2001,21(1):47-50
    [4]Werner Heller and Gert Forkmann.Biosynthesis of flavonoids.In:Harborne JB.The Flavonoids:Advances in Research since 1986.London,Chapman & hall,1994,499-535
    [5]Habtemariam S.Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor Necrisis factwr-a in L-929 tumor cells[J].J.Nat.Prod.,1997,60(8):775-778
    [6]Hu CQ,Chen K,Shi Q,et al.Anti-AID sagents,10,acacetin-7-O-β-D-galactopyranoside,an anti-HIV principle from chrysanthemum morifolivm and a structure activity correlation with some related flavonoids[J].J.Nat.Prod.,1994,57(1):42-51
    [7]李玲,刘慧丽,史永忠.三裂叶葛愈伤组织形成和异黄酮类的产生[J].高技术通讯,2001,(5):25-27
    [8]Takashi Hakamatsuka,Kazumi Mori,Shinichilshida,et al.Purification of 2-hydroxy-isoflavanone dehydratase from the cell cultures of Pueraria lobata[J].Phytochemistry,1998,49(2):497-505
    [9]万平,宛晓春,杨晓春,等.葛根黄酮生物合成的研究[J].安徽农业大学学报,1997,27(2):197-199
    [10]Hess D.Chemogenetisehe Untersuchungen an Streptoearpus hybrida:intermedi(a|¨)re Vererbung von Anthocyanen[J].Z.Pflanzenphysiol,1968,(39):46-55
    [11]Birch AJ and Donovan FW.Studies in relation to biosynthesis I.Some possible routes to derivatives of orienol and phloroglueino[J]1.Aust.J.Chem.1953,(6):360-368
    [12]Robinson R.The structural relations of natural products[M].Oxford:Charendon press,1955,44
    [13]Neff L.Quantitative determination of biochanin A in red clover samples by means of an isotope dilution method[J].J South African Vet Med Assoc.1957,39(1):73-75
    [14]Brenda Winkel-Shirley.Flavonoid biosynthesis:A colorful model for genetics,biochemistry,cell biology,and biotechnology[J].Plant physiology,2001,126:485-493
    [15]Norimoto Shimada,Tomoyoshi Akashi,Toshio Aoki,et al.Induction of isoflavonoid pathway in the model legume Lotus iaponicus:molecular characterization of enzymes involved in phytoalexin biosynthesis[J].Plant science,2000,(160):37-47
    [16]Koukol J and Conn K.The metabolism of aromatic compounds in higher plants[J].J.Biol.Chem.,1961,236:2692-2698
    [17]Bilwell GP,Sap J,Cramer CL,et al.L-phenylalanine ammonia-lyase from phaseolus vulgaris:Partial degradation of enzyme subunits in vitro and in vivo[J].Biochimica et Biophysica Acts,1986,811:210
    [18]Hanson KR.Phenylalanine ammonia-lyase:(a) A model for the cooperativity kinetics induced by D- and L-phenylalanine;(b) Mirror-image packing of D- and L-transitionstate analogs into the active site.Archives of Biochemistry and Biophysics,1981,211(2):564(a),575(b)
    [19]Thomas A.Teldemariam and Terence J.Blake.Phenylalanine ammonia-lyase-induced freezing tolerance in jack pine(Pinus banksiana) seedlings treated with low,ambient levels of ultraviolet-B radiation[J].PHYSIOLOGIA PLANTARUM,2004,122:244-253
    [20]Edwards K,Cramer CL,Bolwell GP,et al.Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor-treated bean cells[J].Proc.Natl.Acad.Sci.USA,1985,82:6731
    [21]Cramer CL,Edwards K,Dron M,et al.Phenylalanine ammonia-lyase gene organization and structure[J].Plant Molecular Bioligy,1989,12:367
    [22]宛晓春主编.茶叶生物化学(第三版).北京:中国农业出版社,2003,68-76,371-401
    [23]谢灵玲,赵武玲,沈黎明.光照对大豆叶片苯丙氨酸裂解酶(PAL)基因表达及异黄酮合成的调节[J].植物学通报,2002,17(5):443-449
    [24]刘传飞,于树宏,李玲,等.发根农杆菌对葛属药用植物的遗传转化[J].植物学报,2000a,42(9):936-939
    [25]刘慧丽.野葛细胞培养及其异黄酮类物质的产生[硕士学位论文].广州:华南师范大学,2001
    [26]Schuler MA.Plant cytochrome P450 monooxygenases.Crit.Rev.Plant Sci.,1996,15:235-284
    [27]Russell DW,Corm EE.The cinnamic acid 4-hydroxylase of pea seedlings[J].Arch.Biochem.Biophys.,1967,122:256-258
    [28]JRM Ports,Richard Wekiych,and EE Conn.The 4-hydroxylation of cinnamic acid by Sorghum microsomes and the requirement for cytochrome P450[J].J.Biol.Chem.,1974,249:5019-5026
    [29]Russell,DW.The metabolism of aromatic compounds in higher plants.X.Properities of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control[J].J.Biol.Chem.,1971,246:3870-3878
    [30]Fahrendorf T,Dixon RA.Stress responses in alfalfa(Medicago sativa L.) ⅩⅧ.Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450[J].Arch.Biochem.Biophys.,1993,305:509-515
    [31]Mizutani M,Ward E,Di Maio J,et al.Molecular cloning and sequencing of a cDNA encoding mung bean cytochrome P450(P450C4H) possessing cinnamate 4-hydroxylase activity[J].Biochem.Biophys.Res.Commun.,1993,190:875-880
    [32]Teutsch HG,Hasenfratz MP,Lesot A,et al.Isolation and sequence of a cDNA encoding the Jerusalem artichke cinnamate 4-hydroxylase,a major plant cytochrome P450 involved in the general phenylpropanoid pathway[J].Proc.Natl.Acad.Sci.USA,1993,90:119-126
    [33]骆萍,王国栋,陈晓亚.亚洲棉C4H同源cDNA的分离和表达特征分析[J].植物学报,2001,43(1):77-81
    [34]Dixon RA,Paiva NL.Stress-induced phenylpropanoid metabolism[J].Plant Cell,1995,7:1085-1097
    [35]Frank MR,Deyneka JM,Schuler MA.Cloning of wound-induced cytochrome P450 mono- oxygenases expressed in pea[J].Plant Physiol.,1996,110:1035-1046
    [36]Hotze M,Schroder G,Schroder J.Cinnamate 4-hyroxylase from Catharanthus roseus,and a strategy for the functional expression of plant cytochrome P450 proteins as translational fusions with P450 reductase in Escherichia coli[J].FEBS Lett.,1995,374:345-350
    [37]Mansell R L,Babbel G R and Zenk M H.Multiple forms and specificity of cinnamyl alcohol dehydrogenase from cambial regions of higher plants[J].Phytochemistry,1976,15:1849-1853
    [38]Kui SV,Ross WW,David MO,et al.4-courmarate:Coenzyme A ligase from loblolly pine xylem:Isolation,characterization and complementary DNA cloning[J].Plant Physiol.,1995,108:85-97
    [39]Hu W J,Kawaoka A,Tsai C J.Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase gene in aspen(Populus tremuloides)[J].Proc Natl Acad Sci USA,1998,95:5407-5412
    [40]Diana L and Carl JD.Two divergent members of a tobacco 4-coumarate:coenzyme A ligase(4CL)gene family-cDNA structure,gene inheritance and expression,and properties of recombinant proteins[J].Plant Physiol.,1996,112:193-205
    [41]XH Zhang and Vincent LC.Molecular cloning of 4-coumamte:coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood[J].Plant Physiol.,1997,113(1):65-74
    [42]Douglas C J,Hauffe KD,Ites-MME,et al.Exonic sequences are required for elicitor and light activation of a plant defense gene,but promoter sequences are sufficient for tissue specific expression[J].EMBO J.,1991,10(7):1767-1775
    [43]Eilard-Ivey M,Douglas CJ.Role of jasmonates in the elicitor- and wound-inducible expression of defense genes in parsley and transgenic tobacco[J].Plant Physiol.,1996,112(1):183-192
    [44]Loake GJ,Choudhary A D,Harrison M J,et al.Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter[J].Plant Cell,1991,3(8):829-840
    [45]Beerhues L,Robeneck H,Wiermann R.Chalcone synthases from spinach(Spinacia oleracea L.).Ⅱ:Immunofluorescence and immunogold localization[J].Planta,1988,173:544-553
    [46]Durbin M L,McCaig B,Clegg M T.Molecular evolution of chalcone synthase multigene family in the morning glory genome[J].Plant Molecular Biology,2000,42(1):79-92
    [47]廖靖军,安成才,吴思,等.查尔酮合酶基因在植物防御反应中的调控作用[J].北京大学学报(自然科学版),2000,36(4):565-575
    [48]Van der M,Stuitje A R,Mol N J.Regulation of general phenylpropanoid and flavonoid gene expression[J].CRC Press Boca Ra-ton,1993,125-155
    [49]杨丽,刘雅莉,王跃进,等.查尔酮合酶超家族基因重复和分化的式样[J].科学通报,2006,51(7):745-749
    [50]邵莉,李毅,杨美珠,等.查尔酮合酶基因对转基因植物花色和育性的影响[J].植物学报,1996,38(7):517-524
    [51]赵万苓,姜世平,付新生,等.利用花粉管通道法将查尔酮合酶基因导入仙客来[J].分子植物育种,2005,3(4):531-536
    [52]赵万苓,姜世平,付新生,等.利用农杆菌介导法将查尔酮合酶基因导人大岩桐[J].分子植物育种,2006,4(1):45-48
    [53]高亦坷,张启翔,刘容薇,等.农杆菌介导的菊花转基因研究[J].中南林学院学报,2003,23(5):1-4
    [54]赵云鹏,陈发棣,郭维明.观赏植物花色基因工程研究进展[J].植物通报,2003,20(1):51-58
    [55]Van der K,Lenting R J,Veenstra J G.An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation[J].Nature,1998,333:866-869
    [56]同海,王霞.紫外光和蓝光调控查尔酮合成酶基因表达的研究[J].塔里木大学学报,2005,17(4):47-52
    [57]Arnis D,David K,David F,et al.Barley chalcone flavonone isomerase gene:isolation,comparative sequence and putative mutant analysis[c]//Plant&Animal Genome Ⅷ,Conference.San Diego:Town&Country Hotle,2000:9-12
    [58]Gensbeimer M,Mushegian A.Chalcone isomerase family and fold:no longer unique to plants[J].Protein Sci.,2004,13(2):540-544
    [59]Norimoto Shimada,Toshio Aold,Shusei Sate,et al.A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general falavonoids and legume-specific 5-deoxy(iso) Flavonoids in Lotus japonicus[J].Plant Physiology,2003,131(3):941-951
    [60]谭晓风,张党权,陈鸿鹏,等.油茶查尔酮合酶及异构酶基因的eDNA克隆[J].中南林业科技大学学报(自然科学版),2007,27(1):11-16
    [61]Tunen A J V,Hartman S A,Mol J N M,et al.Regulation of chalcone isomerase(CHI) gene expression in petunia hydria:the use of alternative promoters in corolla,anthers and pollen[J].Plant Mol.Biol.,1989,12:539-551
    [62]Van der Meer I M,Strata M E,Van Tunen A J,et al.Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility[J].Plant Cell,1992,4:253
    [63]何水林.植保素代谢与植物防御反应[M].广州:广东科技出版,2002
    [64]Arashi T,Aoki T,Ayabe S.Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase incolved in biosynthesis of the isoflavonoid skeleton in licorice[J].Plant Physiol.,1999,121:821-828
    [65]Steele CL,Gijzen M,Qutob D,et al.Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean[J].Arch.Biocbem.Biophys.,1999,367:146-150
    [66]Jung W,Yu O,Sze-Mei CL,et al.Identification and expression of isoflavone synthase,the key enzyme for biosynthesis of isoflavones in legume[J].Nat.Biotechnol.,2000,18:208-213
    [67]Yu O,Jung W,Shi J,et al.Production of the isoflavones genistein and daldzein in non-legume dicer and monocot tissues[J].Plant Physiol.,2000,124:781-793
    [68]Watson BS and Paiva NL.Heterologous expression of vestitone reductase,an isoflavonoid biosynthetic gene,in tobacco[J].Sixth international Congress of Plant Molecular Biology. University of Laval,Quebec,p 10-21
    [69]Arashi T,Aoki T,Ayabe S.CYP81E1,a cytochrome P450 cDNA of licorice(Glyeyrrhiza echinata L.),encodes isoflavone 2'-hydroxylase[J].Biochem.Biophys.Res Comm.1998,251:67-70
    [70]方从兵.葛根GAP规范化种植的质量监控及异黄酮化合物的次级代谢研究[博士论文].合肥:安徽农业大学,2005
    [71]Pla J,Ville A and Pacheco H.Biogenesis of plant pigments.1.Comparative study of the incorporation of 1,2-~(14)C shikimic and 3-~(14)C trans-cinnamic acids in two anthocyanic pigment derivatives of delphinidine and cyanidine.Bull[J].Soc.Chim.Biol.,1967,49(4):395-413
    [72]Zaprometov MN and Bukhlaeva Via.Efficiency of use of various C~(14)-precursors for the biosynthesis of flavonoids in the tea plant[J].Biokhimiia,1971,36(2):270-276
    [73]Meier H and Zenk MH.Biosynthese yon vanillin in Vanilla planifolia[J].Z.Pflanzenphysiol,1965(53):415
    [74]Stafford HA.Flavonoid evolution:an enzymic approach[J].Plant Physiol.,1991,96(3):680-685
    [75]Stafford HA.Possible multi-enzyme complexes regulating the formation of C_6-C_3 phenolic compounds and liguins in higher plants[J].Rec.Adv.Phytochem.,1974,(8):53-79
    [76]J Dayan,DB Sprinson.Enzyme Alterations in Tyrosine and Phenylalanine Auxotrophs of Salmonella typhimurium[J].J Bacteriol,1971,108(3):1174-1180
    [77]Suhail Ahmad and Roy A.Jensen.Phylogenetic distribution of components of the overflow pathway tol -phenylalanine within the enteric lineage of bacteria[J].Current Microbiology,1988,16(6):295-302
    [78]Ahmad,S.,Weisburg,W.G.,and Jensen,RA.Evolution of aromatic amino biosynthesis and application to the fine-tuned phylogenetic positioning of enteric bacteria[j].Bacteriol,1990,172(2):1051-1061
    [79]Schnappauf,G,Lipscomb,WN,and Braus,GH.Separation of inhibition and activation of the allosteric yeast chorismate mutase[J].Proc.Natl.Acad.Sci.,1998,95(6):2868-2873
    [80]Cotton,R.G.H.,& Gibson,F.(1965).Biochim.Biophys.Acta,I00,75-88
    [81]Christendat D,Saridakis VC,Jumbull JL.Use of site-directed mutagensis to identify residues specific for each reaction catalyzed by chodsmate mutase-prephenate dehydrogenase from Escherichia coli[J].Biochemistry,1998,37(45):15703-15712
    [82]Koch GL,Shaw DC,and Gibson F.Tyrosine biosynthesis in Aerobacter aerogenes:Purification and properties of chofismate mutase-prephenate dehydrogenase[J].Biochim.Biophys.Acta.1970,212(3):375-386
    [83]Stenmark SL,Pierson DL,Jeusen RA,et al.Blue-green bacteria synthesise L-tyrosine by the pretyrosine pathway[J].Nature(Lond.),1974,247(439):290-292
    [84]Rubin JL and Jensen RA.Enzymology of 1-tyrosine in Mung Bean(Vigna radiata[L.]Wilczek)[J].Plant Physiol.1979,(64):727-734
    [85]Kim KH,Petersen M.Cloning and functional expression of hydroxyphenylpyruvate dioxygenase from Coleus blumei[J].Phytochemistry,1997,45:1165-1172
    [86]Pteresen M and Simmonds MSJ.Molecules of Interest:Rosmarinic acid[J].Phytochemistry,2003,(62):121-125
    [87]KH Kim,Verena Janiak and Maike Petersen.Purication,cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei[J].Plant Molecular Biology,2004,54 0):311-323
    [88]Booth AN,Masri MS,Robbins DJ,et al.Urinary Phenolic Acid Metabolites of Tyrosine[J].Journal of Biological Chemistry,1960,235(9):2649-2652
    [89]南川隆雄,吉田精一著.高等植物の二次代谢研究法.学会出版センタ一,1981,5-22
    [90]Harada M and Ueno K.Pharmacological studies on pueraria root.1.Fractional extraction of pueraria root and identification of its pharmacological effects[J].Chem.Pharm.Bull.1975,23(8):1798-1805
    [91]刑建民,赵德修,李茂寅.植物细胞培养生产黄酮类化合物研究进展[J].生物工程进展,2001,21(1):47-50
    [92]Brenda Winkel-Shifley.Flavonoid biosynthesis:A colorful model for genetics,biochemistry,cell biology,and biotechnology[J].Plant physiology,2001,126(2):485-493
    [93]方从兵,李贺勤,宛晓春,等.不同理化因子对野葛悬浮培养细胞生长及异黄酮合成的影响[J].中国中药杂志,2006,31(19):1580-1583
    [94]Tina L(U|¨)TKE-EVERSLOH and Gregory Stephanopoulos.Feedback Inhibition of Chorismate Mutase/Prephenate Dehydrogenase(TyrA) of Escherichia coli:Generation and Characterization of Tyrosine-Insensitive Mutants[J].APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2005,71(11):7224-7228
    [95]Petersen M and Alfermann AW.Two new enzymes of rosmafinic acid biosynthesis form cell cultures of Coleus blwnei:Hydroxyphenylpyruvate reductase and rosmadnic acid synthase[J].Z.Naturforsch,1988,43c:501-504
    [96]Hausler E,Petersen M,and Alfermann AW.Hydroxyphenylpyruvate reductase from cell suspension cultures of Coleus blwnei Benth[J].Z.Naturforsch,1991,46c:371-376
    [97]D RotherL,Poppe,G Morlock,et al.An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum[J].Eur.J.Biochem.2002,269(12):3065-3075
    [98]R.L.Metzenberg and H.K.Mitchell.Isolation ofprephenic Acid from Neurospora[J].Arch Biochem Biophys,1956,64(1):51-56
    [99]李琳,李光兴,代庆伟.比色法快速分析苯丙酮酸含量的研究[J].化学试剂,2002,24(1):22-23
    [100]程水源,顾曼如,束怀瑞.银杏叶黄酮研究进展[J].林业科学,2000,36(6):110-115
    [101]王燕,刘卫红,杜何为,等.底物、末端产物对离体银杏叶苯丙氨酸解氨酶活性的影响[J].果树学报,2004,21(5):443-446
    [102]王艳东.南方红豆杉细胞中紫杉烷生物合成途径及其诱导调控研究[博士论文].天津:天津 大学.2002
    [103]Srinivasan V,Ciddi V,Bringi V,et al.Metabolic inhibitors,elicitors,and precursors as tools for probing yield limitation in Taxane Production by Taxus chinensis Cell Cultures[J].Biotechnol.Prog.1996,12(4):457-465
    [104]Winter,J,Schneider B,Strack D,et al.Role ofa cytochrome P450-dependent monooxygenase in the hydroxylation of 24-epi-brassinolide[J].Phytochemistry,1997,45(2):55233-55237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700