无载体无标记转植酸酶基因大豆的获得
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物转基因技术的迅猛发展对传统的作物育种已产生了深刻的影响,然而,自从1998年有人提出转基因生物的安全性问题以后,转基因农作物的种植面积增长速度明显减慢。原因是由于以往的转基因操作中,转化的载体上不可避免的带有载体骨架序列、抗性标记基因、以及外源的启动子,这些因素可能造成转基因植物具有潜在的生物安全隐患。因此,转基因植物安全性问题迅速成为公众关心的焦点和制约转基因农作物产业化的瓶颈。随之产生的去除标记基因和载体骨架序列的新的植物分子育种方法成为植物转基因技术研究的热点。
     本研究以半固体发酵方式培养泡盛曲霉(Aspergillus awamori)生产植酸酶,通过超滤、阴离子交换层析,凝胶层析步骤,分离纯化了植酸酶蛋白。SDS-PAGE结果显示该酶的分子量约为118kDa,糖基化程度为40.6%。酶学性质研究结果表明:泡盛曲霉植酸酶的最适反应温度为55℃,最适pH为2.5和5.5,37℃条件下以植酸钠为底物的K_m值为1.03nM,V_(max)为2.13μM/min。金属离子对酶活性影响的研究结果表明,EDTA基本不影响植酸酶活性,Ca~(2+),Mg~(2+),Mn~(2+)有轻微的抑制作用,Fe~(2+),Zn~(2+)抑制作用显著。对该酶的耐热性研究表明,在较高温度条件处理后,仍有较高残余酶活性,与当今商品化的植酸酶相比,有较强的耐热性。
     利用PCR技术克隆了泡盛曲霉(A.awamori 3.324)植酸酶基因及其编码区全序列,命名为phyA(GenBank accession no.DQ192035)。phyA结构基因全长1515bp,其中含有真菌内含子特征保守序列。核苷酸和氨基酸序列均与丝状真菌的同源性较高,其中与无花果曲霉(A.ficuum)NRRL3135 phyA的核苷酸同源性为92.1%(不计内含子,二者的内含子序列相差很大),氨基酸同源性为95.9%;与A.niger963 phyA_2的核苷酸同源性为95%,氨基酸同源性为94%。该基因编码的植酸酶蛋白理论分子量为51042.8Da,共编码467个氨基酸,序列中存在组氨酸酸性磷酸酯酶的活性位点保守序列(RHGXRXP)和催化中心位点(HD)。根据信号肽序列的结构规则推断,N端的21个氨基酸为信号肽序列,由基因推导出的氨基酸序列上有10个潜在的糖基化位点。
     构建了植物表达载体pBI121-phyA,通过农杆菌介导法将植酸酶基因导入模式植物烟草,获得卡那霉素抗性植株,通过PCR,Southern-blotting证明外源植酸酶基因已成功整合在烟草基因组上。对转基因烟草叶片的重组植酸酶活性分析表明植酸酶基因在烟草中获得高效表达。对烟草中的植酸酶酶学性质研究表明,重组植酸酶的最适反应温度与泡盛曲霉植酸酶的性质相同,耐热性略有下降,其中一个pH发生偏移。初步说明泡盛曲霉植酸酶基因能够在模式植物中得到正确表达。
     利用PCR技术从植物表达载体pBI121-phyA上扩增获得无载体骨架序列、无抗性标记基因的含有植酸酶基因的最小线性表达元件,通过花粉管通道技术转化大豆。共对279朵花进行了转化,共获得99株T_1代植株。PCR检测结果表明,13株的扩增结果呈阳性,转化率为13%。473株T_2代个体的PCR结果显示,102株结果为阳性。对T_3代两个株系L14-11-2和L14-19-1部分植株的Southern-blotting结果分析表明,外源基因以低拷贝的方式整合在大豆基因组上。
     RT-PCR分析表明,外源植酸酶基因已在大豆体内转录。测定了L14-11-2和L14-19-1两个转基因株系后代生长过程中植酸酶的积累情况。重组植酸酶的含量在大豆生长的第二周至第四周不断增加,随后的两周表达水平趋于平稳,在第七周开始有所下降。其中L14-19-1株系后代个体的植酸酶活性在第四生长周时达到最高,为150 U/mg蛋白,几乎是对照的3倍(56 U/mg蛋白)。在转基因大豆种子中植酸酶含量比对照平均提高100%。热稳定性分析表明,转基因大豆种子中植酸酶的残余酶活性在60℃,65℃和70℃时,分别保留70%,40%和10%,而对照样品在65℃以后几乎没有残余酶活性保留,明显高于未转基因大豆。Western-blotting分析结果表明,大豆体内表达的重组植酸酶的蛋白分子量大小为73 kD。
     通过上述分析,证明外源植酸酶基因在大豆体内实现了遗传和表达,初步建立了一种新的植物分子育种转化体系——具有生物安全性的植物基因工程操作方法,已获得国家知识产权局的专利授权(专利号:ZL 02 1 328382)。目前,这转基因大豆的两个株系L14-11-2(命名为1411)和L14-19-1(命名为1412)已被国家农业部认定其生物安全等级为Ⅱ级,并批准进行中间试验。
Rapid development of plant transgenic techniques had impacted on traditional cropbreeding deeply. However, the field test of transgene crops has been slowered down in 1998with the issue of transgenics biosafty, particularly the concern for the unexpected biosaftyproblem from the vector such as its backbone sequence, resistant marker and promoter genesincorporated into it. The issue of transgenic plants biosafty attracts pulic concerns andrestricts the progress of transgenic crops industrialization. Therefore, developing vector- andmarker-free plant molecular breeding technics is one of the frontier areas in intrasngenicplants.
     Extracellular phytase produced by Aspergillus awamori 3.324 through semi-solidcultivation was purified by ultrafiltration followed by chromatography using ion exchange,gel filtration and chromatofocusing columns, sequencely. The purified enzyme is a 118kDaprotein including 40.6% glycosylation. It possesses optimum temperature and pH values of55℃, 2.5 and 5.5. The K_m and V_(max) of the enzyme for dodecasodium phytate at 37℃are 1.03nM and 2.13μM/min, respectively. Phytase activity was observed not affected by EDTA, andinhibited moderately by Ca~(2+), Mg~(2+), Mn~(2+), and significantly by Fe~(2+) and Zn~(2+). The enzymeexhibits better thermostability at high temperature than the commercial phytase product.
     The phytase gene was obtained by PCR amplification, and named as phyA (GenBankaccession no.DQ192035), with a size of 1515 bp and fungi characteristic intron sequence.phyA exhibits a high homology with filamentous fungi on both nucleotide and amino acidsequences. Compared with A.ficuum NRRL3135 and A.niger 963 phytase genes, itsnucleotide sequence shows 92.1% and 95.0% homologies (except its intron sequence, whichshows a big difference), while the amino acid sequence deduced from phyA shows 95.9% and94.0% homologies. The molecular weight of the phytase is 51042.8Da, which encodes apolypeptide of 467 amino acids. The amino acid sequences deduced from phyA contains theactive site septa-petide RHGXRXP, catalytically active dipeptide HD and 10 glycosylationsites, and 21 amino acids at N-ternimal are expected to be a signal peptides sequence.
     The ORF of the phytase gene was cloned into the plant expression vector pBI121. Therecombinat plasmid pBI121-phyA was then transferred into tobacco via the Agrobacteriummediation. The results of PCR and Southern Blotting showed that the phytase gene wasintegrated into the tobacco genome. The phytase activity assay of tobacco leavesdemonstrated that the recombinant phytase gene was highly expressed. The characterization of the recombinant enzyme expressed indicated the same temperature profile with the phytaseproduced by Aspergillus awamori, although slightly lower thermostability and one-unit shiftof the optimum pH were observed.
     A minimal linear transgenic DNA containing phyA gene without vector and marker wasobtained from the plant express vectorpBI121-phyA by PCR, which was introduced intosoybean by the pollentube pathway. A total of 279 flowers were treated with the lineartransgenic DNA. The PCR amplifications indicated that 13 in 99 T_1 plants contained the genecassette, with a transformation frequency of 13%, and 102 plants in 473 T_2 plants showedPCR-positive amplifications. T_3 individuals derived from the lines L14-11-2 and L14-19-1were investigated by Southern blot analysis, indicating their low copy number insertions.
     RT-PCR results showed the presence of phyA transcripts. The T_3 progenies from the linesL14-11-2 and L14-19-1 were collected to analyze phytase accumulation in their leaves. Thephytase level increased from week 2 to week 4, remained at stable for the following 2 weeks,but slightly decreased during week 7. Phytase activity in the plants from the line L14-19-1was higher than that from the line L14-11-2 from weeks 2 to 6. The highest expression wasobserved in the line L14-19-1 during week 4 (150 U/mg protein), about 3 times higher thanthat of the untransformed control (56 U/mg protein). In seeds, the transgenic seed displayed a100% increase in phytase activity compared to that of the wild-type. The temperature stabilityof the plant-synthesized recombinant phytase in the T_3 transgenic soybeans was analysised.Upon incubation at 60, 65 and 70℃for 10 min, 70%, 40% and 10% of the activity remained,respectively, for the crude extracts of the transgenic seeds, whereas no enzyme activity wasdetected for the untransformed control. Western-blotting showed that the recombinant phytasemigrated with an apparent molecular mass of approximately 73 kDa.
     In conclusion, the phytase gene was inherited and expressed in the recombvinant soybeansdeveloped with the vecter- and marker-free plant molecular breeding approach, through whichthe biosafty dispute could be overcome. The patent for this new technique was approved byState Intellectual Property Office of P.R.China (ZL 02 1 328382). Now the biosafty of gradeⅡwas authorized to the two lines L14-11-2(1411) and L14-19-1(1412) by the Ministry ofAgriculture of P.R. China.
引文
[1] Bertolla F, Kay E, Simonet P. Potential dissemination of antibiotic restistance genes from transgenic plants to microorganisms, Infect Control Hosp Epidemiol, 2000, 21(6):390-393.
    [2] Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae. Nature, 1999,399:214-216.
    [3] Qian Y Q, Mak P. Progress in the studies on genetically modified organisms and the impact of its release in environment. Acta Ecol. Sin., 1998,18:1-9.
    [4] 魏伟,钱迎倩,马克平.转基因作物与其野生亲缘种间的基因流动.植物学报,1999,41(4):343-348.
    [5] Mcpartlan H C, Dale P J. An assessment of gene transfer by pollen from field-grown transgenic potatoes to non-transgenic potatoes and related species. Transg. Res.,1994,3:216-225.
    [6] 吴关庭,夏英武.防止转基因作物释放引发“超级杂草”产生的若干对策.生物工程进展,2001(21),6:57-60.
    [7] 张秀春,博士学位论文:表达Y一亚麻酸的无标记转基因大豆的培育.
    [8] Cluster PD, O' Dell M, Metzlaff Met al. Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. PTant Mol. Biol.,1994,32:1197-1203.
    [9] Kononov ME, Bassuner B and Gelvin SB. Integration of T-DNA binary vector 'backbone' sequences into the tobacco genome: Evidencefor multiple complex patterns of integration. Plant J, 1997, 11: 945-957.
    [10] Ramanathan V and Veluthambi K. Transfer of non-T-DNA portions of the Agrobscterfum tumefaciens Ti plasmid pTIA6 from the left terminus of T-L-DNA. Plant Mol. Biol.,1996,28:1149-1154.
    [11] Tingay S, McElroy D, Kalla R, et al. Agrobacterium tumefaciens-mediated barley transformation. Plant J.,1997, 11:1369-1376.
    [12] Fu XD, Duc LT, Fontana S, et al. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple interation patterns.Transgenic research, 2000,9: 11-19.
    [13] Palmiter RD and Brinster RL. Germline transformation of mice. Ann. Rev Genes. ,198620: 465-491.
    [14] Muller AE, Kamisugi Y, Gruneberg R, et al. Palindromic sequences and ACT-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J. Mol. Biol.,1999, 291:29-46.
    [15] Matzke MA, Matzke AJM and Eggleston WB. Paramutation and transgene silencing: A common response to invasive DNA? Trends Plant Sci., 1996, 1: 382-388.
    
    [16] Stoger E, Williams S, Keen D et al. Molecular characteristics of transgenic wheat and the effect on transgene expression. Transgenic Fes., 1998, 7: 463-471.
    [17] Srivastava V, Vasil V and Vasil IK. Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.). Theor. Appl. Genet. ,1996,92: 1031-1037.
    [18] Fuchs R L, Ream J E, Hammond B J, et al. Safty assessment of the neomycin phosphotransferase II (npt II)protein. Bio/Technology 1993,11:1543-1547.
    [19] Joersbo M, Okkels F T. A novel principle for selection of transgenic plant cells:positive selection. Plant Cell Reports, 1996,16:219-221.
    
    [20] Matzke and Matzkez. Special issue on plant gene silencing. Plant Mol Biol, 2000, 43:121 — 148.
    [21] Stewart C N, Richards H A,Halfhill M D. Transgenic plants and biosafety: science misconceptions and public perceptions. Biotechniques 2000 Oct;29(4):832-836.
    [22] Joersbo M. Advances in the selection of transgenic plants using nonantibiotic marker genes. Physiol Plant, 2001,3:269-272.
    
    [23] Hohn B, Levy A, Puchta H. Elimination of selection markers from transgenic plants. Current Opinion in Biotechnology, 2001 Apr, 12(2):139-143
    
    [24] Lucca P, Ye X., Ingo Potrykus. Effective selection and regeneration of transgenic rice with mannose as selective agent.Molecular Breeding, 2001,7:43-49.
    
    [25] Joersbo M, Donaldson I,Kreiberg J, etal. Analysis of mannose selection used for transformation of sugar beet.Mol Breeding, 1998,4:111 — 117.
    
    [26] Haldrup A, Petersen S G, Okkels F T. The xylose isomerase gene from themoanaerobacterium themosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mot Biol, 1998,37:287-296.
    
    [27] Ebinuma H, Sugita K, Matsunaga E, Matunaga E, etal. Selection of marker-free transgenic plants using the oncogenes(IPT, ROLA, B, C)of Agrobacterium as seleetable markers.In Molecular Biology of woody Plants. Edited by Jam SM,Minoeha SC. Netherland:Kluwer Academic Publishers 2000:24-26.
    
    [28] Kunkel T, Niu Q W, Chan Y S, Chua N H. Inducible isopentenyl transferase as high efficiency marker for plant transformation. Nat Biotechnol, 1999,17:916-919.
    
    [29] Sugita K, Kasahara T, Matsunaga E, Ebinuma H. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J, 2000 Jun, 22(5):461-469.
    
    [30] Gough KC, Hawes WS, Kilpatrick J et al., Cyanobacterial GR6 glutamate semialde aminotransferase: a novel enzyme-based selectable marker for plant transformation. Plant Cell Rep, 2001,20:296-300.
    [31] Daniell H. Muthukumar B, Lee S B. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet, 2001 Apr, 39(2):109-116.
    [32] Zhang C L, Chen D F, Mcorma A C, et al. Use of the GFP reporter as a vital marker for Agrobacterium-mediated transformation of sugar beet(Betavulgaris L.).Mol Biotechnoloy, 2001 Feb, 17(2):109-117.
    [33] Lyznik L, Rao K V, Hodges T.K YLP-mediated recombination of FRT sites in the maize genome.Nucleic Acids Res, 1996,24:3784-3789.
    [34] Kilby N J, Davies G J, Hodges T K. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis.Plant J, 1995,8:637-652.
    [35] K. Sugita, E. Matsunaga, H. Ebinuma, Effective selection system for generating maker-free transgenic plants independent of sexual crossing, Plant Cell Rep. 1999,18:941-947.
    [36] Zuo J, Niu Q W, Moiler$ G, Chua N H. Chemical regulatedsite speifie DNA exeision in transgenic plants. Nat Bioteehnol, 2001 Feb, 19(2):115-116.
    [37] Goldsbrough A P, Lastrella C N, Yoder J. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology,1993,11:1286-1292.
    [38] 金维正,段瑞君,张帆等.利用AcPDs转座子系统在水稻中获得无选择标记转基因植株的方法.生物工程学报,2003,19(6):668-673.
    [39] Daley M, Knauf VC, Summerfelt KR, et al. Co-transformation with one Agrobacterium tumefaciens strain cotaining two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Reports, 1998,17:489-496.
    [40] 张新梅、徐惠君、杜丽璞等.共转化法剔除转基因小麦中的bar基因.作物学报,2004,30(1):26-30.
    [41] Komari T, Hiei Y,Saito Y, Murai N, Kumashiro T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacteruim tumefaciens and segregation of transformants free from selection markers. Plant J, 1996 Jul, 10(1):165—174
    [42] Lu H, Zhou X, Gong Z, et al. Generation of selectable marker free transgenic rice using double right-border(DBR)binary vectors. Aust. J Plant Physiol, 2001,28,241-248.
    [43] Cummins J, Ho M W, Ryan A. Hazardous CaMV promoters. Nature Biotechnol, 2000,18:363.
    [44] Fu XD, Duc LT, Fontana Set al. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns.Transgenic Res, 2000, 9: 11-19.
    [45] Loc NT, Tinjuang jun P, Gatehouse AMR et al. Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Molecular Breeding, 2002, 9:231-244.
    [46] 夏志辉,李晓兵,陈彩艳等.无选择标记和载体骨干序列的Xa21转基因水稻的获得.生物工程学报,2006,22(2)204-210.
    [47] Faccioti DO, Neal JK, Lees, et al. Light-inducible expression of a chimeric gene in soybean tissue transformed with Ageobacterium. Bio/Technology, 1985,3(3):241-246.
    [48] Hinchee M.A.,D-C Ward, C.A. Newell, et al. Production of transgenic soybean plants using Agrobacterium-media DNA transfer. BIO/Technology, 1988,6:915-922.
    [49] Santarm ER, HN Trick, JS Essig, et al. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression .Plant Cell Rep, 1998,17:752-59.
    [50] Parrott WA, Hoffinan LM, Hildebrand DF, et al. Recovery of primary transformants of soybean. Plant Cell Rep, 1989,7:615-617.
    [51] Finer KR, and JJ Finer. Use of Agrobacterium expressing green fluorescent protein to evaluate colonization of sonication-assisted Agrobacterium-mediated transformation-treated soybean cotyledons. Lett Appl Microbiol, 2000,30:406-410.
    [52] E1-Shemy H, Khalafalla M, Wakasa K, et al. Reproducible transformation in two grain legumes—soybean and azuki bean—using different systems. Cell Mol Biol Lett.,2002,7(2B):709-719.
    [53] 吕慧颖,朱保葛,张敬.农杆菌介导法将热激转录因子8基因转入大豆.分子植物,2004,2(6):783-787.
    [54] 崔欣,陈庆山,杨庆凯等.大豆转基因的研究进展.生物技术通报,2002,(4):16-20.
    [55] Chen Shiyun. High efficiency Agrobacterium2mediated ransformation of soybean. Acta Botanica Sinica, 2004,46 (5):610-617.
    [56] Olhoft PM, Flagel L E, DonovanCM, et al. Efficient soybean transformation using hygromycin selection in the cotyledonary node method. Planta, 2003 ,5:723-735.
    [57] McCabe DE, Swain WF, Martincll BJ, et al. Stable transformation of soybean(Glycine max)by particle acceleration. Bio/Technology, 1988,6:923-926.
    [58] 刘智宏,胡张华,郎春秀等.大豆幼嫩子叶离体培养及辐射处理配合基因枪遗传转化研究.核农学报,2001,15(5):282-85.
    [59] 刘博林,徐明新.两个栽培大豆品种的体细胞胚胎发生和植株再生研究.中国油料作物学报,1999,21(2):11—13.
    [60] Chee PP., K.A. Fober, and J.L. Slightom. Transformation of soybean(Glycine max)by cotyledonary node segments in culture. Plant Physiol, 1989, 91:121—128.
    [61] 张燕君,赵双宜.牛酪蛋白基因导入大豆的研究.山东大学学报:自科版,2000,35(3):333-337.
    [62] 曾君祉,吴有强,王东江等.花粉管通道(或运载)法转化的植株后代遗传表现及转化机理的探讨.科学通报,1998,43(6):561-566.
    [63] 雷勃钧,尹光初.外源DNA直接导入大豆的研究.大豆科学,1991,10:58-63.
    [64] 刘德璞,廖林,袁鹰等.导入外源DNA获得SMV大豆品系.大豆科学,1997,16(4) 277-282.
    [65] 吴秀红.大豆花粉管通道法导入外源DNA的适宜时期与方法探讨.黑龙江农业科学,2001(2):48-49.
    [66] A.M. Minhane. G Rimbach. Iron absorption and the iron binding and anti-oxidant properties of phytic acid. Int. Food Sci. Technol. 2002, (37):741-748.
    [67] Ogawa M, Tanaka K, Kasai Z. Accumulation of phosphorus, magnesium and potassium in developing rice grains: followed by electron probe X-ray analysis focusing on the alcuronc layer. Plant Cell Physiol, 1979, 20: 19-27.
    [68] Han Y W. Phytase Production by Aspergillus Ficuum on Semisolid Substrate Selectivity and Kimetic Characterization. Preparative Biochemistry. 1998,18(4):459~471.
    [69] Ravindran V, Bryden W L and Kornegay E T. Phytate: Occurance, bioavailability and implications in poultry nutrition. Poulty and Avian Biology Reviews, 1995,6(2):125-143
    [70] 王忠华.低植酸作物突变体研究进展.植物学通报,2005,22.(4):463-470.
    [71] Sebastian S.P.Touchburn E.R.Chavez(张兴会译).植酸和微生物植酸酶在家禽营养中的应用.饲料工业,1999,20(7):1-4.
    [72] 于炎湖.植酸的抗营养作用及植酸酶在饲料中的应用.粮食与饲料工业,1999(2):25-27.
    [73] 张挺.酶制剂对饲料中抗营养因子的灭活作用.饲料博览,2007(7):37-38.
    [74] 袁凤杰,舒庆尧,朱丹华.大豆低植酸育种研究进展.中国农学通报2006.22(6):173-176.
    [75] 王凤国.植酸酶及其在养殖业上的应用.黑龙江畜牧科技,1999(1):32-34.
    [76] Preben B H, Llaus N K, Henrik B P. Transgenic approaches in commonly consumed cereal to improve iron and zinc content and bioavailability. Nutr, 2002,132:514S-5165.
    [77] Blehirr, Bakerdh, Delucahf. hydroxylated cholecaleiferol compounds act additively with microbial phytase to improve phosphorus, zinc, and manganese utilization in chicks fed-soy-based diets. Journal of Nutrition, 1995,125:2407-2416.
    [78] Ravindran V. Phytate: Occurance; bioavailabilit and implications in poultry nutrition. Poulty and AvianBiology Reviews, 1995,6(2):125-143.
    [79] Jongbloed, A W ,et al. The effect of supplementary Aspergillus niger phytase indicts for pigs on concentration and apparent digestibility of dry matter, total phosphorus, and phytic acid in different sections of the alimentary tract. Anim. Sci, 1992,70(4):1159—1168.
    [80] 翟少伟.低植酸盐饲料原料:降低家禽粪磷新途径.广东饲料,2001,10(1):27-28.
    [81] 褚西宁.青霉产植酸酶理化性质的初步研究.微生物杂志,2000.3:5~7.
    [82] 李佳.植酸酶的研究进展及应用.同济大学学报(医学版),2004,(25)6.
    [83] 刘德忠.新型制剂—植酸酶的应用及开发.饲料工业,1998,19,(3):19-20a.
    [84] 马玺.植酸研究进展及其在业中的应用.粮食与饲料工业,2001,(4):27-30.
    [85] 王红宁,吴琦,谢晶等.真菌植酸酶phyA基因研究进展.四川农业大学学报,2000,18(1):84-88.
    [86] T. Matsui, Y. Nakagawa, A. Tamura, et al. Efficacy of yeast phytase in improving phosphorus bioavailability in a corn-soybean meal-based diet for growing pigs. Anim. Sci.,2000,78:94-99.
    [87] A. J., F. C. van der Heel t, RH.G Randsdorp, et al. Simple and rapid determination of phytase activity. Assoc. Off. Anal. Chem.,1994(77):760-764.
    [88] F. R., J. A. Laszlo, T. C. Nelsen, et al. Free and total ion concentrations in pig digesta.Amm. Sci.,1995,73:1138-1146.
    [89] P H. Selle, —R. Walker and W. L. Bryden. Total and phytate-phosphorus contents and phytase activity of Australian-sourced feed ingredients for pigs and poultryAustralian.Journal of Experimental Agriculture, 2004,43(5) 475—479.
    [90] Helander HF, Rutgersson K, Helander KQ Pisegna JR, et al. Stereologic Investigations of HumanGastric Mucosa; Oxymc Mucosa from Patients with Zollinger-Ellison Syndrome Scand.Gastroenterology, 1992, 27;875-883.
    [91] 韩延明,杨凤,周安国.微生物植酸酶或麦鼓对奶到肥育猪的生产性能和骨骼发育的影响..畜牧兽医学,1996,27(3):207-210.
    [92] 冯胜,胡允松,王忠彦等.植酸酶研究成果、现状及前景.四川畜牧兽医,1996,3:52-55.
    [93] 姚斌,范云六.植酸酶的分子生物学与基因工程.生物工程学报,2000,16(1):1-5.
    [94] 张莉莉.植酸酶基因的克隆及在植物中的表达:(硕士学位论文).大连:大连轻工学院,2000
    [95] Van Hartingsveldt W, Van Zeijl C M J, Harteveld M G, et al. Cloning, characterization and overexpression of the phytase encoding gene (phyA) of Aspergillus niger. Gene, 1993,127: 87-94.
    [96] Ehrlich K C, Montalbano B G, Mullaney E J, et al. Identification and cloning of a second phytase gene (phyB) from Aspergillus niger (ficuum). Biochem Biophys Res Commun, 1993,195(1): 53-57.
    [97] Kim Y O, Lee J K, Kim H K, et al. Cloning of the thermostable phytase gene (phy) from Bacillus sp. DSll and its overexpression in Eschericflia coli. FEMS Mcrobiol Lett, 1998,162(1): 185-191.
    [98] Kerovuo J, Lauraeus M, Nurminen P, et al. Isolation, Characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis Appl Environ Microbiol,1998, 64(6): 2079-2085.
    [99] Maugenest S, Martinez I, Lescure A M. Cloning and characterization of a cDNA encoding a maize seedling phytase. Biochem J, 1997, 322: 511-517.
    [100] Pasamontes L, Haiker M, Henriquez-Huecas M, et al. Cloning of the phytases from Emericella nidulans and the theromphilic fungus Talaromyces thermophilus.Biochem Biophys Acta, 1997, 1353(3): 217-223.
    [101] 沈亚欧 彭焕伟 潘光堂.转基因植物表达植酸酶研究进展.中国生物工程杂志,2005,25(1):29-32.
    [102] Pen J, Verwoerd TC, Paridon P A et al Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/Technology, 1993.11: 811-814.
    [103] Verwoerd TC, Paridon P A, Ooyen AJJ et al Stable Accumulation of Aspergillus niger Phytase in Transgenic Tobacco Leaves. Plant Physiol.,1995.109: 1199-1205.
    [104] Yip W, Wang L J, Cheng C W, et al. The introduction of a phytase gene from Bacillus subtilis impxoved the growth performance of transgenic tobacco. Biochemical and Biophysical Research Communications, 2003. 310: 1148—1154.
    [105] CoeIlo P, Maughan J P, Mendoza A, et al. Generation of low phtic acid Arobidopsis seeds expressing an E. coli phytase during embryo development. Seed Science Research,2001, 11: 285—291.
    [106] Richardson A E, Hadobas PA, Hayes JE. Extracelhlar secretion of Aspergillus phytase from Arabidopsisroots enables plants to obtain phosphorus from phytate. The Plant Journal,2001, 25: 641—649.
    [107] Li J, Hegeman C E, hnanlon R W. et al. Secretion of active recombinant phytase from soybean cell—suspension cultures. Plant Physiol. 1997. 114: 1103—1111.
    [108] Denbow D M, Elizabeth A G, George H L, et al. Soybeans transformed with a phytase gene improve phosphorus availability for broilers. Poultry Science, 1998, 77: 878—881.
    [109] Ullah AHJ, Sethumadhavan K , Mullaney EJ, et al. Cloned and Expressed Fungal phyA Gene in Alfalfa Produces a Stable Phytase. Biochemical and Biophysical Research Communications, 2002,290: 1343—1348.
    [110] Brinch—Pedersen H, Olesen A, Rasnlussen S K. et al. Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Molecular Breeding, 2000. 6: 195—206.
    [111] Ponstein A S, Bade J B, Verwoerd TC. et al. Stable expression of Phytase (phyA) in canola (Brassica napus)seeds: towards a commercial product. Molecular Breeding, 2002,10:31—44.
    [112] 姚斌,范云六.植酸酶的分子生物学与基因工程.生物工程学报,2000,16(1):1~5.
    [113] 潘冬梅,李弘剑.无花果曲霉植酸酶发酵及酶动力学.暨南大学学报(自然科学版),2001,22(5):107~112.
    [114] 王亚茹,姚斌等.枯草芽孢杆菌中性植酸酶的纯化和酶学性质.微生物学报,2001,41(2):198~203.
    [115] Purva Vats, U.C. Banerjee. Studies on the production of phytase by a newly isolated strain of Aspergillus niger var teigham obtained from rotten wood-logs. Process Biochemistry 2002, 38: 211~217.
    [116] 邢自力,陈华友等.植酸酶及其热稳定性研究进展.中国生物工程杂志,2003,23(5):31~35.
    [117] 吴作为,黄晓玮,张克勤,植酸酶酶学特性研究进展.西南农业学报,2004,17:455~460.
    [118] 李佳,刘钟滨,植酸酶的研究进展及应用.同济大学学报(医学版),2004,25(6):541~544.
    [119] 王翔,陈代文.植酸酶的研究与应用.饲料工业,2006,27(14):20~23.
    [120] 周紫雨,张俊红.植酸酶在饲料中的应用.饲料研究,2006,7:55~57.
    [121] 邹立扣,王红宁.植酸酶及其植物基因工程.微生物学通报,2005,32(6):128~132.
    [122] Engelen AJ, van der Heeft FC. Simple and rapid determination of phytase activity. Journal of AOAC International, 1994, 77:760-764.
    [123] Edward J, Mullaney, Abul H J. The term phytase comprises several different classes of enzymes. Biochemical and Biophysical Research Communications, 2003, 312:179-184.
    [124] Panchal T, Wodzinski R J. Comparison of glycosylation patterns of phytase from Aspergillus niger (A. ficuum) NRRL 3135 and recombinant phytase. Preparative Biochemistry and Biotechnology, 1998 8, 28(3):201-207.
    [125] Anne Casey, Gary Walsh. Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresource Technology, 2003, 86:183-188.
    [126] 杨平平,王燕,史宝军.黑曲霉496-1菌株植酸酶的分离纯化及酶学性质.食品与生物技术,2003 9,22(5):34-38.
    [127] 杨平平,王燕,史宝军.无花果曲霉植酸酶发酵及酶动力学.暨南大学学报,2001 10,22(5):107-102
    [128] 姚斌,范云六.植酸酶的分子生物学与基因工程.生物工程学报,2000,16(1):1-5.
    [129] Ullah A H, Gibson D M. Extracellular phytase (EC. 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem, 1987, 17: 63-91.
    [130] Shieh, T.R, Ware, J.H. Survey of microorganisms for the production of extracellular phytase. Appl. Microbiol, 1968, 16:1348-1351.
    [131] Ehrlich KC, Montalbano BG, Mullamey EJ, et al. Identification and cloning of a second phytase gene (phyB) from Aspergillus niger(ficuum).Biochem Biophys Res Commun, 1993,195:53-57.
    [132] Andreas D.Baxevanis,B.F.Francis Ouellette李衍达,孙之荣等译.生物信息学 基因和蛋白质分析的使用指南.清华大学出版社,北京,2000.8.
    [133] Rambosek J, Leach J. Recombinant DNA in fitamentous fungi: progress and prospects. Crit Rev Biotechnol, 1987, 6(4): 357-393.
    [134] Ullah A H J, Kandan S, Mullaney E J, et al. Cloned and Expressed Fungal phyA Gene in Alfalfa Produces a Stable Phytase. Biochemical and Biophysical Research Communication, 2002, 290:1343-1348.
    [135] Verwoerd T C, Paridon P A, Ooyen A J, et al. Stable Accumulation of Aspergillus niger Phytase in Transgenic Tobacco Leaves. Plant physiol, 1995, 109:1199-1205.
    [136] Hamada A, Yamaguchit K, Ohnishi N, et al. High-level production of yeast (Schwanniomyces occidentalis) phytase in transgenic rice plants by a combination of signal sequence and codon modification of the phytase gene. Plant Biotechnology Journal, 2004, 2:1-13.
    [137] 郝振荣,高俊杰.植酸酶的应用效果研究进展.饲料研究,2006,12:12-15.
    [138] Li J, Hegeman CE, Hanlon RW et al. Secretion of Active Recombinant Phytase from Soybean CeII-Suspension CuItures. Plant Physiol, 1997,114:1103-1111.
    [139] Hegeman CE, Grabau EA. A Novel Phytase with Sequence Similarity to Purple Acid Phosphatases Is Expressed in Cotyledons of Germinating Soybean Seedlings. Plant Physiol, 2001,126: 1598-1608.
    [140] Miki B, McHugh S. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol, 2004,107:193-232.
    [141] Nap JP, Metz PL, Excaler AJ. The release of genetically modified crops into the environment. Part Ⅰ. Overview of current status and regulations. Plant J, 2003, 33:1-18.
    [142] Thompson J. Topic 11: Gene transfer—mechanism and food safety risks. Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology, Geneva. 2000.
    [143] Kononov ME, Bassuner B, Gelvin SB. Integration of T-DNA binary vector 'backbone' sequences into the tobacco genome: Evidence for multiple complex patterns of integration. Plant J, 1997, 11:945-957.
    [144] Jin UH, Chun JA, Lee JW et al. Expression and characterization of extracellular fungai phytase in transformed sesame hairy root cultures. Protein Expression and Purification, 2004,37:486-492.
    [145] During K. A plant transformation vector with minimal T-DNA. Transgenic Res, 1994, 3:138-140.
    [146] Porsch P, Jahnke A, During K. A plant transformation vector with minimal T-DNA Ⅱ. Irregular integration patterns of the T-DNA in the plant genome. Plant Mol Biol, 1998,37:581-585.
    [147] 申家恒.大豆受精作用的研究.植物学报,1983,25(3):213-219.
    [148] Zhou GY, Weng J, Zeng Yet al. Introduction of exogenous DNA into cotton embryos. Methods in Enzymology, 1983,101:433-481.
    [149] Gong ZZ, Shen WF, Zhou GY et al. Introducing exogenous DNA into plants after pollination. Scientia sinica (Series B),1988,9:1080-1084.
    [150] 王艳杰,申家恒.花粉管通道法转基因技术的细胞胚胎学机理探讨.西北植物学报,2006,26(3):0628-0634.
    [151] Franklin G, Carpenter L, Davis E. Factors influencing regeneration of soybean from mature and immature cotyledons. Plant Growth Regul, 2004,43:73-79.
    [152] Ponstein AS, Bade JB, Verwoerd TC et al. Stable expression of Phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Molecular Breeding, 2002,10:31-44.
    [153] 陈乃松.植酸酶对大豆分离蛋白中植酸的酶解研究.饲料工业,1999,20(11):41-43.
    [154] 袁凤杰 舒庆尧 朱丹华.大豆低植酸育种研究进展.中国农学通报,2006,22(6):173-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700