冬小麦氨基酸代谢与抗旱性关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物节水是节水农业的重要发展方向,耐旱和高水分利用品种、生理节水调控和节水型农作制度是生物节水的核心内容,提高水分利用效率是生物节水的终极目标,其中培育耐旱和高水分利用效率的抗旱节水高产新品种是关键,因此建立可行、科学、稳定的小麦抗旱、高WUE品种选育的鉴定指标是最终实现生物节水的首要诉诸手段。为了探索氨基酸代谢与小麦抗旱性之间的关系,以及是否氨基酸代谢可以作为小麦抗旱育种的鉴定指标,本研究首先根据碳同位素判别值及实际抗旱情况选取冬小麦试验材料;其次应用氮稳定同位素示踪技术,利用GC-MS、GC-C-IRMS等仪器分析了拔节期土壤含水量85%供水条件下不同抗旱性小麦氨基酸氮同位素丰度的动态变化,以此来推断氨基酸合成代谢的动态变化,比较了不同品种氨基酸合成代谢的差异;最后比较了对照品种和施用氮同位素肥料碳稳定同位素的变化。
     通过对冬小麦籽粒碳稳定同位素的分析以及不同抗旱性小麦拔节期土壤含水量85%供水条件下的氮同化及氨基酸代谢等方面的研究与分析,主要得出以下结论:
     (1)不同基因型冬小麦籽粒碳稳定同位素分辨率(△‰)不同,大体分布范围在18‰至21‰之间,并且强抗旱品种和弱抗旱品种的△‰有极显著差异。
     (2)通过对拔节期土壤含水量85%供水条件下不同小麦品种,氮同化和氨基酸代谢的动力学的研究,结果表明:从施入氮同位素肥料后的10min-24h整个时间段来看,强抗旱品种对氮的同化效率要极显著高于中等抗旱和弱抗旱品种,而中等抗旱和弱抗旱品种之间在本研究中没有明显的规律;强抗旱品种的氮吸收速率极显著高于中等抗旱和弱抗旱品种,强抗旱品种间也存在差异,中等抗旱品种和弱抗旱品种之间的氮吸收速率在本研究中没有显著差异;强抗旱品种和中等抗旱品种氨基酸δ15N 24h内呈线性增长,而弱抗旱品种在3h-24h基本维持稳定;24h内蛋白质氨基酸的含量处于升高-降低的动态平衡之中;三个强抗旱品种百农9310、临汾50744、W98中18的谷氨酸/谷氨酰胺、天冬氨酸/天冬酰胺、丝氨酸、甘氨酸δ15N在施入15NH4+24h内的升高要远远超过中等抗旱品种和弱抗旱品种,而中等抗旱品种要高于弱抗旱品种;缬氨酸、亮氨酸、异亮氨酸、蛋氨酸、脯氨酸、苯丙氨酸、酪氨酸、赖氨酸等那些合成比较缓慢的氨基酸δ15N的改变程度也是强抗旱品种要高于中等抗旱和弱抗旱品种。
     (3)通过分析不同小麦品种拔节期施用(15NH4)2SO4肥料后叶片碳同位素组成的动态变化,以及分析北农5号施用(15NH4)2SO4肥料和(NH4)2SO4肥料后叶片氨基酸碳同位素组成的动态变化,结果发现:同一品种在10min-24h内叶片的δ13C值有一个波动范围,但是没有显著变化趋势;不同品种δ13C值的变化是不同的;从本研究δ13C值表征的WUE的变化来看,小麦品种的抗旱性强弱和瞬时WUE的高低并不是完全相吻合的,也就是单个叶片的δ13C值与瞬时WUE的相关性较差;北农5号施入(15NH4)2SO4肥料和(NH4)2SO4肥料其氨基酸δ13C值变化呈现相反的趋势,并且变化范围也不同;缬氨酸δ13C值极显著升高,而施用14N-肥料δ13C的增加只有施用15N-肥料δ13C的增加值的34.7%。
     从上述研究结果可以看出,强抗旱、中等抗旱、弱抗旱冬小麦品种在拔节期土壤含水量85%供水条件下其氨基酸的合成代谢动态具有显著差异,因此,氨基酸代谢动态可以作为拔节期冬小麦抗旱性的鉴定指标,这个指标的确定对于小麦抗旱品种的早期筛选具有重要的理论意义和现实意义。
The relationships between drought-resistance and amino acids metabolism in wheat were studied for exploring whether amino acids metabolism can be an indicator to evaluate the drought-resistance of wheat, different drought-resistant winter wheat varieties were selected based on their carbon isotope discrimination and actual drought information at first. These varieties were planted in pots, and the soil moisture was controlled under the condition of 85% in the jointing stage, the 15N-labelled fertilizer was applied in the stage. The dynamics of amino acids nitrogen isotope composition of leaves is analyzed by GC-MS and GC-C-IRMS for these varieties. The dynamics and difference of amino acids metabolism are also investigated among the different wheat varieties according to the dynamics change of amino acids nitrogen isotope composition. Finally, the change of carbon isotope composition was compared between control varieties and treated varieties by application of 15N-labelled fertilizer.
     The following conclusions are drawn:
     (1) The different genotypes of winter wheat grain have different carbon stable isotope discriminations (△‰), which are generally fallen in the range of 18‰to 21‰. Furthermore, there is a very significant difference of△‰between strong and weak drought-resistant wheat varieties in this research.
     (2) The dynamics of nitrogen assimilation and amino acids metabolism are studied for different wheat varieties which grew in the conditions of soil moisture content 85% during the jointing stage. The results are as following: From the whole time of 10min-24h after the application of 15N-labelled fertilizer, the strong drought-resistant varieties have very significantly higher nitrogen assimilation efficiency and nitrogen uptake efficiency than weak and middling drought-resistant varieties wheat, while there are no distinct difference between weak and middle drought-resistant varieties in this research, however, there are still difference between the three strong varieties for nitrogen uptake efficiency.δ15N of amino acids shows linear accumulation in the strong and middle drought-resistant varieties in the 24 hours, and the strong varieties increase more quickly and fast, whileδ15N of amino acids almost keep stable during 3h-24h for the weak drought-resistant varieties, which is the most difference among them. No significant change is observed on the content of protein amino acid, although which is changeable either increased or decreased. The increase ofδ15N is significantly bigger in the strong drought-resistant wheat varieties such as Bainong9310, Linfen50744, W98zhong18 than in the middle or weak drought-resistant wheat varieties, including Glu/Gln, Asp/Asn, Ser, Gly, and it is bigger too in the middle drought-resistant varieties than weak drought-resistant varieties after 15NH4+ treatment within 24h. On the other hand, those amino acids which synthesize relatively slow or late including Val, Leu, Ile, Met, Pro, Phe,
     Tyr etc, change more greatly in the strong drought-resistant varieties than middle and weak drought-resistant varieties.
     Based on our results, we can make a conclusion that there is significant difference of amino acids metabolism between strong drought, middle and weak resistant wheat varieties in the jointing stage under the 85% soil moisture condition. Therefore, the dynamics of amino acids metabolism can be used as an index to identify the drought character of winter wheat in the jointing stage, which could play a great theoretical and practical role for selecting drought-resistant wheat varieties.
引文
1. Kimball B A,朱建国,程 磊等.开放系统中农作物对空气CO2浓度增加的响应[J].应用生态学报,2002,13(10):1323~1338
    2. 蔡德陵,李红燕,周卫建,刘卫国,曹蕴宁. 无定河流域碳氮稳定同位素研究. 地球化学,2004,33(6):619~626
    3. 蔡德陵,张淑芳,张经. 稳定碳氮、同位素在生态系统研究中的应用. 青岛海洋大学学报,2002,32(2):287~295
    4. 陈华萍,陈黎,魏育明,郑有良.柱前衍生反相高效液相色谱法测定小麦中氨基酸含量.分析化学,2005,33(12):1689~1692
    5. 陈梁鸿,王新望,张文俊等. 抗除草剂草甘膦 EPSPs 基因在小麦中的转化. 遗传学报,1999,26(3):239~243
    6. 陈世苹,白永飞,韩兴国. 稳定性碳同位素技术在生态学研究中的应用. 植物生态学报,2002,26(5):549~560
    7. 樊虎玲,郝明德,李志西.施肥对黄土高原旱地小麦品质和籽粒氨基酸含量的影响.西北农林科技大学学报(自然科学版),2005(12):53~57
    8. 郭北海,张艳敏,李洪杰等. 甜菜碱醛脱氢酶(BADH)基因转化小麦及表达. 植物学报,2000,42(3):279~283
    9. 郭亮,文玉香,梁玉梅,周文娟,胡含,苏红,魏荣瑄. 苏云金芽孢杆菌毒蛋白基因在小麦基因组中的甲基化修饰. 遗传学报,1997,24(3):255~262
    10. 韩兴国,梅旭荣,严昌荣,陈灵芝. 暖温带地区几种木本植物碳稳定同位素的特点. 应用生态学报,2000,11(4):497~500
    11. 侯松嵋,孙敬,何红波,张旭东,王颜红. AQC 柱前衍生反相高效液相色谱法测定土壤中氨基酸.分析化学( FENXIHUAXUE),2006(10):1395~1400
    12. 胡荣海.农作物抗旱性鉴定方法和指标[J].作物品种资源,1986,(4):36~38
    13. 黄建辉,林光辉,韩兴国.不同生境间红树科植物水分利用效率的比较研究.植物生态学报,2005,29 (4):530~536
    14. 黄玲,张正斌,崔玉亭等.小麦叶片蜡质含皱I亏水分利用效率和产量的关系[J].麦类作物学报,20O3,23(3):41~44
    15. 金善宝.中国小麦学[M].北京:中国农业出版社,1996:754~758.
    16. 景蕊莲, 胡荣海, 朱志华等. 冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究[J]. 西北植物学报, 1997, 17 (2): 152~ 157
    17. 景蕊莲.作物抗旱研究的现状与思考.干旱地区农业研究,1999,17(2):79~85
    18. 兰居生,胡顺福,张景瑞.作物抗旱指数的概念和统计方法[J].华北农学报,1990,5(2):20~25
    19. 黎裕. 作物抗旱鉴定方法与指标[J]. 干旱地区农业研究,1993,(1):91~99
    20. 李德全,邹琦,程炳嵩.抗旱性不同冬小麦幼苗对渗透胁迫的生理反应.植物学通报,1992,9(3):35~39
    21. 李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J]. 植物生理学报, 1992, 18(1):37~44
    22. 李鸿祥,郭晓维.不同土壤水胁迫下冬小麦生理生化特性的研究[J]. 北京水利, 1994(4):68~75
    23. 李善菊,任小林. 植物水分胁迫下功能蛋白的研究进展. 水土保持研究,2005,12(3):64~69
    24. 梁银丽, 陈培元. 旱地小麦品种的特征特性[A]. 见: 山仑, 陈培元主编. 旱地农业生理生态基础 [C]. 北京: 科学出版社, 1998,259~266
    25. 刘宝存, 孙明德, 吴静, 黄德明.硫素营养对小麦子粒氨基酸含量的影响.植物营养与肥料学报,2002,8 (4):458~461
    26. 刘立峰, 穆 平, 张洪亮, 王 毅, 曲延英, 李自超. 水、旱稻根基粗和抗旱系数QTL的标记辅助选择及验证. 作物学报, 2006, 32:189~196
    27. 刘伟华,李文雄,刘锦红等. 菜豆机订制酶基因转化小麦研究[J]. 东北农业大学学报,2001,32(2):111~116
    28. 刘莹,盖钧镒,吕慧能,王永军,陈受宜. 大豆耐旱种质鉴定和相关根系性状的遗传与QTL定位. 遗传学报,2005,32:855~863
    29. 路贵和.作物抗旱性鉴定方法与指标研究进展[J].山西农业科学,1999,(4):39~43
    30. 梅旭荣,史长丽. 我国农业用水态势与节水高效农业发展战略. 见梅旭荣,蔡典雄,等,主编. 节水高效农业理论与技术. 北京:中国农业科学技术出版社,2004,3~9
    31. 梅旭荣等.节水农业在中国.北京:中国农业科学技术出版社,2006,11~13
    32. 穆平, 李自超, 李春平, 张洪亮, 吴长明, 李 晨, 王象坤. 水、旱稻根系性状与抗旱性相关分析及其QTL定位. 科学通报, 2003, 4: 2162~2169
    33. 任春霞, 商彦蕊, 徐东瑞. 国外节水农业研究与实践. 河北农业科学, 2004, 8(1): 70~75
    34. 山仑,邓西平,张岁岐.生物节水研究现状及展望.中国科学基金,2006,20(2):66~71
    35. 山仑,徐萌. 节水农业及其生理生态基础. 应用生态学报,1991,2(1): 70~76
    36. 山仑.旱地农业技术发展方向.中国农业科学,2002,35:848~855
    37. 石元春. 开拓中的蹊径:生物性节水. 科技导报,1999,10:3~5
    38. 食品中氨基酸的测定. 1995, GB /T149, 65~94
    39. 史作民,程瑞梅,刘世荣. 高山植物叶片δ13C的海拔相应及其机理. 生态学报,2004,24(12):2901~2906
    40. 宋志峰,王丽,纪锋,黄璜,于志晶. 柱前在线衍生-反相高效液相色谱内标法快速测定饲料中氨基酸.分析化学,2007,35(1):25~30
    41. 孙景生,陈玉民,肖俊夫等.灰色关联分析在确定冬小麦水分敏感期上的应用[J]. 水利科技与经济,1996,3: 138~139
    42. 孙晓波.冬小麦抗旱性鉴定指标的研究.[中国农业科学院硕士学位论文].中关村南大街12号:中国农业科学院,2007
    43. 万建民.作物分子设计育种.作物学报,2006,32:455~462
    44. 王国安,韩家懋. C3植物碳稳定同位素在旱季和雨季中的变化. 海洋地质与第四纪地质,2001,21(4):43~47
    45. 王环,胡荣海,昌小平. 水分胁迫下小麦地上和地下部的反应及其抗旱性研究. 西北植物学报,1996,16(2):107~115
    46. 王镜岩,朱圣庚,徐长法. 生物化学(第三版). 北京:高等教育出版社,2002
    47. 王敏,姚维传,张从宇,吴晓亮.小麦抗旱性的形态性状及初生根解剖结构研究.种子,2002,6:14~15
    48. 王韶唐. 植物的水分利用效率和旱地农业生产. 干旱地区农业研究,1978,2:67~80
    49. 王玮,邹琦. 渗透调节对不同抗旱性小麦品种胚芽鞘生长的影响.植物生理学通讯,1997,33(3):168~171
    50. 吴茂森,田苗英,陈彩层等. 通过花粉管途径将BYDV-GPV株系缺失复制酶基因导入小麦. 农业生物技术学报,2000,8(2):125~127
    51. 徐春英,梅旭荣,李玉中,钟秀丽. GC-C-IRMS 分析氨基酸碳氮稳定同位素的衍生化方法及展望,中国农学通报,2008,4:151~156
    52. 徐继林,叶芳挺,严小军. 微量海洋微藻脂肪酸甾醇及游离氨基酸GC-MS分析研究. 中国药学杂志,2006,41(24):1895~1899
    53. 徐琼芳,李连城,马有志等. 用天花粉蛋白基因转化小麦获得转基因植株. 遗传,2001,23(2):135~137
    54. 许兴,朱林,李树华,何军,景继海,董建力.宁夏不同生态区小麦碳同位素分辨率与产量、收获系数和物候期的相关研究.农业科学研究,2006,27(3):11~15
    55. 许兴,朱林,李树华,何军,景继海,董建力.宁夏不同生态区小麦碳同位素分辨率与灰分、比叶质量、收获系数等指标的相关性研究.农业科学研究,2007,28(2): 1~4
    56. 阎新甫, 刘文轩, 王胜军等. 抗白粉病大麦DNA 导入普通小麦的研究[A] . 农业分子育种研究进展[C]. 北京:中国农业科技出版社,1993,69~75.
    57. 叶新国,徐军,杜丽璞等. 小麦遗传转化几个因素的研究. 中国农业科学,2001,23:128~132
    58. 叶兴国,Sato S, 徐惠君等. 小麦农杆菌介导转基因植株的稳定获得和检测. 中国农业科学,2001,34(5): 469~474
    59. 易现峰,张晓爱. 稳定同位素技术在生态学上的应用. 生态学杂志,2005,24(3):306~314
    60. 尹恒,李曙光等. 植物代谢组学的研究方法及其应用. 植物学通报,2005,22(5):532~540
    61. 曾君祉,王东江,吴有强等. 用花粉管途径获得小麦转基因植株. 中国科学(B辑), 1993,23(3):256~262
    62. 张爱良,黄桂英,苗果园等. 不同土壤水分对冬小麦旗叶生理特性的影响[J]. 山西农业大学学报,1998,18(3):200~202
    63. 张灿军,冀天会, 杨子光, 郭军伟, 孟丽梅, 张 珂. 小麦抗旱性鉴定方法及评价指标研究Ⅰ鉴定方法及评价指标,中国农学通报,2007,9:226~230
    64. 张灿军.小麦抗旱性的鉴定方法与指标.中国小麦育种与产业化进展[M].北京:中国农业出版社,2002,119~136
    65. 张正斌,山 仑,徐 旗.控制小麦种、属旗叶水分利用效率的染色体背景分析.遗传学报,2000,(3): 240~246
    66. 张正斌,山 仑.小麦旗叶水分利用效率比较研究.科学通报,1997, 42:1876~1883
    67. 张正斌. 作物抗旱节水的生理遗传育种基础. 北京:科学出版社,2003
    68. 张正斌,徐萍,董宝娣,刘孟鱼等. 水分利用效率-未来农业研究的关键问题. 世界科技研究与进展,2005,2:52~61
    69. 周桂莲, 杨慧霞. 小麦抗旱性鉴定的生理生化指标及其分析评价[J].干旱地区业研究, 1996, 14(2):65~69
    70. 周晓果,景蕊莲, 郝转芳,昌小平,张正斌. 小麦幼苗根系性状的 QTL分析.中国农业科学,2005,38:1951~1957
    71. 朱林,许兴.植物水分利用效率的影响因子研究综述.干旱地区农业研究,2005,23(6):204~209.
    72. Amir R, Hacham Y and Gallili G. Cystathionine gammasynthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants. Trends Plant Sci 7: 153~156
    73. Anzala F, Christine M, Paven M L, Fournier S, Rondeau D and Limami M A. Physiological and molecular aspects of aspartate-derived amino acid metabolism during germination and post-germination growth in two maize genotypes differing in germination efficiency. Journal of Experimental Botany, 2006,57(3):645~653
    74. Araus J L,Bort J,Ceccarei L,et a1.Relationship between leaf structure and carbon isotope discrimination in field grown barley[J].Plant Physiology and Biochemistry,1997, 35: 533~541
    75. Atkinson D., Black K.E., Dawson L.A., Dunsiger Z., Watson C.A., Wilson S.A. Prospects, advantages and limitations of future crop production systems dependent upon the management of soil processes. Annals of Applied Biology,2005, 146, 2: 203~215.
    76. Azevedo R A and Lea P J. Lysine metabolism in higher plants. Amino Acids,2001,20:261~279
    77. Azevedo R A, Arruda P, Turner W L, Lea P J. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. Phytochemistry, 1997, 46:395~419
    78. Azevedo R A, Lancien M, Lea P J. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids, 2006,30:143~162
    79. Azevedo R A. Analysis of the aspartic acid metabolic pathway using mutant genes. Amino Acids,2002, 22:217~230
    80. Bacon M A. Water Use Efficiency in Plant Biology. Oxford: Blackwell Publishing, 2004
    81. Ballantyne J S, Chamberlin M E. Regulation of cellular amino acid levels. Cellular and Molecular Physiology of Cell Volume Regulation (K. Strange, ed.), CRC Press, Boca Raton, FL, 1994, 111~122.
    82. Barbanti L., Monti A., Venturi G. Nitrogen dynamics and fertilizer use efficiency in leaves of different ages of sugar beet (Beta vulgaris) at variable water regimes. Annals of Applied Biology, 2007, 150: 197~205.
    83. Bayala J, Balesdent J, Marol C, Zapata F, Teklehaimanot Z and Ouedraogo S J. Relative contribution of trees and crops to soil carbon content in a parkland system in Burkina Faso using variations in natural 13C abundance. Nutrient Cycling Agroecosystems 2006, 76: 193~201
    84. Bhagsari A S.Brown R H.Leaf photosynthesis and its correlation with leaf area[J].Crop Science,1986, 26:127~132
    85. Blau K, Halket J M (Eds.). Handbook of Derivatives for Chromatography(2nd Edn). John Wiley & Sons: Chichester, 1993: 11~99
    86. Blonder J, Yu L R, Radeva G, et al. Combined chemical and enzymatic stable isotope labeling for quantitative profiling of detergent-insoluble membrane proteins isolated using triton X-100 and Brij-96. Journal of Proteome Research, 2006, 5(2): 349~360
    87. Blum A.Plant breeding for stress environments,CRC press,Inc.Boca Raton,Florida,1988:26~27
    88. Bol R, Ostle N J, Chenu C C, Petzke K J, Werner R A, and Balesdent J. Long term changes in the distribution and δ15N values of individual soil amino acids in the absences of plant and fertilizer inputs. Isotopes of Environ. Health Stud, 2004, 40:243~256
    89. Bolger T P,Turner N C. Transpiration efficiency of three Mediterranean annual pasture species and wheat[J].Oecologia 1998, 115:32~38
    90. Bray E A. Plant responses to water deficit. Trends Plant Sci., 1997, 2: 48~54
    91. Cánovas F C, Avila C, Cantón F R, Cańas R A and Torre F d.Ammonium assimilation and amino acid metabolism in conifers. Journal of Experimental Botany,2007,58(9):2307~2318
    92. Caray A A, Colmenero F J M, Caroiarrubio A., et al. Highly hydrophilic proteins in prokaryates and eukaryates are common during conditions of water deficit. J. Bio. Chem., 2000, 275(8):5668~5674
    93. Carillo P, Mastrolonardo G, Nacca F, Fuggi A. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Functional Plant Biology, 2005, 32:209~219
    94. Chen Z Z, Hong X H, Zhang H, Wang Y, Li X, Zhu J K, Gong ZZ. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. The Plant Journal, 2005, 43: 273~283
    95. Cheng M, Joyce E F, Pang S Z, et al. Genetic trancformation of wheat mediated by Agro-bacterium-tumefaciens. Plant Physiol., 1997, 115: 971~980
    96. Cheng Z, Targolli J, Huang X, Wu R. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Molecular Breeding, 2002, 10 (1): 71~82
    97. Condon A G, Richards R A, Farquhar G D. Carbon isotope discrimination is positively correlated with grain yield and dry matter production in field-grown wheat. Crop Science,1987,27:996~1001
    98. Daubresse M C, Reisdorf-Cren M, Pageau K, et al. Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in Tobacco. Plant Physiol., 2006, 140: 444~456
    99. Dawson T E, Mambelli S, Agneta H, Plamboeck, Pamela H, Templer,andKevin P,Tu Annu.Stable isotopes in plant ecology. Rev. Ecol. Syst, 2002, 33:507~559
    100. Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants. Plant Journal, 1993,4:215~223
    101. Deng X P, Shan L, Inanaga S. High efficient use of limited supplemental water by wheat. Trans. CSAE, 2002, 18:84-91
    102. Derrien D, Marol G, & Balesdent J. The dynamics of neutral sugars in the rhizosphere of wheat. An approach by 13C pulse-labelling and GC/C/IRMS. Plant and Soil, 2004, 267: 243~253
    103. Dijkstra F A, Cheng W X. Increased soil moisture content increases plant N uptake and the abundance of 15N in plant biomass. Plant Soil, 2008, 302:263~271
    104. Doblin M S, Kurek I, Jacob-Wilk D, Delmer D P. Cellulose biosynthesis in plants: from genes to resettes. Plant Cell Physiol., 2002, 43: 1407~1420
    105. Droux M. Sulfur assimilation and the role of sulfur in plant metabolism: A Survey. Photosyn Res., 2004, 79: 331~348
    106. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold- responsive gene expression. Plant Journal, 2003, 33: 751~763
    107. Eason J R, O’Donoghue E M, and King G A. Aspragine synthesis and localization of transcripts for asparagines synthetase in tips of harvested asparagus spears. J. Plant Physiol., 1996, 149: 251~256
    108. Ehdaie B, Haiia E, Farquhar G D, et al. Water-use efficiency and carbon isotope discrimination in wheat[J].Crop Science,1991, 31: 1282~1288
    109. Elumalai S, Bahieldinl A, Wraith J M, Niem T A, Dyer W E, David T H, Rongda Q. Improved biomass productivity and wate use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barely HVA1 gene. Plant Science, 2000, 155: 1~9
    110. Evans RD. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci.,2001, 6:121–26
    111. Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol.Biol,1989,40:503~537
    112. Farquhar G D, Richards R A.Isotopic composition of plant carbon correlates with water-use-efficiency of wheat genotypes[J].Australian Journal of Plant Physiology, 1984,11:539~552
    113. Fiedler R and Proksch G. The determination of nitrogen-15 by emission and mass spectrometry in biochemical analysis: A review. Anal. Chem. Acta,1975,78:1~62
    114. Fischer R A,. et al. Drought resistance in Spring Wheat Cultivars.   Aust.J.Agri.Res,1978,29:897
    115. Fortier G.,Tenaschuk D., and MacKenzie,S.L. Capillary gas chromatography micro-assay for pyroglutamic, glutamic and aspartic acids, and glutamine and asparagines. Journal of Chromatography, 1986: 361~253
    116. Fougere F, Le Rudulier D, Streeter J G. Effects of salt stress on amino acid, organic acid, andcarbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology, 1991,96:1228~1236
    117. Fukutoku Y, Yamada Y. Sources of proline-nitrogen in water-stressed soybean (Glycine max). II. Fate of 15N-labelled protein. Physiologia Plantarum,1984,61: 622~628
    118. Galili G. New insights into the regulation and functional sgnificance of lysine metabolism in plants. Annu. Rev.Plant Biol. 2002, 53: 27~43
    119. Godin J P, Faure M, Breuille D. Hopfgartner G., Fay L-B. Determination of 13C isotopic enrichment of valine and threonine by GC-C-IRMS after formation of the N(O,S)-ethoxycarbonyl ethyl estyl ester derivatives of the amino acids. Analytical and Bioanalytical Chemistry 2007, 388: 909~918
    120. Good A.G., Shrawat A.K., Muench D.G. (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 9, 597~605.
    121. Goodacre R. Metabolic profiling: pathways in discovery. Drug Discovery Today,2004, 9: 260~261
    122. Grassi G,Millard P,Wendler R,Minotta G et al. Measurement of xylem sap amino acid concentrations in conjunction with whole tree transpiration estimates spring N remobilization by cherry (Prunus avium L.) trees. Plant, Cell and Environment, 2002, 25, 1689~1699.
    123. Hall A E. Physiological ecology of crops in relation to light, water, and temperature. In: Carroll C R, Vandermeer J H, Rosset P. Agroecology. New York: Mc Graw Hill Publishing Company, 1990,191~233
    124. Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R. Plant metabolomics: the missing link in functional genomics strategies. The Plant Cell,2002, 14: 1437~1440
    125. Handley L L, Raven J A. 1992. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ. 15:965–85
    126. Handley L L, Scrimgeour C M. Terrestrial plant ecology and 15N natural abundance: The present limits to interpretation for uncultivated systems with original data from a Scottish old field. Adv. Ecol. Res. 1997.27:133~212
    127. Hao Z F, Chang X P, Guo X J, Jing R L, Jia J Z. QTL mapping for drought tolerance at stages of germination and seedling in wheat(Triticum aestivum L.) using a DH population. Agricultural Sciences in China, 2003, 2: 943~949
    128. Hare P D, Cress W A, Van Staden J. Dissection the roles of osmolyte accumulation during stress. Plant Cell Environ., 1998, 24: 535~553
    129. Henderson S, Von-Caemmerer S, Farquhar G D, Wade L, Hammer G. Correlation between carbon isotope discrimination and transpiration efficiency in lines of the C4 species Sorghum bicolor in the glasshouse and the field. Aust. J. Plant Physiol., 1998, 25:111~23
    130. Hesse H, Kreft O, Msimann S, Zeh M and Hoefgen R. Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot., 2004, 55: 1799~1808
    131. Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH. Competition between roots and soilmicro-organisms for nutrients from nitrogen-rich patches of varying complexity. J Ecol, 2000, 88: 150~164
    132. Hoekestra E A, Golovina E A, Buitink J. Mechanisms of plant desiccation tolerance. Trends Plant Sci., 2001, 6: 431~438
    133. Hofmann D, Gehre M, Jung K. Sample Preparation Techniques for the Determination of Natural 15N/14N Variations in Amino Acids by Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS). Isotopes in Environmental and Health Studies, 2003, 39:233~244
    134. Hofmann D., Jung K., Segschneider H.J, et al. 15N/14N analysis of amino acids with GC-C-IRMS-methodological investigations and ecotoxicological applications. Isotopes in Environmental and Health Studies, 1995, 31: 367~375
    135. Holdensen L, Hauggaard-Nielsen H, Jensen E S. Short-range spatial variability of soil δ15N natural abundance-effects on symbiotic N2-fixation estimates in pea. Plant Soil, 2007, 298: 265~272
    136. Huang D N, Li J Y, Zhang S Q, et al. New technology to examine and improve the purity of hybrid rice with herbicide resistant gene[J]. Chin Sci Bull., 1998, 43: 784~786
    137. Huang X, Regnier F E. Differential Metabolomics Using Stable Isotope Labeling and two-dimensional gas chromatography with time-of-flight mass spectrometry. Anal. Chem, 2008,
    80(1):107~114
    138. Hurd E A. Phenotype and drough tolerance in wheat [J]. Agric. Meteor, 1974,14: 39~45
    139. Ireland R J, Lea P J. The enzymes of glutamine, glutamate, asparagine, and aspartate metabolism. In: Singh B K, ed. Plant amino acids: biochemistry and biotechnology. New York: Marcel Dekker Inc,1999,49~109
    140. Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie, 2002, 84:1127~1135
    141. John B, Alan T, Ann B. Plant desiccation gene found in a nematode. Nature, 2002, 416: 38
    142. Julian I, Schroeder J, Kwak M, Allen G J. Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature, 2001, 410: 327~330
    143. Kaldenhoff R, EckertM. Featuresand Functions of Plant Aquaporins[J ]. J Photochem Photobiol B , 1999, 52: 1~6
    144. Karungi J., Kyamanywa S., Ekbom B. Comparison of the effect of market crop wastes and chemical soil fertility amendments on insect pests, natural enemies and yield of Brassica oleracea. Annals of Applied Biology, 2006, 149, 103~109.
    145. Katoh A, Uenohara K, Akita M, Hashimoto T. Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiology,2006,141:851~857
    146. Kim T H, Yoneyama T. Interaction of carbon and nitrogen assimilation estimated by 13C and 15N tracing in detached leaves of spinach. Environmental and Experimental Botany, 2007, 61: 152~158
    147. Kingston-Smith A H, Bollard A L, Minchin F R. The effect of nitrogen status on the regulation ofplantmediated proteolysis in ingested forage; an assessment using non-nodulating white clover. Annals of Applied Biology, 2006, 149: 35~42.
    148. Kirby E G, Gallardo F, Man H M, El-Khatib R. The overexpression of glutamine synthetase in transgenic poplar: a review. Silva Genetica, 2006, 55: 278~284.
    149. Kloeppel B D, Gower S T, Treichel I W, Kharuk S. Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison. Oecologia,1998,114:153~59
    150. Kornexl B E, Werner T, Roβmann A, Schmidt H L. Measurement of stable isotope abundances in milk and milk ingredients-a possible tool for origin assignment and quality control. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 1997, 205: 19~24.
    151. Lal C, Hariprasanna K, Rathnakumar A L, Gor H K, Chikani B M. Gene action for surrogate traits of water-use-efficiency and harvest index in peanut (Arachis hypogaea). Annals of Applied Biology, 2006, 148: 165~172.
    152. Lam H M, Coschigano K, Schultz C, Melo-Oliveira R, Tjaden G, Oliveira I, Ngai N, Hsieh M H,and Coruzzi G. Use of Arabidopsis mutants and genes to study amide amino acid synthesis. Plant Cell, 1995,7: 887~898
    153. Landry J., Delhaye S. Influence of genotype and texture on zein content in endosperm of maize grains. Annals of Applied Biology, 2007, 151: 349~356.
    154. Lea P J and Ireland R J. Nitrogen Metabolism in Higher Plants. In: Singh B.K. (ed.), Plant Amino Acids. Biochemistry and Biotechnology. New York:Marcell Dekker,Inc,1999,1~47
    155. Lea P J, Blackwell R D, Azevedo R A. Analysis of barley metabolism using mutant genes. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International,Wallingford, 1992, 181~208
    156. Lea P J, Sodek L, Parry M A J, Shewry P R, Halford N G. Asparagine in plants. Annals of Applied Biology, 2007, 150: 1~26
    157. Lea P L, Rowland-Bamford A J and Wolfenden J. The effect of air pollutants and elevated carbon dioxide on nitrogen metabolism. Plant Responses to Air Pollution (M. Yunus and M. Iqbal, eds.), John Wiley & Sons, New York, 1996,319~352
    158. Lea1 P J & Azevedo R A. Nitrogen use efficiency. Amino acid metabolism. Ann. Appl. Biol,2007,151: 269~275
    159. Levitt J. Response of plants to environmental stresses. In: Water, Radiation, Salt and Other Stresses. New York: Academic Press, 1980,325~358
    160. Liang B C, Gregorich E G, and MacKenzie A F. Short-term mineralization of maize residues in soils as determined by carbon-13 natural abundance. Plant and Soil, 1999,208:227-232
    161. Liang H, Zheng J, Duan X Y, et al. A transgenic wheat with a stilbene synthase gene resistant to powdery mildew obtained by biolistic method [J]. Chin Sci Bull, 2000,45: 634~637
    162. Liu L F, Mu P, Zhang H L, Wang Y, Qu Y Y, Li Z C. Marker-assisted selection and its verification for QTLs of basal root thickness and index of drought resistance in lowland rice and upland rice. Acta Agronomica Sinica, 2006, 32: 189~196
    163. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in Drought- and Low-Temperature-Responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391~1406
    164. Lopez C G, Banowetz C J, Peterson and Krostad W E. Differential accumulation of a 24-kd dehydrin protein in wheat seedling correlates with drought stress tolerance at grain filling. Hereditas, 2001, 135:175~181
    165. Lu Y, Bottari P, Turecek F, et al. Absolute quantification of specific proteins in complex mixtures using visible isotope-coded affinity tags. Analytical Chemistry, 2004, 76 (14): 4104~4111
    166. Macchi F D, Shen F J, Keck R G, Harris R J. In: Cooper C, Packer N, Williams K. Methods in Molecular Biology, Amino Acid Analysis Protocols. Humana Press, 2001, 159: 9~30
    167. Maimann S, Wagner C, Kreft O, Zeh M, Willmitzer L, H?fgen R, Hesse H. Transgenic potato plants reveal the indispensable role of cystathionine β-lyase in plant growth and development. The Plant Journal, 2000, 3:747~758
    168. Man H.M., Boriel R., El-Khatib R., Kirby E.G. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. The New Phytologist, 2005, 167: 31~39.
    169. Manschadi J, Ahmad M, Christopher J, deVoil P and Graeme L H.The role of root architectural traits in adaptation of wheat to water-limited environments.Functional Plant Biology, 2006, 33:823~837
    170. Martinelli T, Whittaker A, Bochicchio A, Vazzana C, Suzuki A and Cèline M D. Amino acid pattern and glutamate metabolism during dehydration stress in the ‘resurrection’ plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves. Journal of Experimental Botany, 2007, 58(11): 3037~3046
    171. Masle J, Gilmore S R, Farquhar G D. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature, 2005, 10: 1~5
    172. Masle J,Farquhar G I.Effects of soil strength on the relation of water use efficiency and growth to carbon isotope discrimination in wheat seedlings[J].Plant Physiology, 1988, 83: 32~38
    173. Meier-Augenstein, W., Handbook of Stable Isotope Analytical Techniques, in : de Groot,P.A (Ed), CHAPTER 8 GC and IRMS Technology for 13C and 15 N Analysis on Organic Compounds and Related Gases, 2004: 153~181
    174. Metges C and Daenzer M. 13C Gas chromatography-combustion isotope ratio mass spectrometry analysis of N-pivaloyl amino acid esters of tissue and plasma samples. Analytical Biochemistry, 2000, 278: 156~164
    175. Metges C C and Petzke K J. Measurement of 15N / 14N Isotopic Composition in Individual Plasma Free Amino Acids of Human Adults at Natural Abundance by Gas Chromatography Combustion Isotope Ratio Mass Spectrometry. Analytical Biochemistry, 1997,247: 158~164
    176. Metges C C, Petzke K J.& Hennig U. Gas chromatography / combustion / isotope ratio massspectrometric comparison of N-Acetyl- and N-Pivaloyl amino acid esters to measure 15N isotopic abundances in physiological samples: a pilot study on amino acid synthesis in the upper gastro-intestinal tract of minipigs. Journal of Mass Spectrometry, 1996, 31: 367~376
    177. Metges C C. & Petzke K J. The use of GC-C-IRMS for the analysis of stable isotope enrichment in nitrogenous compounds. In: Methods for investigation of amino acid and protein metabolism. A. E. El-Khoury (ed.). CRC Press, Boca Raton, Florida , 1999: 121~134
    178. Milflin B J, Lea P J. The pathway of nitrogen assimilation in plants. Phytochemistry, 1976, 15:873~885
    179. Millard P, Wendler R, Hepburn A and Smith A. Variations in the amino acid composition of xylem sap of Betula pendula Roth. Trees dur to remobilization of stored N in the spring. Plant, Cell and Environment, 1998, 21,715~722
    180. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi A K. Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet. 2002, 106: 51~57
    181. Montigon F, Boza J J, Fay L B. Determination of 13C- and 15N-enrichment of glutamine by gas chromatography/mass spectrometry and gas chromatography/combustion/isotope ratio mass spectrometry after N(O,S)-ethoxycarbonyl ethyl ester derivatisation. Rapid Communications in Mass Spectrometry, 2001, 15: 116~123
    182. Morgan J M. Osmoregulation as a selection criterion for drought tolerant in wheat. Aust. J. Agric., 1983, 34:607~614
    183. Moro G L, Habben J E, Hamaker B R, Larkins B A. Characterization of the variability in lysine content for normal and opaque-2 maize endosperm. Crop Science, 1996, 36:1651~1659
    184. Mu P, Li Z C, Li C P, Zhang H L, Wu C M, Li C, Wang X K. QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross. Chinese Science Bulletin, 2003, 4: 2162~2169
    185. N?sholm T, Ekblad A, Nordin A, Giesler R, H?gberg M, H?gberg P. Boreal forest plants take up organic nitrogen. Nature, 1998, 392: 914~916
    186. Nehra N S, Chibbar R N, Leung N, et al. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distant gene constructs. Plant J., 1994, 5: 285~297
    187. Nour A E, Wiebel D E. Evaluation of root characteristics in grain sorghm [J]. Agron J , 1987,70: 217~218
    188. Palenchar P M, Kouranov A, Lejay L V, Coruzzi G M. Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signalling hypothesis in plants. Genome Biology 2004,5, R91.
    189. Parry M A J, Flexas J, Medrano H. Prospects for crop production under drought: research priorities and future directions. Annals of Applied Biology, 2005,147:211~226
    190. P?tzold R, and Brückner H. Gas chromatographic determination and mechanism of formation ofD-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids, 2006, 31: 63~72
    191. Pearson J and Stewart G R. The deposition of atmospheric ammonia and its effects on plants. New Phytol, 1993,125:283~305
    192. Persson J and N?sholmT. A GC-MS method for determination of amino acid uptake by plants.Physiologia Plantarum, 2001,113: 352~358
    193. Petzke K, Boeing H and Metges C C. Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundances. Rapid Communications in Mass Spectrometry , 2005,19:1392~1400
    194. Petzke K, Boeing H, Klaus S, and Metges C C. Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in Humans. Nutritional Methodology, 2005,135: 1515~1520
    195. Phillips D A, Fox T C, King M D, Bhuvaneswari T V, Teuber L R. Microbial products trigger amino acid exudation from plant roots. Plant Physiology, 2004, 136: 2887~2894
    196. Philp R P. The emergence of stable isotopes in environmental and forensic geochemistry studies: a review. Environmental Chemistry Letters, 2007, 5: 57~66
    197. Quan R D, Shang M, Zhang H, Zhao Y X and Zhang J R. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal, 2004, 2: 477~486
    198. Rao N R C,W right G C.Stability of the relationship between specific leaf area and carbon isotope discrimination across environment in peanut[J].Crop Science, 1994, 34: 98~103
    199. Ravanel S, Gakiere B, Job D, Douce R. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci, 1998, 95:7805~7812
    200. Raven J.A., Andrews M., Quigg A. The evolution of oligotrophy: implications for the breeding of crop plants for low input agricultural systems. Annals of Applied Biology, 2005, 146: 261~280.
    201. Rhodes D, Brunk D, and Magalhase J R. Assimilation of ammonia by glutamate dehydrogenase? Recent Advances in Phytochemistry, Plant Nitrogen Metabolism (J E Poulton, J T Romeo, and E E Conn, eds.), Plenum Press, New York, 1989a, 23: 191~226
    202. Rhodes D, Sims A P, and Folkes B F. Pathway of ammonia assimilation in illuminated Lemna minor. Phytochemistry, 1980, 19: 357~365
    203. Richards N G, and Shuster S M. An alternative mechanism for the nitrogen transfer reaction in asparagines synthetase. FEBS lett., 1992,313: 98~102
    204. Robinson D, Handley L L, Scrimgeour C M, et al. Using stable isotope natural abundances (δ15N andδ13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch.) genotypes. Journal of Experimental Botany, 2000, 51(342): 41~50
    205. Robinson D. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 2001, 16:153~162
    206. Robinson S A, Slade A P, Fox G G, Phillips R, Ratclife R G and Stewart G R. The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol, 1991,95:809~816
    207. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A R. Metabolicprofiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. The Plant Cell,2001b,13:11~29
    208. Roessner U, Wagner C, Kopka J, Trethewey R N, Willmitzer L. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant Journal, 2000, 23:131~142
    209. Roessner U, Willmitzer L. Fernie AR Highresolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems.Identification of phenocopies. Plant Physiology, 2001a,127: 749~764
    210. Rooke L,Bèkès F, Fido R, Barro F, Gras P, Tatham A S, Barcelo P, Lazzeri P, Shewry R. Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. Journal of Cereal Science, 1999, 30:115~120
    211. Saavedra M, Beltran M, Pousao-Ferreira P, et al. Evaluation of bioavailability of individual amino acids in Diplodus puntazzo larvae : towards the ideal dietary amino acid profile. Aquaculture, 2007, 263: 192~198
    212. Sacks G L. and Brenna J T. 15N/14N Position-specific isotopic analyses of polynitrogenous amino acids. Analytical Chemistry, 2005, 77: 1013~1019
    213. Sakamoto A, Murata N. The use of bacterial choline oxidase, a glycine betaine-synthesizing enzyme, to creat stress resistant transgenic plants. Plant Physiology, 2001, 125: 180~188
    214. Saurer M, Siegwolf R W, Schweingruber F. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology, 2004, 10: 2109~2120
    215. Sayre K D,Acevedo E,Austin R B.Carbon isotope discrimination and grain yield for three bread wheat germplasm groups grown at different levels of water stress[J].Field Crops Research, 1995, 41: 45~54
    216. Schiltz S, Munier-Jolain N, Jeudy C, Burstin J, Salon C. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in Pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiology, 2005, 137: 1463~1473
    217. Schwenk,W F, Berg, P J, Beaufrere,B, et al. Use of t-butydimethylsilylation in the gas chromatographic/mass spectrometric analysis of physiological compounds found in plasma using electron-impact ionization. Analytical Biochemistry, 1984,141: 101~109
    218. Segechneider H J, Hofmann D, Schmidt G, et al. Incorporation of 15NO2 nitrogen into individual amino acids by sunflowers using GC-C-IRMS. Environmental and Health Studies, 1995, 31: 315~325
    219. Selhub J. Homocysteine metabolism. Annu. Rev. Nutr., 1999, 19:217~246
    220. Sessions Alex L. Isotope ratio detection for gas chromatography. Journal of Separation Science, 2006, 29: 1946~1961
    221. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiology, 1997, 115: 327~334
    222. Sieciechowicz K A, Joy K W, Ireland R J. The metabolism of asparagine in plants. Phytochemistry 1998a,27:663~671
    223. Sims A P, Folkes B F. A kinetic study of the assimilation of (15N)-ammonia and the synthesis of amino acids in an exponentially growing culture of Cadida utilis. Proc. R.Soc. Lond. B, 1964,159: 479~502
    224. Singh B K. Plant amino acids. New Jerdey: American Cyanamid Company Princeton, 1999, 3~31
    225. Sivamani E, Bahieldin A, Wraith J M, AI-Niem T, Dyer W E, David Ho T H, Qu R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barely HVA1 gene. Plant Science, 2000, 155: 1~9
    226. Sivasankar S. and Oaks A. Nitrate assimilation in higher plants: the effect of metabolites and light. Plant Physiol.Biochem,1996, 34:609–620
    227. Slafer G A, Araus J L. Improving wheat responses to abiotic stresses [A]. In: A E Slinkard( ed. ). Proceedings of the 9th International Wheat Genetics Syposium [C]. Saskatchewan, Canada: U niversity Extension Press, 1998, 1: 201~213
    228. Slocum R D. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiology and Biochemistry, 2005, 43:729~745
    229. Smedley M P, Dawson T E, Comstock J P, Donovan L A, Sherril D E, et al. Seasonal carbon isotope discrimination in a grassland community. Oecologia, 1991,85:314~320
    230. Smith K F, Sharpz Z D, Brown J H. Isotopic composition of carbon and oxygen in desert fauna : Investigations into the effects of diet , physiology , and seasonality [J]. J.Arid Environ, 2002, 52:419~430
    231. Stewart G R, Larher F. Accumulation of amino acids and related compounds in relation to environmental stress. In The Biochemistry of Plants, 1980, 5:609~635
    232. Stewart G R. What do δ15N signatures tell us about nitrogen relations in natural ecosystems? See Unkovich et al. 2001, 91~101
    233. Streeter T C, Bol R, Bardgett RD. Amino acids as a nitrogen source in temperate upland grasslands: The use of dual labeled (13C, 15N) glycine to test for direct uptake by dominant grasses. Rapid Communication Mass Spectrometry, 2000, 14: 1351~1355
    234. Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen T H and Murara N. Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant Journal, 2003, 36: 165~176
    235. Ta T C, Joy K W, and Ireland R J. Amino acid metabolism in Peea leaves. Plant Physiology, 1984, 74: 822~826
    236. Tang H R, Wang Y L. Metabonomics: a Revolution in Progress. Progress in Biochemistry and Biophysics, 2006,33 (5): 401~417
    237. Taylor J, King R D, Altmann T, Fiehn O. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics, 2002, 18: 241~248
    238. Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms.Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 50: 571~599
    239. Turner N C. Agronomic options for improving rainfall-use efficiency of crops in dryland farming systerms. Journal of Experimental Botany, 2004, 55:2413~2425
    240. Vander Zanden M J, Casselman J M, Rasmussen J B. Stable isotope evidence for the food web consequences of species invasions in lakes [J ] . Nat ure, 1999, 401 : 464~467.
    241. Verdoy D, Coba de la Pe?a T, Redono F J, Luca M M, Pueyo J J. Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Physiology, 2006, 29:1913~1923
    242. Voltas J,Romagosa I,Muniz P,Araus L. Mineral accumulation, carbon isotope discrimination and indirect selection for grain yield in two—rowed barley grown under semiarid conditions[J].European Journal of Agronomy, 1998, 9: 147~155
    243. Wang H, Datla R, Georges F, Loewen M & Culter A J. Promoters from kin1 and cor6.6 two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydratin. Plant Mol. Biol., 1995, 28: 605~607
    244. Wang H, Yoshizumi M, Lai K, Tsai JC, Perrella M A, et al. Inhibition of growth and p21 ras methylation in vascular endothelial cells by homocysteine but not cysteine. J. Biol. Chem. 1997, 272:25380~25385
    245. Werner R A & Schmidt H-L. The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochem, 2002, 61:465~484
    246. Wichern J, Eberhardt E, Mayer J, Joergensen R G, Muller T. Nitrogen rhizodeposition in agricultural crops: Methods,estimates and future prospects. Soil Biology & Biochemistry, 2008, 40:30~48
    247. William E M ,Carmozina de Araujo M ,Renato C , et al. Contributions of C3 and C4 plants to higher trophic levels in an Amazonian savanna [J]. Oecologia ,1999,119 :91~96
    248. Wirtz M, Droux M. Synthesis of the sulfur amino acids: cysteine and methionie. Photosynthesis Research, 2005, 86: 345~362
    249. Xiong L., Schumaker K.S. and Zhu J.K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14(Suppl.): S165~S183
    250. Xu D P, Duan X L, Wang B Y. Express of a late embryogenesis abundant protein gene, HNA1, from barley confers tolerance to water deficit and salt stress in transgenic rice [J]. Plant physiology, 1996, 110: 249~257
    251. Yancey P H, Clark M E, Hand S C, et al. Living with water stress: Evolution of oxmolyte systems. Science, 1982, 217: 1214~1222
    252. Yancey P H. Compatible and counteracting solutes. Cellular and Molecular Physiology of Cell Volume Regulation (K. Strange, ed.), CRC Press, Boca Raton, FL, 1994, 81~109
    253. Yoneyama T, Ito O & Engelaar W M H G. Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years. Phytochemistry Reviews, 2003, 2:121~132
    254. Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance with drought avoidance. Genetics, 2006, 172: 1213~1228
    255. Zanden M J,Casselman J M ,Rasmussen J B. Stable isotope evidence for the food web consequences of species invasions in lakes [J]. Nature, 1999, 401:464~467
    256. Zhou H, Arrowsmith J W, Fromm M E, et al. Glyphosatetolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Reports, 1995, 15:159~163
    257. Zhou X G, Jing R L, Hao Z F, Chang X P, Zhang Z B. Mapping QTL for seedling root traits in common wheat. Scientia Agricultura Sinica, 2005, 38: 1951~1957
    258. Zhu B C, Su J, Chan M C, Verma D P S, Fan Y L, Wu R. Overexpression of a delta(1)-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt-stress in transgenic rice. Plant Science, 1998, 139:41~48
    259. Zhu J K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Bio., 2002, 53:247~273
    260. Zuber M S, Skrdla W H, Chloe B. Survey of maize selections for endosperm lysine content. Crop Science, 1975,15:93~94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700