利用基因拆分技术限控转基因飘流的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着转基因作物的大面积商业化种植,转基因飘流带来的环境安全性问题成为人们关注的热点和焦点问题之一。为了打消公众的疑虑,最好的办法是从根本上防止基因飘流的发生。当前普遍应用的物理隔离只能减少转基因飘流,并不能从根本上杜绝转基因飘流,需要探索研究新的限控转基因飘流的生物学措施。鉴于此,本研究以抗草甘膦除草剂的G2-aroA基因为目的基因,以烟草和水稻为试材,分析G2-aroA基因拆分后重新组装成完整有功能蛋白的效率,探讨基因拆分技术限控转基因飘流的效果,以期建立基因拆分技术限控转基因飘流的技术平台。具体试验结果如下:
     1.烟草中进行基因拆分技术限控转基因飘流的效果分析
     1)将单独含有完整G_2-aroA、G_2-aroA的N端(EPSPSn-In)或G2-aroA的C端(IC-EPSPSC)基因的转基因烟草T_0代种子接种到含有100mg/L卡那霉素的MS0培养基上,分析Kan~R与KanS的分离比,初步确定单独含有EPSPSn-In的N-33、单独含有IC-EPSPSC的C-11和含有完整G2-aroA基因的G2-24为单拷贝插入。利用Southern杂交和荧光定量PCR对其进行分析,进一步确定了转基因烟草N-33、C-11和G2-24为单拷贝插入。
     2)连续2代筛选,获得了转基因烟草N-33和C-11的纯合系,并通过有性杂交获得了同时含有2个基因片段的转基因烟草杂交种N-33×C-11。
     3)利用Tail-PCR的方法获得了N-33、C-11的侧翼序列,初步分析二者插入到了不同染色体上。另外,杂交种N-33×C-11自交,获得的自交种进行卡那抗性筛选,共分析3096株,其中非卡那抗性苗为188株,所占比例约为6.07%,符合两个基因片段位于不同染色体上时的孟德尔遗传规律,进一步确定拆分后的EPSPSn-In和Ic-EPSPSc基因片段位于非同源染色体上。
     4)对不同类型的转基因烟草进行草甘膦抗性分析,结果表明非转基因烟草NC89以及单独含有1个基因片段的转基因烟草N-33和C-11均不能正常生长,杂交种N-33×C-11与G2-24生长正常,而且N-33×C-11种子100%能抗草甘膦。RT-PCR分析发现杂交种N-33×C-11中只能扩增出两个基因片段,不能扩增出完整基因。Western杂交和质谱分析证明杂交种N-33×C-11中含有完整的EPSPS蛋白。上述结果表明G2-aroA基因拆分后,在intein介导下形成了完整有功能的EPSPS蛋白,且在植株水平上的重新组装效率可达100%,能够满足实际生产的需要。
     5)在人工授粉的情况下,将N-33×C-11与受体NC89回交,回交种进行草甘膦抗性分析,共筛选2812株,得到草甘膦抗性植株664个,抗性植株所占比例为23.61%,符合两个基因片段位于不同染色体上时,基因飘流频率为25%的假设。表明基因拆分技术至少能降低75%的基因飘流频率,即使在100%异交率情况下,基因飘流频率也只有23.61%。
     2.水稻中建立基因拆分技术限控转基因飘流的技术体系
     1)构建了用于水稻遗传转化的高效表达载体13UEI(含有EPSPSn-In)、13UIC(含有Ic-EPSPSc)和13UG2(含有完整的G2-aroA),并通过农杆菌介导法导入水稻品种中花11中,分别获得转基因水稻En(含有EPSPSn-In融合基因片段)15株,Ec (含有Ic-EPSPSc融合基因片段)14株,G_2(含有完整G_2-aroA基因)14株。
     2)通过Southern blot分析确定En-1、En-3、En-12、En-19、En-31、En-33、En-34、Ec-2、Ec-5、Ec-8、G_2-6、G_2-7、G_2-10为单拷贝插入。
     3)利用Tail-PCR方法对单拷贝的转基因水稻进行了侧翼序列克隆,并进行染色体定位分析,确定了En-1、En-3、En-19和En-31中外源基因分别插入到2号、11号、1号和7号染色体上,Ec-2、Ec-5和Ec-8中外源基因分别插入到4号、3号和9号染色体上。
     4)通过荧光定量PCR方法对外源基因在转基因水稻中的表达量进行了分析,表明外源基因在Ec中的表达为Ec-2>Ec-5>Ec-8,外源基因在En中的表达情况为En-12>En-3>En-1>En-34>En-33>En-31。
     综上所述,本研究在烟草上建立了利用基因拆分技术限控转基因飘流的技术平台。同时对在水稻中利用基因拆分技术限控转基因飘流进行了技术储备。在水稻实际应用中,可以将目的基因拆分成两个片段,其中一个片段导入恢复系中,另一个片段导入保持系中。这样,只有杂交种中才具有完整有功能的目的蛋白,而亲本中的基因片段不具有功能,不会对环境产生影响,从而为在杂交稻上采用转基因技术铺平道路,并对保持我国杂交稻研究和生产在国际上的领先地位,进一步促进我国转基因水稻的商业化具有重要意义。
With the rapid development and commercialization of GMC (Genetically Modified Crop), thepotential environmental problem caused by transgene flow from GMC to related plants has become oneof the focuses of public concern. The best strategy for promoting public acceptance of transgenicproducts is to eliminate transgene flow fundamentally. Existing physical technologies such as distanceisolation, florescence isolation or physical barrier can only reduce the frequency of transgene flow to acertain extent. So, it is important to develop new biological strategy with more satisfied efficiency oncontrolling transgene flow. In this study, the G2-aroA gene, conferring resistance to herbicideglyphosate, was used to study the transgene split technology and the reassembling efficiency of theprotein via intein-mediated protein-splicing and to explore the effect of gene split technology oncontrolling transgene flow in tobacco and rice, in the hope of establishing a technology platform tocontrol transgene flow.
     The main results obtained are as follows:
     1. Gene split technology to controlling transgene flow on tobacco::
     1) Seeds of T_0generation of transgenic tobacco, which harboring the integrated G2-aroA(EPSPS),EPSPSn-In and IC-EPSPSC, respectively, were generated on kanamycin medium to analyzethe segregation ratio of KanR/KanS. It was indicated that transgenic plants N-33、C-11andG2-24were integrated with single copy of foreign gene according to the segregation ratio ofKanR/KanSand reconfirmed through southern blot and quantitative Real-time PCR study.
     2) Through self-polination and screening with kanamycin of transgenic tobacco plants,homozygous line of N-33and C-11were obtained. F1seeds of N-33×C-11were also obtainedby hybridization.
     3) The flanking sequence of inserted genes in transgenic tobacco plants N-33and C-11werecloned with Tail-PCR and it was preliminary indicated that integration of foreign genes ofEPSPSn-In and Ic-EPSPSc were occurred at different chromosomes. The KanR/KanSsegregation ratio of self-pollinated seeds from N-33×C-11was analyzed. Among3096seedlings tested,1880seedlings were KanRand the resistant proportion was60.7%.According to the basic rules of genetics, we further confirmed that the two fusion genesEPSPSn-In and Ic-EPSPSc were inserted into two non-homologous chromosomes.
     4) The glyphosate resistance of different types of transgenic tobacco was analyzed. It wasindicated that both N-33and C-11as well as the non-transgenic tobacco NC89weresusceptible to glyphosate, while100%seedlings from hybrid N-33×C-11harboring bothEPSPSn-In and Ic-EPSPSc showed the same resistance to glyphosate as the positive controlG2-24. RT-PCR analysis showed that each of the two gene fragments can be amplified fromhybrid N-33×C-11, but the complete gene can’t be found in hybrid. It was proved through Western blot and mass spectral analysis that the hybrid N-33×C-11plants contain thecomplete EPSPS protein. The above results showed that the two fragments of G2-aroA genecan be complemented and EPSPS activity can be recovered by intein mediated proteincomplementation, with a assembly efficiency up to100%in plant level, which can meet theneeds of practical application.
     5)The glyphosate resistance of the seedlings from back crossing generation of hybrid N-33×C-11and non-transgenic control NC89was analyzed. Among2812seedlings totally tested,664seedlings or23.61%of the total seedlings showed resistance to glyphosate, which fit to thehypothesis that the transgenic flow rate is25%when the two fragments were integrated intotwo non-homologous chromosomes. The results suggest that the transgene split technologycan at least reduce the gene flow frequence of75%.
     2. Constructing a gene split technology system for controlling transgene flow in rice
     1)Plant expression vectors13UG2,13UEI and13UIC, harboring the integrated G2-aroA(EPSPS),EPSPSn-In and IC-EPSPSC, respectively, were constructed and transformed into rice byagrobacterium-mediated gene transfer and14,15,14transgenic rice plants were obtainedrespectively.
     2)Results from Southern-blot analysis indicated that transgenic rice plants En-1、En-3、En-12、En-19、En-31、En-33、En-34、Ec-2、Ec-5、Ec-8、G2-6、G2-7、G2-10were integrated withone copy of target gene.
     3)The flank sequence of transgenic rice were cloned by Tail-PCR, and chromosome localizationanalysis showed that the foreign genes in transgenic rice En-1, En-3, En-19, En-31, Ec-2,Ec-5and Ec-8were localized in chromosome2,11,1,7,4,3and9respectively.
     4)The quantity of foreign protein expressed in transgenic rice was indentified via Real-timequantitative PCR. The foreign protein expressing level from high to low is Ec-2, Ec-5andEc-8respectively for Ec line, while in the En line, the order is En-12, En-3, En-1, En-34,En-33and En-31.
     In summary, our study on tobacco has established a technological platform to control trangene flowby using gene split technology and laid the foundation for the same study in transgenic rice. In thepractical application in rice, the target gene can be split into two fragments. One fragment may beintroduced into the restore line, while another introduced into the maintainer line. There for, only thehybrids can produce complete and functional target protein, and the parents with only one fragment hasno function and will not impact on the environment. Thus it paving the way for using trangenictechnology on hybrid rice, and to maintain China’s leading position in hybrid rice research andproduction. It will has significant benefits for commercialization of transgenic rice in the future.
引文
1.蔡丽,周必文,郭学兰等.在中国环境条件下油菜花粉介导的除草剂抗性基因飘逸[J].科学通报,2009,53(13):1544-1551
    2.贾士荣,金芜军,国际转基因作物的安全性争论[J].农业生物技术学报,2003,11(1):1-5
    3.胡龙兴,王兆龙,植物无融合生殖相关基因研究进展[J].遗传,2008,32(2):155-163
    4.黄先群,李丽,毛堂芬,转基因作物的发展和安全性问题[J].贵州农业科学,2005,33(6):89-93
    5.刘柱,陈明,一株草甘膦极端抗性菌株的分离和分子鉴定[J].高技术通讯,2002,12(12):25-28
    6.王宏伟,梁业红,史振声等,作物抗草甘膦转基因研究概况[J].作物杂志,2007,(4):9-12
    7.缪颖,伍炳华,陈德海,植物雄性不育基因工程的研究及应用(综述)[J].亚热带植物通讯,2000,29(001):55-60宋敏,刘丽军,苏颖异等,抗草甘膦EPSPS基因的专利保护分析[J].中国生物工程杂志,2010,30(02):147-152
    8.魏新元,内含肽的研究及应用进展[J].西北农林科技大学学报:自然科学版,2008,36(5):171-178
    9.温广月,抗草甘膦作物研究进展[J].世界农药,2010,1
    10.苏少泉,抗草甘膦作物的创制与发展[J].世界农业,2004,(003):48-50
    11.朱玉,于中连,林敏,草甘膦生物抗性和生物降解及其转基因研究[J].分子植物育种,2003,1(4):435-441
    12. James C.2011年全球生物技术/转基因作物商业化发展态势[J].中国生物工程杂志,2012,32(1):1-14
    13. Accotto G.P., Nervo G., et al. Field Evaluation of Tomato Hybrids Engineered with Tomato spottedwilt virus Sequences for Virus Resistance, Agronomic Performance, and Pollen-MediatedTransgene Flow. Phytopathology2005,95(7):800-807.
    14. Al-Ahmad H., Dwyer J., et al. Mitigation of establishment of Brassica napus transgenes involunteers using a tandem construct containing a selectively unfit gene. Plant Biotechnol J2006,4(1):7-21.
    15. Al-Ahmad., Galili H. S., et al. Poor competitive fitness of transgenically mitigated tobacco incompetition with the wild type in a replacement series. Planta2005,222(2):372-385.
    16. Al-Ahmad., Gressel J. H., Mitigation using a tandem construct containing a selectively unfit geneprecludes establishment of Brassica napus transgenes in hybrids and backcrosses with weedyBrassica rapa. Plant Biotechnol J2006,4(1):23-33.
    17. Albertini E.,. Marconi G., et al. Isolation of candidate genes for apomixis in Poa pratensis L. PlantMol Biol2004,56(6):879-894.
    18. Ammann K., Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GMcrops. Trends Biotechnol2005,23(8):388-394.
    19. Amrhein N., Johanning D., et al. Biochemical basis for glyphosate-tolerance in a bacterium and aplant tissue culture. FEBS Lett1983,157(1):191-195.
    20. Andow D. A., Zwahlen C., Assessing environmental risks of transgenic plants. Ecology Letters2006,9(2):196-214.
    21. Ariizumi T., Hatakeyama K., et al. Disruption of the novel plant protein NEF1affects lipidaccumulation in the plastids of the tapetum and exine formation of pollen, resulting in malesterility in Arabidopsis thaliana. The Plant Journal2004,39(2):170-181.
    22. Asker S. E., Jerling L., Apomixis in plants, CRC1992.
    23. Azhagiri A. K., Maliga P., Exceptional paternal inheritance of plastids in Arabidopsis suggests thatlow-frequency leakage of plastids via pollen may be universal in plants. Plant J2007,52(5):817-823.
    24. Baerson S. R., Rodriguez D. J., et al. Glyphosate-resistant goosegrass. Identification of a mutationin the target enzyme5-enolpyruvylshikimate-3-phosphate synthase. Plant physiology2002,129(3):1265-1275.
    25. Bates S. L., Zhao J. Z., et al. Insect resistance management in GM crops: past, present and future.Nat Biotechnol2005,23(1):57-62.
    26. Benitez E R., Khan N A., Matsumura H., etal.Varietal differences and morphology of cleistogamyin soybean[J]. Crop Science2010,50(1):185-190.
    27. Bicknell R. A. Koltunow A. M., Understanding apomixis: recent advances and remainingconundrums. The Plant Cell Online2004,16(suppl1): S228-S245.
    28. Birky C. W., Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms andevolution. Proceedings of the National Academy of Sciences1995,92(25):11331.
    29. Bock R. Khan M. S., Taming plastids for a green future. Trends Biotechnol2004,22(6):311-318.
    30. Boerboom C. M., Wyse D. L., et al."Mechanism of glyphosate tolerance in birdsfoot trefoil (Lotuscorniculatus)." Weed Science1990,463-467.
    31. Boynton J. E., Gillham N. W., et al."Chloroplast transformation in Chlamydomonas with highvelocity microprojectiles." Science2401988,(4858):1534.
    32. Brotherton J. E., Jeschke M. R., et al."Identification of Arabidopsis thaliana variants withdifferential glyphosate responses." J Plant Physiol2007,164(10):1337-1345.
    33. Burbulis, I., Yamaguchi K., et al. Using protein-DNA chimeras to detect and count small numbersof molecules. Nat Methods2004,2(1):31-37.
    34. Burgess D. G., Ralston E. J., et al. A novel, two‐component system for cell lethality and its use inengineering nuclear male‐sterility in plants. The Plant Journal2002,31(1):113-125.
    35. Carman J. G., Asynchronous expression of duplicate genes in angiosperms may cause apomixis,bispory, tetraspory, and polyembryony. Biological Journal of the Linnean Society1997,61(1):51-94.
    36. Castle L. A., Siehl D. L., et al. Discovery and directed evolution of a glyphosate tolerance gene.Science3042004,(5674):1151-1154.
    37. Chen L., Benner, J. et al. Protein splicing in the absence of an intein penultimate histidine. Journalof Biological Chemistry2000,275(27):20431-20435.
    38. Chen L., Pradhan S., et al. Herbicide resistance from a divided EPSPS protein: the splitSynechocystis DnaE intein as an in vivo affinity domain. Gene2001,263(1-2):39-48.
    39. Cheng S.H., Zhuang J.Y., Fan Y.Y., et al. Progress in research and development on hybrid rice: asuper-domesticate in China[J]. Annals of Botany2007,100(5):959-966.
    40. Chen M., Zhao J. Z., et al. Impact of insect‐resistant transgenic rice on target insect pests andnon‐target arthropods in China. Insect Science2006,13(6):409-420.
    41. Chhabra, A. Sethi S., Inheritance of cleistogamic flowering in durum wheat (Triticum durum).Euphytica1991,55(2):147-150.
    42. Chin H. G., Kim G. D., et al. Protein trans-splicing in transgenic plant chloroplast: reconstructionof herbicide resistance from split genes. Proc Natl Acad Sci U S A2003,100(8):4510-4515.
    43. Chong S., Mersha F. B., et al Single-column purification of free recombinant proteins using aself-cleavable affinity tag derived from a protein splicing element. Gene1997,192(2):271-281.
    44. Chong S., Montello G. E., et al. Utilizing the C-terminal cleavage activity of a protein splicingelement to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res1998,26(22):5109-5115.
    45. Chong S., Shao Y., et al. Protein splicing involving the Saccharomyces cerevisiae VMA intein.Journal of Biological Chemistry1996,271(36):22159.
    46. Comai L., Facciotti D., et al. Expression in plants of a mutant aroA gene from Salmonellatyphimurium confers tolerance to glyphosate.1985
    47. Comai L., Sen L. C., et al. An altered aroA gene product confers resistance to the herbicideglyphosate. Science1983,221(4608):370-371.
    48. Conner, A. J., Glare T. R., et al. The release of genetically modified crops into the environment.The Plant Journal2003,33(1):19-46.
    49. Cooperation, O. F. E. and Development. Consensus document on the biology of Oryza sativa andTriticum aestivum. Series on Harmonization of Regulatory Oversight in Biotechnology1999,(14).
    50. Cuellar W., Gaudin A., et al. Self-excision of the antibiotic resistance gene nptII using a heatinducible Cre-loxP system from transgenic potato. Plant Mol Biol2006,62(1-2):71-82.
    51. d'Souza L., Untersuchungen über die Eignung des Weizens als Pollenspender bei derFremdbefruchtung, verglichen mit Roggen, Triticale und Secalotricum1970.
    52. Dale P. J., Clarke B., et al. Potential for the environmental impact of transgenic crops. NatBiotechnol2002,20(6):567-574.
    53. Dalecky A., Bourguet D., et al. Does the European corn borer disperse enough for a sustainablecontrol of resistance to Bt maize via the High Dose/Refuge strategy? Cahiers Agricultures2007,16:171-176.
    54. Daley M., Knauf V., et al. Co-transformation with one Agrobacterium tumefaciens straincontaining two binary plasmids as a method for producing marker-free transgenic plants. Plant CellRep1998,17(6):489-496.
    55. Daniell H. Molecular strategies for gene containment in transgenic crops. Nat Biotechnol2002,20(6):581-586.
    56. Daniell H., Kumar S., et al. Breakthrough in chloroplast genetic engineering of agronomicallyimportant crops." Trends Biotechnol2005,23(5):238-245.
    57. Dassa B., Amitai G., et al. Trans protein splicing of cyanobacterial split inteins in endogenous andexogenous combinations. Biochemistry2007,46(1):322-330.
    58. David R., Machova Z., et al. Semisynthesis and application of carboxyfluorescein-labelledbiologically active human interleukin-8. Biological chemistry2003,384(12):1619.
    59. David R., Richter M. P. O., et al. Expressed protein ligation. European Journal of Biochemistry2004,271(4):663-677.
    60. De Block M., Botterman J., et al. Engineering herbicide resistance in plants by expression of adetoxifying enzyme. EMBO J1987,6(9):2513.
    61. De Cosa, B., Moar W., et al. Overexpression of the Bt cry2Aa2operon in chloroplasts leads toformation of insecticidal crystals. Nat Biotechnol2001,19(1):71-74.
    62. Derepas A., Dulieu H. Inheritance of the capacity to transfer plastids by the pollen parent inPetunia hybrida Hort. Journal of Heredity1992,83(1):6.
    63. Dietz-Pfeilstetter A. Zwerger P., In-field frequencies and characteristics of oilseed rape with doubleherbicide resistance. Environ Biosafety Res2009,8(2):101-111.
    64. Ding Y., Xu M. Q., et al. Crystal structure of a mini-intein reveals a conserved catalytic moduleinvolved in side chain cyclization of asparagine during protein splicing. Journal of BiologicalChemistry2003,278(40):39133-39142.
    65. Directorate D. E., Committee D. C., et al. Consensus document on the biology of Oryza sativa(rice), Organisation for Economic Co-operation and Development1999.
    66. Dotson S. B., Lanahan M. B., et al. A phosphonate monoester hydrolase from Burkholderiacaryophilli PG2982is useful as a conditional lethal gene in plants. The Plant Journal1996,10(2):383-392.
    67. Duan X., Gimble F. S., et al. Crystal structure of PI-SceI, a homing endonuclease with proteinsplicing activity. Cell1997,89(4):555-564.
    68. Dufourmantel N., Tissot G., et al. Generation and analysis of soybean plastid transformantsexpressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol2005,58(5):659-668.
    69. Duke S. O. Glyphosate-resistant crops and weeds: now and in the future.2009.
    70. Duke S. O., Powles S. B., Glyphosate: a once-in-a-century herbicide." Pest Manag Sci2008,64(4):319-325.
    71. Dun B. Q., Wang X. J., et al. Reconstitution of glyphosate resistance from a split5-enolpyruvylshikimate-3-phosphate synthase gene in Escherichia coli and transgenic tobacco. Appl EnvironMicrobiol2007,73(24):7997-8000.
    72. Duncan K., Lewendon A., et al. Mutant EPSP synthase genes from tomato, Arabidopsis thaliana,Brassica napus, Glycine max E. coli K-12confer tolerance to glyphosate. Federation of EuropeanBiochemical Societies Letters (FEBS)1984,170.
    73. Duncan K., Lewendon A., et al. The complete amino acid sequence of Escherichia coli5-enolpyruvylshikimate3-phosphate synthase." FEBS Lett1984,170(1):59-63.
    74. Dunwell J., Ford C.S., Technologies for biological containment of GM and non-GM crops[J] Defracontract CPEC2005,47.
    75. Ellstrand N. C. Current knowledge of gene flow in plants: implications for transgene flow.Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences2003,358(1434):1163-1170.
    76. Engelke T., Hirsche J., et al. Metabolically engineered male sterility in rapeseed (Brassica napusL.). Theor Appl Genet2011,122(1):163-174.
    77. Evans T. C., Benner J., et al. Semisynthesis of cytotoxic proteins using a modified protein splicingelement. Protein science1998,7(11):2256-2264.
    78. Evans T. C., Benner J., et al. The cyclization and polymerization of bacterially expressed proteinsusing modified self-splicing inteins. Journal of Biological Chemistry1999,274(26):18359-18363.
    79. Evans T. C., Martin D., et al. Protein trans-Splicing and Cyclization by a Naturally Split Inteinfrom the dnaE Gene ofSynechocystis Species PCC6803. Journal of Biological Chemistry2000,275(13):9091-9094.
    80. Evans T. C., Xu M. Q., et al. Protein splicing elements and plants: from transgene containment toprotein purification. Annu Rev Plant Biol2005,56:375-392.
    81. Fitzgibbon J. Braymer H., Cloning of a gene from Pseudomonas sp. strain PG2982conferringincreased glyphosate resistance. Appl Environ Microbiol1990,56(11):3382-3388.
    82. Frankel R. Galun E., Pollination mechanisms, reproduction and plant breeding, Berlin, Heidelberg,New York.: Springer-Verlag.1977.
    83. Fu Q., Wang F., et al. Effects of insect-resistant transgenic rice lines MSA and MSB on non-targetpests Nilaparvata lugens and Sogatella fucifera. Acta Entomologica Sinica2003,46(6):697-704.
    84. Funke T., Han H., et al. Molecular basis for the herbicide resistance of Roundup Ready crops. ProcNatl Acad Sci U S A2006,103(35):13010-13015.
    85. Gasser C. S., Winter, J. et al. Structure, expression, and evolution of the5-enolpyruvylshikimate-3-phosphate synthase genes of petunia and tomato. Journal of BiologicalChemistry1988,263(9):4280-4287.
    86. Gidoni D., Srivastava V., et al. Site-specific excisional recombination strategies for elimination ofundesirable transgenes from crop plants. In Vitro Cellular&Developmental Biology-Plant2008,44(6):457-467.
    87. Gils M., Marillonnet S., et al. A novel hybrid seed system for plants. Plant Biotechnol J2008,6(3):226-235.
    88. Gils M., Rubtsova M., et al. Split-transgene expression in wheat. Methods Mol Biol2012,847:123-135.
    89. Giovannetti M., Sbrana C., et al. The impact of genetically modified crops on soil microbialcommunities, ANICIA SRL2005.
    90. Gogarten J. P., Senejani A. G., et al. Inteins: structure, function, and evolution. Annual Reviews inMicrobiology2002,56(1):263-287.
    91. Goldsbrough, A. P., Lastrella C. N., et al. Transposition Mediated Re–positioning and SubsequentElimination of Marker Genes from Transgenic Tomato." Nat Biotechnol1993,11(11):1286-1292.
    92. Gomez L., Figueroa M., et al. Maize pollen longevity and distance isolation requirements foreffective pollen control. Crop Science2001,41(5):1551-1557.
    93. Gressel J. Preventing, delaying and mitigating gene flow from crops–rice as an example.2002.
    94. Grevich J. J., Daniell H., Chloroplast genetic engineering: recent advances and future perspectives.Critical Reviews in Plant Sciences2005,24(2):83-107.
    95. Gruys K., Marzabadi M., et al. Steady-state kinetic evaluation of the reverse reaction forEscherichia coli5-enolpyruvoylshikimate-3-phosphate synthase. Arch Biochem Biophys1993,304(2):345-351.
    96. Gruys K. J., Walker M. C., et al. Substrate synergism and the steady-state kinetic reactionmechanism for EPSP synthase from Escherichia coli. Biochemistry1992,31(24):5534-5544.
    97. Guerineau F., Sorensen A. M., et al. Temperature sensitive diphtheria toxin confers conditionalmale-sterility in Arabidopsis thaliana. Plant Biotechnol J2003,1(1):33-42.
    98. Guhan N., Muniyappa K. Mycobacterium tuberculosis RecA intein, a Laglidadg homingendonuclease, displays Mn2+and DNA-dependent ATPase activity. Nucleic Acids Res2003,31(14):4184-4191.
    99. Guhan N., Muniyappa K. Structural and functional characteristics of homing endonucleases. CritRev Biochem Mol Biol2003,38(3):199-248.
    100. Halsey M. E. R., Davis K. M., et al. Isolation of maize from pollen-mediated gene flow by timeand distance. Crop Science2005,45(6):2172.
    101. Hare P. D., Chua N. H. Excision of selectable marker genes from transgenic plants. Nat Biotechnol2002,20(6):575-580.
    102. Heath P. J., Stephens K. M., et al. The structure of I-Crel, a group I intron-encoded homingendonuclease. Nat Struct Mol Biol1997,4(6):468-476.
    103. Hiei Y., Ohta S., et al. Efficient transformation of rice (Oryza sativa L.) mediated byAgrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal1994,6(2):271-282.
    104. Hirata R., Anraku Y. Mutations at the putative junction sites of the yeast VMA1protein, thecatalytic subunit of the vacuolar membrane H(+)-ATPase, inhibit its processing by protein splicing.Biochem Biophys Res Commun1992,188(1):40-47.
    105. Hou B. K., Zhou Y. H., et al. Chloroplast transformation in oilseed rape. Transgenic Res2003,12(1):111-114.
    106. Hoshikawa K., Anthesis, fertilization and development of caryopsis[J]. Science of the rice plant1993,1:339-376.
    107. Huang F. C., Klaus S., et al. Efficient plastid transformation in tobacco using the aphA-6gene andkanamycin selection. Molecular genetics and genomics2002,268(1):19-27.
    108. Huang S., Gilbertson L. A., et al. Generation of marker-free transgenic maize by regulartwo-border Agrobacterium transformation vectors. Transgenic Res2004,13(5):451-461.
    109. Iwai H., Lingel A., et al. Cyclic green fluorescent protein produced in vivo using an artificiallysplit PI-PfuI intein from Pyrococcus furiosus. Journal of Biological Chemistry2001,276(19):16548.
    110. Iwai H., Zuger S., et al. Highly efficient protein trans-splicing by a naturally split DnaE intein fromNostoc punctiforme. FEBS Lett2006,580(7):1853-1858.
    111. Jeffries C. M., Graham S. C., et al. Stabilization of a binary protein complex by intein‐mediatedcyclization. Protein science2006,15(11):2612-2618.
    112. Jia S R., Wang F., Sh I L., et al. Transgene flow to hybrid rice and its male-sterile lines[J].Transgenic Res2007,16(4):491-501.
    113. Jhala A. J., Bhatt H., et al. Pollen-mediated gene flow in flax (Linum usitatissimum L.): cangenetically engineered and organic flax coexist? Heredity (Edinb)2011,106(4):557-566.
    114. Jones M. D., Brooks J. S. Effect of tree barriers on outcrossing in corn, Oklahoma AgriculturalExperiment Station.1952.
    115. Kane P. M., Yamashiro C. T., et al. Protein splicing converts the yeast TFP1gene product to the69-kD subunit of the vacuolar H (+)-adenosine triphosphatase. Science1990,250(4981):651-657.
    116. Keenan R. J. Stemmer W. P. C. Nontransgenic crops from transgenic plants. Nat Biotechnol2002,20(3):215-216.
    117. Kempe K., Rubtsova M., et al. Intein-mediated protein assembly in transgenic wheat: productionof active barnase and acetolactate synthase from split genes. Plant Biotechnol J2009,7(3):283-297.
    118. Kempken F. Engineered Male Sterility. Genetic Modification of Plants2010,253-265.
    119. Kholodii G. The shuffling function of resolvases. Gene2001,269(1):121-130.
    120. Kittiwongwattana C., Lutz K., et al. Plastid marker gene excision by the phiC31phage site-specificrecombinase. Plant Mol Biol2007,64(1):137-143.
    121. Koltunow A. M., Bicknell R. A., et al. Apomixis: Molecular Strategies for the Generation ofGenetically Identical Seeds without Fertilization. Plant Physiol1995,108(4):1345-1352.
    122. Komari T., Hiei Y., et al. Vectors carrying two separate T-DNAs for co-transformation of higherplants mediated by Agrobacterium tumefaciens and segregation of transformants free fromselection markers. Plant J1996,10(1):165-174.
    123. Koning A., Jones A., et al. Arrest of embryo development in Brassica napus mediated by modifiedPseudomonas aeruginosa exotoxin A. Plant Mol Biol1992,18(2):247-258.
    124. Kopertekh L., Schulze K., et al. Cre-mediated seed-specific transgene excision in tobacco. PlantMol Biol2010,72(6):597-605.
    125. Ku W. Y., Liu Y. W., et al. The zinc ion in the HNH motif of the endonuclease domain of colicin E7is not required for DNA binding but is essential for DNA hydrolysis. Nucleic Acids Res2002,30(7):1670-1678.
    126. Kumar S., Dhingra A., et al. Stable transformation of the cotton plastid genome and maternalinheritance of transgenes. Plant Mol Biol2004,56(2):203-216.
    127. Kurauchi N., Makino T., et al. Inheritance of cleistogamy-chasmogamy in barley. Barley geneticsnewsletter1993,23.
    128. Lee S. M., Kang K., et al. Plastid transformation in the monocotyledonous cereal crop, rice (Oryzasativa) and transmission of transgenes to their progeny. Molecules and cells2006,21(3):401.
    129. Leflon M X., Pinochet X., Hüsken A., e tal. Cleistogamy of oilseed rape: a way to prevent pollenflow at the field scale[C]. proceedings of the5th ISHS International Symposium on Brassicas,Programme and Abstract Book, Lillehammer, Norway2009.
    130. Li G. U. O. P., Wu K. M., et al. Increasing tolerance to Cry1Ac cotton from cotton bollworm,Helicoverpa armigera, was confirmed in Bt cotton farming area of China. Ecological Entomology2007,32(4):366-375.
    131. Liang A., Sha J., et al. A single residue mutation of5-enoylpyruvylshikimate-3-phosphate synthasein Pseudomonas stutzeri enhances resistance to the herbicide glyphosate. Biotechnol Lett2008,30(8):1397-1401.
    132. Lin C., Fang J., et al. A built-in strategy for containment of transgenic plants: creation ofselectively terminable transgenic rice. PLoS One2008,3(3): e1818.
    133. Liu C., Li J., et al. A built-in mechanism to mitigate the spread of insect-resistance andherbicide-tolerance transgenes into weedy rice populations. PLoS One2012,7(2): e31625.
    134. Liu X. Q. Protein-splicing intein: Genetic mobility, origin, and evolution. Annu Rev Genet2000,34(1):61-76.
    135. Lord E. M. Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. TheBotanical Review1981,47(4):421-449.
    136. Lu B. Transgene containment by molecular means--is it possible and cost effective? EnvironBiosafety Res2003,2(1):3.
    137. Lu B. R. Transgene escape from GM crops and potential biosafety consequences: an environmentalperspective. International Centre for Genetic Engineering and Biotechnology (ICGEB), Collectionof Biosafety Reviews2008,4:66-141.
    138. Lu B. R., Snow A. A. Gene flow from genetically modified rice and its environmentalconsequences. BioScience2005,55(8):669-678.
    139. Luo H., Kausch A. P., et al. Controlling transgene escape in GM creeping bentgrass. MolecularBreeding2005,16(2):185-188.
    140. Luo K., Duan H., et al.'GM-gene-deletor': fused loxP-FRT recognition sequences dramaticallyimprove the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed oftobacco plants. Plant Biotechnol J2007,5(2):263-274.
    141. Mariani C., Beuckeleer M. D., et al. Induction of male sterility in plants by a chimaericribonuclease gene. Nature1990,347:737-741.
    142. Maliga P., Plastid transformation in higher plants[J] Annu Rev Plant Biol2004,55:289-313.
    143. Mercer K. L., Andow D. A., et al. Stress and domestication traits increase the relative fitness ofcrop–wild hybrids in sunflower. Ecology Letters2007,10(5):383-393.
    144. Messeguer J. Gene flow assessment in transgenic plants. Plant Cell, Tissue and Organ Culture2003,73(3):201-212.
    145. Messeguer J., Marfa V., et al. A field study of pollen-mediated gene flow from Mediterranean GMrice to conventional rice and the red rice weed. Molecular Breeding2004,13(1):103-112.
    146. Messeguer J., Penas G., et al. Pollen-mediated gene flow in maize in real situations of coexistence.Plant Biotechnol J2006,4(6):633-645.
    147. Messeguer J., Marfa V., Catala M M., et al. A field study of pollen-mediated gene flow fromMediterranean GM rice to conventional rice and the red rice weed[J]. Molecular Breeding2004,13(1):103-112.
    148. Messeguer J., Fogher C., Guiderdoni E., et al. Field assessments of gene flow from transgenic tocultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker[J]. TAGTheoretical and Applied Genetics2001,103(8):1151-1159.
    149. Miyashita K., Matsuda H., Ohara M., etal. Flowering and fruiting dynamics of chasmogamous andcleistogamous flowers in wild and cultivated soybeans[J]. Res Bull Univ Farm Hokkaido Univ1999,31:41-48.
    150. Mlynarova L., Conner A. J., et al. Directed microspore-specific recombination of transgenic allelesto prevent pollen-mediated transmission of transgenes. Plant Biotechnol J2006,4(4):445-452.
    151. Moon H.S., Li Y., Stewart C.N., et al. Keeping the genie in the bottle: transgene biocontainment byexcision in pollen[J] Trends Biotechnol2010,28(1):3-8.
    152. Moon H.S., Abercrombie L.L., Eda S., et al. Transgene excision in pollen using a codon optimizedserine resolvase CinH-RS2site-specific recombination system[J] Plant Mol Biol2011,75(6):621-631.
    153. Murphy D. J. Improving containment strategies in biopharming. Plant Biotechnol J2007,5(5):555-569.
    154. Nafziger E. D., Widholm J. M., et al. Selection and characterization of a carrot cell line tolerant toglyphosate. Plant physiology1984,76(3):571.
    155. Nair S. K., Wang N., et al. Cleistogamous flowering in barley arises from the suppression ofmicroRNA-guided HvAP2mRNA cleavage. Proc Natl Acad Sci U S A2010,107(1):490-495.
    156. Nogler G. A. The lesser-known Mendel: his experiments on Hieracium. Genetics2006,172(1):1-6.
    157. Noren C. J., Wang J., et al. Dissecting the chemistry of protein splicing and its applications.Angewandte Chemie International Edition2000,39(3):450-466.
    158. O'Callaghan M., Glare T. R., et al. Effects of plants genetically modified for insect resistance onnontarget organisms. Annu. Rev. Entomol2005,50:271-292.
    159. O'Gaora P., Maskell D., et al. Cloning and characterisation of the serC and aroA genes of Yersiniaenterocolitica, and construction of an aroA mutant. Gene1989,84(1):23-30.
    160. OECD. Seed schemes2005: rules and directions Maize and Sorghum.2nd Part Rules andDirections by Seed Scheme (Annexes VI to XII to the Decision).2005.
    161. Oka H. I. Origin of cultivated rice, Japan Scientific Societies Press.1988.
    162. Oliveira A. R., Castro T. R., et al. Toxicological evaluation of genetically modified cotton(Bollgard) and Dipel WP on the non-target soil mite Scheloribates praeincisus (Acari: Oribatida).Experimental and Applied Acarology2007,41(3):191-201.
    163. Ozawa T., Takeuchi M., et al. Protein splicing-based reconstitution of split green fluorescentprotein for monitoring protein-protein interactions in bacteria: improved sensitivity and reducedscreening time. Anal Chem2001,73(24):5866-5874.
    164. Ozias-Akins P. Apomixis: developmental characteristics and genetics. Critical Reviews in PlantSciences2006,25(2):199-214.
    165. Ozias-Akins P. Van P. J. Mendelian genetics of apomixis in plants. Annu. Rev. Genet2007,41.
    166. Padgette S. R., LaVallee B., et al. Development, identification, and characterization of aglyphosate-tolerant soybean line. Crop Science1995,35(5):1451-1461.
    167. Paulus H. The chemical basis of protein splicing. Chem. Soc. Rev1998,27(6):375-386.
    168. Paulus H. Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem2000,69(1):447-496.
    169. Pedotti M., Rosini E., et al. Glyphosate resistance by engineering the flavoenzyme glycine oxidase.Journal of Biological Chemistry2009,284(52):36415.
    170. Perler F. B. Protein splicing of inteins and hedgehog autoproteolysis: structure, function, andevolution. Cell1998,92(1):1-4.
    171. Perler F. B., Davis E. O., et al. Protein splicing elements: inteins and exteins--a definition of termsand recommended nomenclature. Nucleic Acids Res1994,22(7):1125.
    172. Perler F. B., Olsen G. J., et al. Compilation and analysis of intein sequences. Nucleic Acids Res1997,25(6):1087-1093.
    173. Pollegioni L., Schonbrunn E., et al. Molecular basis of glyphosate resistance-different approachesthrough protein engineering. FEBS J2011,278(16):2753-2766.
    174. Pollegioni L., Schonbrunn E., et al. Molecular basis of glyphosate resistance: Different approachesthrough protein engineering. FEBS Journal2011.
    175. PowlesS., Preston C., et al. Herbicide resistance: impact and management. Advances in agronomy1996,58:57-93.
    176. Quesada-Vargas T., Ruiz O. N., et al. Characterization of heterologous multigene operons intransgenic chloroplasts. Transcription, processing, and translation. Plant physiology2005,138(3):1746-1762.
    177. Ravi M., Marimuthu M. P. A., et al. Gamete formation without meiosis in Arabidopsis. Nature2008,451(7182):1121-1124.
    178. Rieben S., Kalinina O., et al. Gene flow in genetically modified wheat. PLoS One2011,6(12):e29730.
    179. Rong J., Song Z., et al. Modelling pollen-mediated gene flow in rice: risk assessment andmanagement of transgene escape. Plant Biotechnol J2010,8(4):452-464.
    180. Ruf S., Hermann M., et al. Stable genetic transformation of tomato plastids and expression of aforeign protein in fruit. Nat Biotechnol2001,19(9):870-875.
    181. Ruf S., Karcher D., et al. Determining the transgene containment level provided by chloroplasttransformation. Proceedings of the National Academy of Sciences2007,104(17):6998.
    182. Ruiz O. N., Daniell H. Engineering cytoplasmic male sterility via the chloroplast genome byexpression of β-ketothiolase. Plant physiology2005,138(3):1232-1246.
    183. Russell S. H., Hoopes J. L., et al. Directed excision of a transgene from the plant genome.Molecular and General Genetics MGG1992,234(1):49-59.
    184. Saleh L., Perler F. B. Protein splicing in cis and in trans. The Chemical Record2006,6(4):183-193.
    185. Saxena K. B., Singh L., et al. Role of partial cleistogamy in maintaining genetic purity of pigeonpea. Euphytica1993,66:225-229.
    186. Schernthaner J. P., Fabijanski S. F., et al. Control of seed germination in transgenic plants based onthe segregation of a two-component genetic system. Proc Natl Acad Sci U S A2003,100(11):6855-6859.
    187. SCIMAC. Guidelines for growing newly developed herbicide tolerant crops.1999.
    188. Scott S., Wilkinson M. Risks of transgene escape from transplastomic oilseed rape. Nat Biotechnol1999,17:390-392.
    189. Scott S. E., Wilkinson M. J. Low probability of chloroplast movement from oilseed rape (Brassicanapus) into wild Brassica rapa. Nat Biotechnol1999,17(4):390-392.
    190. ShanerD. L. The impact of glyphosate‐tolerant crops on the use of other herbicides and onresistance management. Pest Manag Sci2000,56(4):320-326.
    191. Sidorov V. A., Kasten D., et al. Stable chloroplast transformation in potato: use of greenfluorescent protein as a plastid marker. The Plant Journal1999,19(2):209-216.
    192. Sikdar S., Serino G., et al. Plastid transformation in Arabidopsis thaliana. Plant Cell Rep199818(1):20-24.
    193. Singh M., Burson B. L., et al. Isolation of candidate genes for apomictic development inbuffelgrass (Pennisetum ciliare). Plant Mol Biol2007,64(6):673-682.
    194. Southworth M. W., Adam E., et al. Control of protein splicing by intein fragment reassembly.EMBO J1998,17(4):918-926.
    195. Srinivasa Babu K., Muthukumaran T., et al. Single step intein-mediated purification of hGMCSFexpressed in salt-inducible E. coli. Biotechnol Lett2009,31(5):659-664.
    196. Stalker D. M., McBride K. E., et al. Herbicide resistance in transgenic plants expressing a bacterialdetoxification gene. Science1988,242(4877):419-423.
    197. Staniland B. K., McVetty P. B. E., et al. Effectiveness of border areas in confining thespread oftransgenic Brassica napus pollen. Canadian journal of plant science2000,80(3):521-526.
    198. Steinrucken, H. C., Schulz A., et al. Overproduction of5-enolpyruvylshikimate-3-phosphatesynthase in a glyphosate-tolerant Petunia hybrida cell line. Arch Biochem Biophys1986,244(1):169-178.
    199. Suh, H., Hepburn A. G., et al. Structure of the amplified5-enolpyruvylshikimate-3-phosphatesynthase gene in glyphosate-resistant carrot cells. Plant Mol Biol1993,22(2):195-205.
    200. Sun L., Ghosh I., et al. Protein trans-splicing to produce herbicide-resistant acetolactate synthase.Appl Environ Microbiol2001,67(3):1025-1029.
    201. Sun L., Zhang Q., et al. Generating Marker-free Transgenic Chrysanthemum by AgrobacteriumMediated Transformation with Twin T-DNA Binary Vectors. Acta Horticulturae Sinica2008,5.
    202. Sun L., Zhou L., et al. Marker-free transgenic Chrysanthemum obtained byAgrobacterium-Mediated transformation with twin T-DNA binary vectors. Plant MolecularBiology Reporter2009,27(1):102-108.
    203. Sun P., Ye S., et al. Crystal structures of an intein from the split dnaE gene of Synechocystis sp.PCC6803reveal the catalytic model without the penultimate histidine and the mechanism of zincion inhibition of protein splicing. J Mol Biol2005,353(5):1093-1105.
    204. Testolin R., Cipriani G. Paternal inheritance of chloroplast DNA and maternal inheritance ofmitochondrial DNA in the genus Actinidia. TAG Theoretical and Applied Genetics1997,94(6):897-903.
    205. Thompson C. J., Movva N. R., et al. Characterization of the herbicide-resistance gene bar fromStreptomyces hygroscopicus. EMBO J1987,6(9):2519.
    206. Thomson J. G., Ow D. W. Site-specific recombination systems for the genetic manipulation ofeukaryotic genomes. genesis2006,44(10):465-476.
    207. Trabi M., Craik D. J. Circular proteins—no end in sight. Trends Biochem Sci2002,27(3):132-138.
    208. Turuspekov Y., Mano Y., et al. dentification and mapping of cleistogamy genes in barley. TAGTheoretical and Applied Genetics2004,109(3):480-487.
    209. Turuspekov Y., Watanabe Y., et al. Closed type of flowering in barley. In Abstracts of10thInternational Congress of SABRAO Poster D-11.2005.
    210. USDA–APHIS. Field testing and plants engineered to produce pharmaceutical and industrialcompounds. Federal Register2003,68(46).
    211. Verma D., Daniell H. Chloroplast vector systems for biotechnology applications. Plant physiology2007,145(4):1129-1143.
    212. Volkmann G., Murphy P. W., et alet al. Intein-mediated cyclization of bacterial acyl carrier proteinstabilizes its folded conformation but does not abolish function. Journal of Biological Chemistry2010,285(12):8605.
    213. Walklate P. J., Hunt J. C., et al. A model of pollen-mediated gene flow for oilseed rape. Proc BiolSci2004,271(1538):441-449.
    214. Wang T., Li Y., et al. Low frequency transmission of a plastid-encoded trait in Setaria italica.TAG Theoretical and Applied Genetics2004,108(2):315-320.
    215. Wang Z. Potential effects of Bt transgenic rice on soil micro-ecosystem]. Ying yong sheng tai xuebao The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuanShenyang ying yong sheng tai yan jiu suo zhu ban2005,16(12):2469.
    216. Warwick S. I., Beckie H. J., et al. Gene flow, invasiveness, and ecological impact of geneticallymodified crops. Ann N Y Acad Sci2009,1168:72-99.
    217. Watrud L. S., Lee E. H., et al. Evidence for landscape-level, pollen-mediated gene flow fromgenetically modified creeping bentgrass with CP4EPSPS as a marker. Proc Natl Acad Sci U S A2004,101(40):14533-14538.
    218. Wei-xiang W., Qing-fu Y., et al. Bt-transgenic rice straw affects the culturable microbiota anddehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biology and Biochemistry2004,36(2):289-295.
    219. Williams N. K., Prosselkov P., et al. In vivo protein cyclization promoted by a circularly permutedSynechocystis sp. PCC6803DnaB mini-intein. Journal of Biological Chemistry2002,277(10):7790-7798.
    220. Wu H., Hu Z., et al. Protein trans-splicing by a split intein encoded in a split DnaE gene ofSynechocystis sp. PCC6803. Proc Natl Acad Sci U S A1998,95(16):9226-9231.
    221. Wu W., Wood D. W., et al. ntein-mediated purification of cytotoxic endonuclease I-TevI byinsertional inactivation and pH-controllable splicing. Nucleic Acids Res2002,30(22):4864-4871.
    222. Wujun J. S. J. International Debate on Biosafety of Genetically Modified Crops: Scientific Reviewon Several Cases of Debate [J]. Journal of Agricultural Biotechnology2003,1.
    223. Xu M. Q., Perler F. B. The mechanism of protein splicing and its modulation by mutation. EMBO J1996,15(19):5146.
    224. Xu M. Q., Southworth M. W., et al. In vitro protein splicing of purified precursor and theidentification of a branched intermediate. Cell1993,75(7):1371-1377.
    225. Yamazaki T., Otomo T., et al. Segmental isotope labeling for protein NMR using peptide splicing. JAm Chem Soc1998,120(22):5591-5592.
    226. Yang J., Fox G. C., Jr., et al. Intein-mediated assembly of a functional beta-glucuronidase intransgenic plants. Proc Natl Acad Sci U S A2003,100(6):3513-3518.
    227. Yang J., Meng Q., et al. Intein harbouring large tandem repeats in replicative DNA helicase ofTrichodesmium erythraeum. Mol Microbiol2004,51(4):1185-1192.
    228. Yao K M., Hu N., Chen W L., et al. Establishment of a rice transgene flow model for predictingmaximum distances of gene flow in southern China[J]. New Phytol2008,180:217-228.
    229. Yoder J. I., Goldsbrough A. P. Transformation systems for generating marker-free transgenic plants.Bio/technology1994,12(3):263-267.
    230. Yoshida H., Itoh J., et al. superwoman1-cleistogamy, a hopeful allele for gene containment in GMrice. Plant Biotechnol J2007,5(6):835-846.
    231. Yuan Q., Shi L., et al. Investigation of rice transgene flow in compass sectors by using male sterileline as a pollen detector. TAG Theoretical and Applied Genetics2007,115(4):549-560.
    232. Yui R., Iketani S., et al. Antisense inhibition of mitochondrial pyruvate dehydrogenase E1α subunitin anther tapetum causes male sterility. The Plant Journal2003,34(1):57-66.
    233. Zeidler M. P., Tan C., et al. Temperature-sensitive control of protein activity by conditionallysplicing inteins. Nat Biotechnol2004,22(7):871-876.
    234. Zhang W., Subbarao S., et al. Cre/lox-mediated marker gene excision in transgenic maize (Zeamays L.) plants. TAG Theoretical and Applied Genetics2003,107(7):1157-1168.
    235. Zhou M., Xu H., et al. Identification of a glyphosate-resistant mutant of rice5-enolpyruvylshikimate3-phosphate synthase using a directed evolution strategy. Plant physiology2006,140(1):184-195.
    236. Zhu Y., Yu Z., et al. Bioresistance or biodegradation of glyphosate and construction of transgenicplants. Molecular Plant Breeding2003,1(4):435-441.
    237. Zubko E., Scutt C., et al. Intrachromosomal recombination between attP regions as a tool toremove selectable marker genes from tobacco transgenes. Nat Biotechnol2000,18(4):442-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700