银杏中与木质素合成和苯丙氨酸代谢相关的转录调控因子的克隆与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯丙氨酸代谢途径(phenylpropanoid pathway)是植物次生代谢产物合成的重要途径,其下游的分支途径主要分黄酮类合成途径和木质素合成途径,生成的苯丙烷类代谢产物,包括香豆素、黄酮醇、木质素、软木酯和其它的苯类化合物,作为植物抗毒素、UV保护因子、花和果实色素、细胞壁结构成分和信号传导分子等,在植物生长与发育中发挥了重要的作用,并且其中的黄酮醇等有效药用成分还被广泛地应用于医药、保健和人们的日常生活中,苯丙氨酸代谢途径不仅对于植物自身还是对于人类的意义都非同寻常,因此利用基因工程手段改造该条途径,改善次生代谢产物的合成具有重大的实际意义。
     银杏树是一种古老的珍贵树种,有植物界的“活化石”和“大熊猫”的美誉,是我国特产的植物资源。银杏中的有效活性成分—银杏黄酮是治疗心脑血管疾病的特效药物,并且银杏木也是我国特有的优良木材,价格贵,用途广泛。苯丙氨酸代谢途径对于银杏来说意义非凡,银杏中的黄酮类药用成分、木质素等都来源于苯丙氨酸代谢途径。目前对于银杏苯丙氨酸代谢途径的研究还只限于关键酶基因的克隆和初步分析,进一步探索和改造银杏中苯丙氨酸代谢途径是未来发展的方向。
     在利用基因工程改造植谢步骤,甚至整条代谢途径,从而能够从宏观上调控代谢流量,弥补了常规代谢工物复杂的代谢途径中,转录因子是一个新型的、强有力的工具,转录因子可以控制多个代程中单个关键酶基因作用的不足。目前对苯丙氨酸代谢途径的转录调控研究主要集中于玉米、矮牵牛、金鱼草和拟南芥等植物的花色素合成的调控,以及松树、杉树和桉树等木本植物中木质素合成途径的调控,而对于银杏中苯丙氨酸代谢途径的转录调控的研究还是空白。本文首次从银杏中克隆了与苯丙氨酸代谢途径和木质素合成途径相关的一个R2R3-MYB类转录因子基因,GbMYB1,并对其功能进行了研究。
     本文根据已报道的与苯丙氨酸途径相关的R2R3-MYB类转录因子的保守区段设计简并引物,利用RACE(rapid amplification of cDNA end)方法获得了1384bp的全长cDNA(命名为GbMYB1),GbMYB1编码由347个氨基酸组成的开放性阅读框(ORF)。Southern blot分析证明该基因在银杏中以单拷贝形式存在。该基因具有典型的R2R3-MYB类转录因子的特征,进化树分析及同源比对结果表明,该蛋白与白云杉(Picea glauca)中木质素合成相关转录因子PgMYB1及火炬松(Pinus taeda)中木质素合成相关转录因子PtMYB1的序列最为同源,进化关系最为相近,三者DNA结合域的氨基酸序列几乎完全一致,这三个转录因子与拟南芥中的AtMYB20、AtMYB43和AtMYB99转录因子在进化关系上也属于同一分支,并且通过序列比对发现除了DNA结合域外,这几个转录因子还存在一个特有的保守肽段,因此判断GbMYB1转录因子与这几个蛋白同属一个亚类,是一类新的R2R3-MYB类转录因子,它们也可能具有相似的功能。
     GbMYB1融合GFP的亚细胞定位研究表明,GbMYB1基因是核定位基因,其编码的蛋白具有明显的核定位能力,符合推测的蛋白中的核定位信号特征。该基因在银杏的木质形成器官根、主茎和主茎木质部中表达量最高,而在叶、树皮和果实中表达量较低,推测该基因可能与木质部的形成以及发育相关。为了进一步证明该蛋白的功能,将该基因构入了原核表达载体中进行表达,获得了纯化蛋白,体外结合实验表明,该蛋白能够与木质素调控相关顺式元件之一的ACelement结合。将该基因构建到植物表达载体中并转化拟南芥,发现过量表达GbMYB1基因的拟南芥转基因植株与对照植株相比,表型发生了很大的变化,转基因植株明显矮小,生长缓慢,生长周期较对照植株延长了2-3周左右。取转基因植株和对照植株的茎杆进行徒手切片,利用间苯三酚对切片进行染色发现,过量表达GbMYB1基因的转基因植株的木质部细胞个体较小,排列紧密,某些细胞壁的厚度较对照植株厚,染色较深,由此得知在拟南芥中过量表达GbMYB1后能够促进拟南芥植株木质部的形成,因此推测转基因植株中木质素的含量高于对照植株,这进一步证明了GbMYB1基因参与了木质素代谢途径的调控。
     为了进一步研究GbMYB1转录因子对木质素合成途径的调控,对转基因植株中木质素合成途径中的关键酶基因进行了定量分析,发现转基因植株中木质素代谢途径重要基因CADc、CADd(肉桂酰乙醇脱氢酶)和C3H(香豆酰-3-羟化酶)的表达量明显增加,其中CADc的增加倍数最大,达到8倍。途径中其他基因的表达量也略有增加。此外还对苯丙氨酸代谢途径中若干关键酶进行了定量PCR检测,发现途径中第一步的限速酶基因PAL2(苯丙氨酸解胺酶)的表达量提高更多,达十几倍。证明GbMYB1转录因子可上调苯丙氨酸和木质素代谢途径中的某些关键酶基因。
     另一方面,还对拟南芥中与GbMYB1进化关系最近的几个转录因子的突变体进行了鉴定和分析。发现突变体植株没有生长滞后现象,某些株系甚至比野生型稍快,木质部细胞染色发现,某些株系的木质部细胞壁较野生型稍薄,细胞个体与野生型相似。对其苯丙氨酸和木质素代谢途径的关键酶基因的表达量也进行了分析,发现突变体植株中COMT、CADd基因的表达量明显降低,并且CHI、FLS等黄酮途径的关键酶基因也受下调。这与过量表达GbMYB1基因的转基因拟南芥中得到的结果相反,证明了GbMYB1基因与拟南芥中的同源基因在功能上的类似性,并进一步确定了GbMYB1转录因子对于苯丙氨酸代谢途径和木质素合成途径的调控作用。
     本实验对于银杏中苯丙氨酸代谢途径和木质素合成途径的转录调控研究迈出了第一步,为以后银杏中或其它物种中次生代谢途径的转录调控研究做出了铺垫,对将来利用基因工程方法改造银杏中或其他物种中苯丙氨酸代谢途径或木质素合成途径具有重要的参考意义。
     另外本论文还涉及了一部份东北红豆杉酵母单杂交文库的构建和筛选工作。试验成功构建了东北红豆杉均一化的酵母单杂交文库,并构建了五类与甲基茉莉酸和水杨酸应答相关的顺式元件鱼饵质粒,为在东北红豆杉中筛选与甲基茉莉酸和水杨酸应答相关的转录因子或与紫杉醇次生代谢相关的转录因子打下基础。本研究筛选获得两类转录因子基因,Homeodomain转录因子和Remorin转录因子。
Phenylpropanoid pathway together with two primary branches of flavonoid metabolic pathway and lignin biosynthetic pathway is an important metabolic pathway in plants.The phenylpropanoid pathway,with its products can act as plant anti-toxin,pigmentation of flowers and fruits,components of cell wall and molecules of signal transduction,plays important roles in growth and development of plants. Furthermore,some active components in phenylpropanoid pathway,such as flavonoids,are also applied broadly in medicine and health of human beings. Therefore,modification of this pathway using metabolic engineering is important for application.
     Ginkgo biloba L.is ancient and precious in plant kingdom.It is usually called as the 'living fossil'.Because containing the active ingredients like flavonoids,G.biloba is thought to be valuable as medicine.On the other hand,G.biloba is also an expensive wood applied broadly.Phenylpropanoid pathway in G.biloba is very important because both the active ingredient flavonoids and lignin are all derived from this pathway.Analysis and modification of Phenylpropanoid pathway in G. biloba would have practical value in breeding and pharmaceutical research.
     The functions of an increasing number of plant transcription factors are being elucidating,and many of these factors have been found to impact flux through metabolic pathways.Because transcription factors,as opposed to most structural genes,tend to control multiple metabolic pathway steps,they have emerged as powerful tools for the manipulation of complex metabolic pathways in plants.In this thesis,a novel R2R3-MYB transcription factor gene GbMYB1,which involved in phenylpropanoid pathway and lignin biosynthetic pathway has been cloned and analyzed from G.biloba for the first time.
     Using RACE method,a 1384 bp full-length cDNA,designated as GbMYB1,was cloned from G.biloba,which contained an open reading frame encoding a deduced protein of 347 amino acids with a predicted molecular mass of 38.4-KDa and a calculated pI of 5.09.Sequence alignments with Arabidopsis and other plant species showed that GbMYB1 was a member of the R2R3 MYB transcription factor family. The predicted protein GbMYB1 had the highest homology with PgMYB1 from Picea glauca and PtMYB1 from Pinus taeda.Furthermore,the conserved domain R2R3 of GbMYB1 shared almost the complete similarity with the two proteins.Phylogenetic tree analysis showed that GbMYB1 was close to AtMYB20,AtMYB43 and AtMYB99 from Arabidopsis.Amino acid sequence alignment of these proteins revealed that all five proteins shared a small conserved motif adjacent to the R2R3 conserved domain.The presence of this small conserved motif may define a new R2R3 MYB subgroup,which possibly reflects the similar functions of its members.
     Subcellular location of GbMYB1 demonstrated that GbMYB1 was a nuclear-localized protein.Semi-quantitative RT-PCR analysis showed that GbMYB1 expressed preferentially in the wood forming tissues,such as stems and roots, especially in xylem,implying that GbMYB1 might be involved in the lignin biosynthetic pathway.EMSA of GbMYB1 protein analysis showed that GbMYB1 could bind to ACII element involved in lignin biosynthetic pathway.Transgenic Arabidopsis plants overexpressing GbMYB1 gene just grow to only half of the size of the control plants after several weeks' growth,and the flowering time of transgenic lines overexpressing GbMYB1 was postponed greatly compared with the control plants.The life cycle of the transformed GbMYB1 transgenic lines was longer than that of the control plants for about 3-4 weeks.Moreover,transgenic lines overexpressing GbMYB1 showed the reduction to a certain extent in seed production. All the phenomena demonstrate that the transgenic Arabidopsis had dramatically lagging growth.After stained with phloroglucinol-HCl,the majority of the transformants overexpressing GbMYB1 were stained more intensely than the control plants.Compared with the control plants,the xylem cell walls of transgenic plants were thicker.These results indicate that GbMYB1 is involved in the regulation of the lignin biosynthetic pathway.
     In order to analyze the regulation of GbMYB1 transcription factor with genes in lignin biosynthetic pathway,a series of quantitative RT-PCR were carried out on the genes encoding lignin biosynthetic enzymes.The results showed that the expression of CADc,CADd and C3H genes in transgenic lines were up-regulated,especially the expression of CADc.Meanwhile,the gene PAL2 encoding the first primary enzyme in phenylpropanoid pathway was also up-regulated dramatically indicating that GbMYB1 transcription factor could up-regulate important genes involved in phenylpropanoid pathway and lignin biosynthetic pathway.
     On the other hand,Arabidopsis mutants AtMYB43,AtMYB98 showed opposite results to transgenic arabidopsis.The expressions of CADd and COMT genes encoding lignin biosynthetic enzyme were reduced obviously.All of these demonstrated directly and indirectly that GbMYB1 transcription factor is involved in phenylpropanoid pathway and lignin biosynthetic pathway.
     This study will be helpful for modification of phenylproanoid pathway and lignin biosynthetic pathway of G.biloba using metabolic engineering method in the near future.
     Another work in this study is the construction and screening of yeast one hybrid library from T.cuspidate.A yeast one hybrid library of T.cuspidate and five cis-elements involved in MeJA and SA induction were successfully constructed.And using GCC-box as bait,two putative transcription factors homeodomain TF and remorin TF were obtaind.
引文
Aerts R J, Gisi D, De Carolis E. Methyl jasmonate vapor incresses the developmentally controlled synthesis of alkaloids. Plant J., 1994, 5: 635-643.
    Aharoni A, De Vos C H, Wein M, Sun Z. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J., 2001,28:319-332.
    Almeida J, Garpenter R, Robbins T P. Genetic interactions underlying flower colour patterns in Antirrhinum majus. Genes Dev., 1989, 3: 1758-1767.
    Baucher M, Monties B, Van Montagu M, Boerjan W. Biosynthesis and genetic engineering of lignin. Critical Reviews in Plant Sciences, 1998, 17(2): 125-197.
    Bedon F, Grima-Pettenati J, MacKay J. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biology, 2007, 7: 17.
    Bell-Lelong D A, Cusumano J C, Meyer K, Chappie C. Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiol., 1997,113: 729-738.
    Bender J, Fink G R. A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Genetics, 1998, 95(10): 5655-5660.
    Bevan M, Bancroft I, Bent E. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391: 485-488.
    Blanchette R A, Biggs A R. Defense mechanisms of woody plants against fungi (Springer series in wood science). 1992, Springer-Verlag, Berlin.
    Bilaud T, Koering C E, Binet-Brasselet E, Ancelin K, Pollice A, Gasser S M, Gilson E. The telobox, a myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res., 1996,24: 1294-1303.
    Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual Review of Plant Biology, 2003,54:519-546.
    Borevitz J O, Xia Y, Blount J. Activation tagging identifies a conserved MYB regulator of phenypropanoid biosynthesis. Plant Cell, 2000, 12: 2383-2394.
    Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. J. Cell Biochem., 1994, 55: 32-58.
    Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell, 2002, 14: 2509-2526.
    
    Bradley J M, Davies K M, Deroles S C. The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of petunia. Plant J., 1998,13: 381-392.
    
    Brown R L, Kazan K, McGrath K C, Maclean D J. A role for the GCC-Box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiology, 2003, 132(2): 1020-1032.
    
    Broun P. Transcription factors as tools for metabolic engineering in plants. Curr. Opin. Plant Biol., 2004, 7: 202-209.
    Broun P, Sommerville C. Progress in plant metabolic engineering. Proc. Natl. Acad. Sci. USA, 2001, 98: 8925-8927.
    Bruce W, Folkertsb O, Garnaata C. Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Plant Cell, 2000, 12: 65-80.
    Buck M J, Atchley W R. Phylogenetic analysis of plant basic helix-loop-helix proteins. J. Mol. Evol, 2003, 56: 742-750.
    Burr F A, Burr B, Scheffler B E, Blewitt N, Wienand U, Matz E C. The maize repressor-like gene intensifier1 shares homology with the r1/b1 multigene of transcription factors and exhibits missplicing. Plant Cell, 1996, 8: 1249-1259. Capell T, Christou P. Progress in plant metabolic engineering. Current Opinion in Biotechnology, 2004,15: 148-154.
    Carey C C, Strahle J T, Selinger D A, Chandler V L. Mutations in the pale aleurone colorl regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell, 2004,16:450-464.
    Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau J P, Boudet A M. In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J., 2001,28: 271-282.
    Chandler V R, Radicella P J, Robbins T P. Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. Plant Cell, 1989, 1: 1175-1183.
    Chen C, Meyermans H, Burggraeve B. Cell-specific and conditional expression of caffeoyl-coenzyme A-3-O-methyltransferase in poplar. Plant Physiol., 2000, 123: 853-867.
    Chen J, Zhu Y, Wang Z Y. Cloning and expression analysis of MYB cDNA in rice. J. Plant Physiol. Mol. Biol, 2002,28(4): 267-274.
    Chen Y H, Yang X Y, He K. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Biol, 2006, 60: 107-124.
    Cone K C, Burr F A, Burr B. Molecular analysis of the maize anthocyanin regulatory locus Cl. Proc. Natl. Acad. Sci. USA, 1983, 83:9631-963.
    Cone K C, Cocciolone S M, Burr F A. Maize anthocyanin regulatory gene P1 is a duplicate of cl that functions in the plant. Plant Cell, 1993, 5(12): 1795-1805.
    Consonni G, Geuna F, Gavazzi G, Tonelli C. Molecular homology among members of the R gene family in maize. Plant J, 1993, 3: 335-346.
    Davin L B, Lewis N G. Dirigent proteins and dirigent sites explain the mystery of specificity of radial precursor coupling in lignin and lignin biosynthesis. Plant Physiol, 2000, 123:453-461.
    De Vetten N, Quattrocchio F, Mol J, Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants and animal. Genes Dev, 1997, 11: 1422-1434.
    Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7: 1085-1097.
    Douglas C. Phenylpropaniod metabolism and lignin biosynthesis: from weeds to trees. Trends in plant Sci, 1996,1: 171-178.
    Ellis J G, Tokuhisa J G, Llewellyn D J. Does the oca-element occur as a functional component of the promoters of plant genes? Plant J, 1993,4:433-443.
    Fan C Z, Purugganan M D, Thomasa D T, Wiegmann B M. Heterogeneous evolution of the Myc-like anthocyanin regulatory gene and its phylogenetic utility in Cornus L. (Cornaceae). Mol. Phyl. Evol., 2004,33: 580-594.
    Forkmann G, Martens S. Metabolic engineering and applications of flavonoids. Curr. Opin. Biotechnol., 2001,12: 155-160.
    Fraser P D, Romer S, Shipton C A, Mills P B, Kiano J W, Misawa N. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc. Natl. Acad. Sci., USA, 99 (2): 1092-1097.
    Gandikota M, de Kochko A. Development of transgenic rice plants expressingmaize anthocyanin genes and increased blast resistance. Molecular Breeding, 2001, 7: 73-83.
    Goff S A, Cone K C, Chandler V L. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes&Dev., 1992, 6(55): 864-875.
    Goff S A, Klein T M, Roth B A, Fromm M E, Cone K C, Radicella J P, Chandler V L .Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues.EMBO J, 1990,9 (8):2517-2522.
    Goicoechea M, Lacombe E, Legay S, Mihaljevic S. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J., 2005,43:553-567.
    Goodrich J, Carpenter R, Coen E S. A common gene regulates pigmentation pattern in diverse plant species. Cell, 1992, 68: 955-964.
    Guerineau F, Benjdia M, Zhou D X. A jasmonate-responsive element within the A. thaliana vsp1 promoter. Exp. Bot., 2003, 54: 1153-1162.
    
    Harborne J B. Ann Proc phytochen Soc Europe. Academic Press London, 1978,15.
    Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism. Ann. Rev. Plant Physiol., 1989,40: 347-369.
    Hatton D, Sablowski R, Yung M H, Smith C, Schuch W, Bevan M. Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. Plant J, 1995, 7: 859-876.
    Hauffe K D, Lee S P, Subramaniam R, Douglas C J. Combinatorial interactions between positive and negative cis-acting elements control spatial patterns of 4CL-1 expression in transgenic tobacco. Plant J., 1993,4: 235-253.
    Heinekamp T, Kuhlmann M, Lenk A. The tobacco bZIP transcription factor BZI-1 binds to G-box elements in the promoters of phenylpropanoid pathway genes in vitro, but it is not involved in their regulation in vivo. Mol. Genet. Genom., 2002,267(1): 16-26.
    Hu W J, Harding S A, Lung J, Jacqueline L P, Ralph J, Douglas D S. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotech., 1999, 17: 808-812.
    
    Ito M. Factors controlling cyclin B expression. Plant Mol. Biol., 2000, 43: 677-690.
    Jaakola L, Pirttila A M, Halonen M, Hohtola A. Isolation of high quality RNA from bilberry {Vaccinium myrtillus L.) fruit. Molecular Biotechnology, 2001, 19(2): 201-203.
    Jiang C Z, Gu X, Peterson T. Identification of conserved gene structures and carboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryza sativa L. ssp. Indica. Genome Biol., 2004, 5: R46.
    Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA LABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY factor. Plant Cell, 2002, 14(6): 1359-1375.
    Joos H J, Hahlbrock K. Phenylalanine ammonia-lyase in potato {Solarium tuberosum L.). Genomic complexity, structural comparison of two selected genes and modes of expression. Eur. J. Biochem., 1992,204: 621-629.
    Kirst M, Myburg A A, De Leon J P G., Kirst M E, Scott J. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiol., 2004, 135: 2368-2378.
    Klimczak L J, Collinge M A, Farini D. Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phophorylation of transcription factor GBF1. Plant Cell, 1995,7: 105-115.
    Kobayashi S, Ishimaru M, Hiraoka K, et al. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta, 2002,215(6): 924-933.
    Kranz H D, Denekamp M, Greco R, Jin H, Leyva A. Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J., 1998, 16(2): 263-276.
    Kutchan T M. Alkaloid biosynthesis-the basis for metabolic engineering of medicinal plants. Plant cell, 1995, 7: 1059-1070.
    Lacombe E, Van Doorsselaere J, Boerjan W, Boudet A M, Grima-Pettenati J. Characterization of cis-elements required for vascular expression of the cinnamoyl CoA reductase gene and for protein-DNA complex formation. Plant J., 2000,23:663-676.
    Laskaris G, Bounkhay M, Theodoridis G. Induction of geranylgeranyl diphosphate synthase activity and taxane accumulation in Taxus baccata cell cultures after elicitation by methyl jasmonate. Plant Science, 1999,147: 1-8.
    Lauvergeat V, Rech P, Jauneau A, Guez C, Coutos-Thevenot P, Grima-Pettenati J. The vascular expression pattern directed by the Eucalyptus gunnii cinnamyl alcohol dehydrogenaseEgCAD2 promoter is conserved among woody and herbaceous plant species. Plant Mol. Biol., 2002, 50: 497-509.
    Leyva A, Liang X, Pintor-Toro J A, Dixon R A, Lamb C J. cis-element combinations determine phenylalanine ammonia-lyase gene tissue-specific expression patterns. Plant Cell, 1992,4:263-271.
    Li L, Zhou Y H, Cheng X F, Sun J Y. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Pro. Natl. Acad. Sci. USA, 2003, 100: 4939.4944.
    
    Liang Y K, Dubos C, Dodd I C, Holroyd G H, Hetherington A M, Campbell M M. AtMYB61, an R2R3-MYB Transcription factor controlling stomatal aperture in Arabidopsis thalicma. Current Biology, 2005, 15: 1201-1206.
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCB and the 2~(△△Ct) method. Methods, 2001,25: 402-408.
    Lloyd A M, Walbot V, Davis R W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science, 1992, 258:1773-1775.
    Logemann E, Parniske M, Hahlbrock K. Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc. Natl. Acad. Sci. USA, 1995, 92: 5905-5909.
    Lois R, Dietrich A, Hahlbrock K, Schulz W. A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO, 1989, 8: 1641-1648.
    Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J., 1991, 1: 37-49.
    
    Mathews H, Clendennen S K, Caldwell C G. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 2000, 12:2383-2394.
    Mathews H, Clendennen S K, Caldwell C G. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell, 2003, 15:1689-1703.
    Mclntosh P B, Frenkiel T A, Wollborn U, McCormick J E. Solution structure of the B-Myb DNA-binding domain: A possible role for conformational instability of the protein in DNA binding and control of gene expression. Biochemistry, 1998, 37: 9619-9629.
    Mehrtens F, Kranz H, Bednarek P, Weisshaar B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol, 2005,138(2): 1083-1096.
    Meissner R C, Jin H L, Cominelli E. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell, 1999, 11: 1827-1840.
    Memelink J, Verpoorte R, Kijne J W. ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci., 2001,65: 212-219.
    Menke F L H, Champion A, Kijne J W, Memelink J. A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene STR interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO, 1999,18: 4455-4463.
    Mclntosh P B, Frenkiel T A, Wollborn U, McCormick J E, Klempnauer K H, Feeney J, Carr M D. Solution structure of the B-Myb DNA-binding domain: a possible role for conformational instability of the protein in DNA binding and control of gene expression. Biochemistry, 1998, 37: 9619-9629.
    Miroslawa F, Kazimierz G, Katarzyna S B, Grazyna Z. Effect of picloram and methyl jasmonate on growth and taxane accumulation in callus of Taxus media var. hatfieldii. Plant Cell Tiss. Org. Cult., 1997,49: 75-79.
    Muir S R, Collins G J, Robinson S, Hughes S, Bovy A. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol., 2001, 19: 470-474.
    Nesi N, Debeaujon I, Jond C. The TT8 gene encodes a basic Helix-Loop-Helix domain protein required for expression of DFR and BAN genes in arabidopsis siliques. Plant Cell, 2000, (12): 1863-1878.
    Nesi N, Debeaujon I, Jond C. The TRANSPARENT TESTA 16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell, 2002, 14(10): 2463-2479.
    Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell, 2001, 13(9):2099-2114.
    Newman L J, Perazza D E, Juda L, Campbell M M. Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype. Plant J., 2004, 37: 239-250.
    Nishiyama C, Takahashi K, Ohtake Y. Analysis of transcription region of Eif-1 by using a yeast one-hybrid system. Biosci. Biotechnol. Biochem., 2002, 66: 1105-1107.
    Patzlaff A, Mclnnis S, Courtenay A, Surman C, Newman L J, Smith C. Characterisation of a pine MYB that regulates lignification. Plant J., 2003a, 36: 743-754.
    Patzlaff A, Newman, L J, Dubos C, Whetten R, Smith C, Mcinnis S. Characterisation of PtMYB1, an R2R3-MYB from pine xylem. Plant Mol. Biol., 2003b, 53: 597-608.
    Paz-Ares, J, Ghosal, D, Wienand, U, Peterson, P A, and Saedler, H. The regulatory c7 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO, 1987, 6: 3553-3558.
    Quattrocchio F, Wing J F, Leppen H T C, Mol J N M, Koes R E. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and Have distinct sets of target genes. Plant Cell, 1993, 5:1111, 1497-1512.
    Quattrocchio F, Wing J F, van der Woude K. Analysis of bHLH and MYB-domain proteins: Species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J., 1998,13:475-488.
    Quattrocchio F, Wing J, van der Woude K. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell, 1999, (11): 1433-1444.
    
    Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci., 2005,10 (2): 63-70.
    
    Reymond P, Kunz B, Paul-Pletzer K, Grimm R, Eckerskorn C, Farmer E E. Cloning of a cDNA encoding a plasma membrane-associated, uronide binding phosphoprotein with physical properties similar too viral movement proteins. Plant Cell, 1996, 8(12): 2265-2276.
    
    Robin L, Edward E. Farmer. The jasmonate pathway. Science, 2002,296: 1649-1650.
    Romero I, Fuertes A, Benito M J, Malpica J M. More than 80R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J., 14: 273-284.
    Sablowski R W M, Meyerowitz E M. A homologue of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 1998, 92: 93-103.
    Sagasser M, Lu G H, Hahlbrock K. A. thaliana TRANSPARENT TEATA1 is involved in seed coat development and defines the WIP subfamily of plant zine finger proteins. Genes Dev., 2002,16: 138-149.
    Shah, J, Klessig D F. Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related 1,3-P-glucanase gene, PR-2d. Plant J., 1996, 10(6): 1089-1101.
    Sano H, Seo S, Koizumi N. Regulation by cytokinins of endogenous levels of jasmonic and salicylic acids in mechanically wounded tobacco plants. Plant cell physiol., 1996, 37: 762-769.
    Schwechheimer C, Bevan M. The regulation of transcription factor activity in plants. Trend in Plant Science, 1998, 3(10): 278-283.
    Seguin A, Laible G, Leyva A, Dixon R A, Lamb C J. Characterization of a gene encoding a DNA-binding protein that interacts in vitro with vascular specific cis elements of the phenylalanine ammonia-lyase promoter. Plant Mol. Biol., 1997,35:281-291.
    Selinger D A, Chandler V L. A mutation in the pale aleurone color1 gene identifies a novel regulator of the maizeanthocyanin pathway. Plant Cell, 1999,11:5-14.
    Sembdner G, Parthier B. The biochemistry and the physiological and molecular action of jasmonates. Ann. Rev. Plant Physiol. Plant Mol. Biol., 1993, 44: 569-589.
    Shewmaker C K, Sheehy J A, Daley M, Colburn S, Ke D Y. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J., 1999,20:401-412.
    Sibout R, Eudes A, Mouille G. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthetic in the floral stem of Arabidopsis. Plant Cell, 17:2059-2076.
    Spelt C, Quattrocchio F, Mol J N M, Koes R. anthocyaninl of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell, 2000, 12: 1619-1632.
    Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol., 2001,4: 447-456.
    Styles, E D. Functionally duplicated genes conditioning anthocyanin formation in maize. Can. J. Genet. Cytol., 1970,12, 397.
    Styles E D, Ceska O, Seah K T. Developmental differences in action of R and B alleles in maize. Can. J. Genet. Cytol., 1973,15:59-72.
    Tamagnone L, Merida A, Parr A. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell, 1998, 10(2): 135-154.
    van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 2000,289(5477): 295-297.
    Vance C P, Kirk T K, Sherwood R T. Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol., 1980, 18: 259-288.
    Vincentz-Carbajosa J, Moose S P, Parsons R L. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc. Natl. Acad. Sci. USA, 1997,94: 7685-7690.
    Vom Endt D, Kijne J W, Memelink J. Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry, 2002,61:107-114.
    Walker A R, Davison P A, Bolognesi-Winfield A C, James C M. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell, 1999, 11: 1337-1350.
    Walker K, Croteau R, Molecules of interest: taxol biosynthetic genes. Phytochemistry , 2001,58: 1-7.
    
    Whetten R, Sederoff R. Lignin biosynthesis. Plant Cell, 1995,7: 1001-1013.
    Wu R L, Reming D L, MacKay J J. Average effect of a mutation in lignin biosynthesis in loblolly pine. Theor. Appl. Genet., 1999, 99: 705-710.
    Yazaki K, Takeda K, Tabata M. Effects of methyl jasmonate on shikonin and dihydroechinofuran production in Lithospermum cell cultures.Plant Cell Physiol.,1997,38:776-782.
    Ye X,Al-Babili S,Kloti A,Zhang J,Lucca P,Potrykus I.Engineering the provitamin A (beta-carotene) biosynthetic pathway into(carotenoid-free) rice endosperm.Science,2000,287:303-305.
    Zhang L,Ding R X,Chai Y R.Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures.Proc.Natl.Acad.Sci.USA,2004,101:6786-6791.
    Zhulidov P A,Bogdanova E A,Shcheglov A S,Vagner L L.Simple cDNA normalization using kamchatka crab duplex-specific nuclease.Nucleic Acid.Res.,2004,32:e37.
    陈俊,王宗阳.植物MYB类转录因子研究进展.植物生理与分子生物学学报,2002,28(2):81-88.
    陈晓亚,刘培.植物次生代谢的分子生物学及基因工程.生命科学,1996,8(2):8-11.
    何水林.参与植物次生代谢调控的转录因子及其在植物次生代谢遗传改良中的应用.热带亚热带植物学报,2004,12(4):374-380.
    葛静,严海燕.花色素苷形成中的基因表达和调控.植物生理学通讯,2006,42(2):374-380.
    廖名湘,方福德.酵母单杂交体系.一种研究DNA-蛋白相互作用的有效方法.中国医学科学院学报,2000,22:388-391.
    刘仕芸,黄艳岚,张树珍.植物花青素生物合成中的调控基因.植物生理学通讯,2006,42(4):747-754.
    梅兴国,张舟宁,苏湘鄂,龚伟.水杨酸对红豆杉细胞的诱导作用.生物技术,2000,10(6):18-20.
    苏湘鄂,梅兴国,龚伟,张舟宁.魔力酸甲酯与真菌诱导物、水杨酸组合对红豆杉细胞中紫杉醇含量的影响.生物技术,2001,11(1):10-13.
    邢建民,赵德修,李茂寅,叶和春,李国凤,李佐虎.植物细胞培养生产黄酮类化合物研究进展.生物工程进展,2001,21(1):47-50.
    余迪求,李宝健.花色素苷生物合成的遗传和发育调控.植物生理学通讯,1997,33(1):71-77.
    杨致荣,毛雪,李润植.植物次生代谢基因工程研究进展.植物生理与分子生物学学报,2005,31(1):11-18.
    赵淑娟,刘涤,胡之壁.植物次生代谢基因工程.中国生物工程杂志,2003,23(7):52-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700