甘薯根腐病株开花机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘薯栽培品种胜利百号感染根腐病菌后出现开花的病理现象。从开花的甘薯胜利百号根部分离到93株病原菌菌株,经鉴定引起甘薯根腐和病理性开花的病原菌为茄病镰孢甘薯专化型(Fusarium solani(Mart)Sacc.f.sp.bmams McClure,简称FSB)。用FSB的V100-93-06菌株室内接种胜利百号呈现根腐病典型症状和开花现象。V100-93-6还可抑制胜利百号芽的生长和促进其根的生长。
     FSB及其代谢产物能够诱导甘薯产生病理症状。FSB的V100-93-6菌株分生孢子接种胜利百号(感病品种)和徐18(抗病品种)薯苗,分生孢子浓度(1×10~3、5×10~3、1×10~4、5×10~4和1×10~5孢子/ml)越高,胜利百号(接种后40天)出现的症状越严重;采用1×10~5孢子/ml分生孢子浓度接种胜利百号后时间越长(10~40天),症状越明显。V100-93-6菌株F2培养基培养滤液(或稀释液)能够诱导胜利百号薯苗呈现的症状与分生孢子接种所致症状相似。薯苗在10~0、10~(-1)、10~(-2)、10~(-3)和10~(-4)~10~(-10)稀释浓度处理后9天的病情指数分别为0.9~3.0、0~2.5、0~2.1、0~1和0,呈现随处理浓度下降植株症状减轻的趋势。能诱导胜利百号薯苗产生甘薯根腐病症状的FSB代谢产物对热稳定,分子量大于1000道尔顿。FSB代谢产物处理徐18薯苗没有明显症状。
     FSB侵染甘薯后,引起甘薯叶片、茎尖和根部组织内源脱落酸(ABA)含量大幅升高。根部最早出现ABA升高现象,但茎尖ABA积累浓度最高,最高值为1003.1nmol/g.Fw。而与对照相比,受病菌侵染后甘薯叶片、茎尖和根部组织内源赤霉素(GA_(1/3))含量一直处于较低水平,最大值仅为4.1nmol/gfw,并随着接种后时间的延长而呈下降趋势。另外,FSB菌丝体內含有微量ABA(153.66pmol/g.Fw),但培养滤液中含有较高浓度(26.75mg/l)ABA。甘薯组培苗经FSB代谢产物外源处理9小时后,ABA含量显著上升,处理15小时后,ABA含量呈下降趋势。然而,GA_(1/3)含量在处理15小时时出现显著上升。这可能是由于ABA和GA_(1/3)具有拮抗作用引起的。甘薯受FSB侵染后表现不蔓生而直立生长,近地表节间产生气生须根,入秋后大量现蕾开花,这些病理现象的产生可能与病植株内源ABA升高、GA_(1/3)降低有关。
Root rot is one of the fungal diseases of sweet potato (Ipomoea batatas Lam.) in China. While most cultivars cannot flower in nature in Jiangsu, China, Shenglibaihao, a susceptible cultivar, flowers when infected by the root rot pathogen. In this study, ninety-three strains are isoalted from the rotted roots of flowering Shenglibaihao and are identified as Fusarium solani (Mart) Sacc. f.sp. batatas McClure (FSB). The FSB strain V100-93-06 induces Shenglibaihao to produce typical symptoms of root rot including flowering, resulting in shorten buds and lengthen roots, In the inoculation experiment, the disease index (0-2.8) increases as the inoculum concentrations increase from 1 103 to 1 105 spores/ml and as the time after inoculation increase from 10 to 40 days. The cultural filtrates of FSB on F-2 media (NH4NO3 10.0g, KH2PO45.0g, MgSO47H2O 2.5g, L-xylose 30g, H2O 1000ml) can induce similar symptoms. The seedlings show symptoms with disease index from 0.9-3.0 to 0 at 9th day after treatment with filtrates at different dilutions from 1:1 to 1:1010, respectively. Boiling for 10 min has no effect on the symptom induction of the cultural filtrate. The bioactive components) in the filtrate seems larger than 1000 dalton in molecular weight. The endogenous ABA concentration of leaf, shoot and root increase significantly in FSB infected sweet potato plants. The accumulation of ABA occurs firstly in root, and the highest concentration (1.0 pmol/gfw) occurs in shoot. The endogenous GA1/3 concentration of leaf, shoot and root of infected sweet potato keeps at a low level during the experiment period, and the GAi/3 concentration tends to decrease with the highest concentration at 4.1 nmol/gfw. hi addition, while ABA concentration in FSB mycelia is low (153.66 pmol/gfw), ABB concentration in the cultural filtrate of FSB is high (26.75 mg/1). Sweet potato tissue cultured seedlings increase significantly in ABA concentration 9hrs after treatment with FSB filtrate, while the ABA concentrations decrease and the GA1/3 concentration increases sharply at 15hrs. The disease symptoms may be induced by the changes of the concentration of ABA and GA1/3 in the tissue. The root rot sweet potato grows up right with being no tail, having air root in knots near ground and flowering widely at autumn.
引文
1. A.Hudson. Development of symmetry in plant. Annu.Rev. Plant Physiol. Plant Mol. Biol.200,51:349~370
    2. A.Jone and J.C.Bouwkamp Fifty Years of Cooperative Sweetpotato Research.Shouthern Cooperative Series Bucletin No.369 April 1992:88~92
    3. Adwards HH. Effect of kinetin,abscisis acid and cations on host~parasite relation of barleyinoculated with Erysiphe graminisfsp.hordei.Phytopathology. 1993,107:22~30.
    4. Ann Moons ,Guy Bauw, Els Prinsen, Marc Van Montagu,and Dominique Van Der Straeten.Molecular and Physilogical Responses to Abscisic Acid and Salts in Roots of Salt~Sensitive and Salt~Tolerant Indica Ruce Varieties.plant physiol. 1995,107:177~186
    5. Atzorn R,Gozier A,wheeler CT et al. Plroduction of gibberellins and indole~3~acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta,1988,175:532~538.
    6. azquez MA, Trenor M, Weigel D. Independent control of gibberellin biosynthesis and flowering time by the circadian clock in Arabidopsis. Plant Physiol. 2002; 130(4): 1770~5.
    7. Bakalivanov D. Indole derivatives in soil microscopic fungi. Pochv. Agrokhim., 1988.3:81~86
    8. Beneddra T, Picard C,Pettit A et al. Correlation between susceptibility to crown gall and sensitivity to cytokinin inaspen cultivars. Phytopathol.1995,86:225~231.
    9. Bernd Krock, Sybille Schmidy, Christian Hertweck And Lan T.Baldwin.Vegetation~derived abscisic acid and four terpenes enforce dormancy in seeds of the posy~fire annual,Nicotiana attenuata. Seed science reasearch.2002,12,239~252
    10. Bernier G.The control of floral evocation and morphogensis. Annu Rev Plant physiol Plant Mol Biol. 1988,39::175~219
    11. Blazquez MA,Green R,Nilsson O, Sussman MR, Weigel D. 1998.Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter.Plant Cell 10:791~800
    12. Blazquez MA,Soowal LN,Lee I,Weigel D.1997.LEAFY expression and flower intiation in Arabidopsis.Development 124:3835~3844
    13. Blazquez MA, Weigel D. Integration of floral inductive signals in Arabidopsis. Nature. 2000;404(6780):889~92Nature.
    14. Booth C. The genus Fusarium [M]. CMI, Kew. England,1971
    15. Cahill DM, Weste CM, Grant BR. Changes in cytokinin concentrations in xylem extrudate following infection of Eucalyptus marginata Donn ex Sm with Hytophora cinnamomi Rands.
    16. Cahill DM. Rapid localized changes in abscisis acid concentration in soybean in interaction with Phytophthora megasperma f. sp.glycinea or after treatment with elicitors. Physiological and Molecular Plant Pathology. 1989,35:483~493.
    17. Chandler J, Martinez~Zapater JM, Dean C. Mutations causing defects in the biosynthesis and response to gibberellins, abscisic acid and phytochrome B do not inhibit vernalization in Arabidopsis fca~(~1). Planta. 2000,210(4):677~682.
    18. Chang PFL,Xu Y, Narasimhan ML et al. Induction of Pathogen resistance and pathogenesis~related genes in tabacco by a heat~stable Trichoderma mycelial extract and plant signal
    
    messengers.Physiol Plant. 1997,100:341~352.
    19. Chris J.S. Signaling to the actin cytoskeleton in plant. Annu.Rev. Plant Physiol. Plant Mol. Biol.2000, 51:257~288
    20. Clark SE,running MP, Meyerowitz EM. CLAVATAI,a regulator of meristem and flower development in Arabidopsis. Development, 1993,119:397
    21. Clark,C.A., 1980.End rot, surface rot and stem lessions caused on sweet potato by 22.Fusarium solani. Phytopathol.~79:109~112
    23. Columbia: University of Missouri Press. 1986.246~286.
    24. Conrath U, Chert Z, Ricigliano JR et al. Tow inducers of plant defenses, salicylic acid and 2,6~dichhlorooisonicotinic acid, inhibit catalase activities in tabacco. Proc natl Acad sci usa, 1995,92:7143~7147
    25. Dai LS, Zhang Q, He MZ. Study on the effects of mineral element nutrition on the flower bud formation of Pongan mandarin during the stage of flower bud differentiation. China Citrus. 1995,24(3):20~21
    26. Daly JW, InmanRE. Changes in acedin Lecels in scofflower hypocotyls infected with Puccinia cartharum. Phytopathology, 1958,27:91
    27. Dangl JL,Preuss D,Schroeder JI. Talking though walls:Signaling in plant development. Cell, 1995,84:1071
    28. Dumer J, Klessing Df.inhibition of ascobate peroxidase by salicylic acid and 2,6~dichhlorooisonicotinic acid, tow inducters of plant efense responses.Proc Natl Acad USA. 1995,92:11312~11316.
    29. E.Ryerson. Changes in abscisis acid levels in bean leaves during the initial stages of host and nonhost reaction to rust fungi.Physiological and Molecular Plant Pathology. 1993,43:265~273.
    30. Estruch JJ, Chriqus D, Ggrossman K et al. The plant encogene rolC is responsible for the release of cytokinins from gluco side conjugates. EMBO J,1991,10:2889~2895
    31. Eugene J.S, Ian M.S. What chimeras can tell us about plant development. Annu.Rev. Plant Physiol. Plant Mol. Biol. 1996,47:351~376
    32. Fett WF, Ogaman SF, Dunn MF. Auxin production by plant pathogenic Pseudomonads and Xanthomonads. Appl Eviron Microbiol, 1987,53:1839~1845.
    33. flowering time in Arabidopsis.Plant mol.boil,1998,49:345~370
    34. Gocal GF, Poole AT, Gubler F et al. Long~day up~regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiol. 1999;119(4):1271~1278.
    35. Gordon G. Simpson, Anthony R. Gendall,Caroline Dean.When to switch to flowering. Annu.Rev.cell dev. boil, 1999,99:519~550
    36. Greenberg JT, Guo A, Klessing DF et al .Programmed cell death in plant: a pathogen~triggered response activated coordinately with multiple defense fuctions. Cell,1994,77:551~563.
    37. Hammond~Kosack KE,Jones Resistance gene~dependent plant defense response. Plant Cell, 1996,8:1773~1791.
    38. Hand book of Mycotoxiius 110~112
    39. Havelange A,Bernier G. Cation fluxes in the saps of Sinapis alba during the floral transition. Physiol plant, 1993,87(3):353~358
    40. Henfling JW. Effect of abscisis acid on rishitin and lubimin accumulation and resistance to
    
    Phytophthora infestant and Cladosporium cucumerinum in potato tuber tissue slices.Phytopathology. 1980,70:1074~1078.
    41. Hopkins DL. Effects of plant growth regulators on development of pierces disease symptoms in grapevine.Plant disease. 1985,69:944~946.
    42. Hunter WJ.Indole~3~acid production by bacteroids from soybean root nodules.Physoil Plant, 1989,76:31~36
    43. Jacobellis NS,Sisto G et al. Pathogenity of Pseudomonas syringae subsp.savastanoi mutants defective in phytohomone production.Jphytopathol, 1994,140:238~248.
    44. Ishiik.etal. Solaniol,a (?) Applied Microbiology,1971,22(4:718~720)
    45. Jacobsen SE, Olszewski NE. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 1993;5(8):887~96.
    46. Jane Larkindale and Marc R.Knight. Protection againsy Heay Stress~Induced Oxidative Damage in Arabidopsis involves Calcium,Abscisic Acid,Ethylene, and Salicylic Acid.Plant physiology.2002,128:682~695
    47. Jouanneau JP, Lapous L,GuemJ. In plant protoplasts, the spontaneous expression of defense reactions and the responsiveness to exogenous elicitors are under auxin control. Plant Physiol. 1991,96:459~466
    48. Kado CI. Phytohormone~mediated tumorigenesis by plant pathogenic bacteia. In: Verma DDS, Hohn TH(eds).Genes Involved in Microbe~Plant Interactions.Wein: SpringerPVerlag, 1984.311~336
    49. Kataeva NV, Alexandrova IG, Butenko KG,et al. Effect of applied and internal hormomes on vitrification and apical necrosis of different plant cultured in vitro. Plant cell, Tissue and Organ Culture,1997,27:149~154
    50. Kent J.Vradford, A.Bruce Downie,Oliver H.Gee, Veda Alvarado,Hong Yang, and Peetarnbar Dahal.Abscisic Acid And Gibberrellin Differentially Regulate Expression of Genes of the SNF1~Related Kinase Complex in Tomato Seeds.Plantphysiology.2003,132:1560~1576
    51. Kessmarm H,Staub T, Hoffmann C et al. Induction of systemic acquired disease persistanee in plants by chemicals. Ann Rev Phytopathol. 1994,32:439~459.
    52. King RW, Evans LT, Mander LN et al. Synthesis of gibberellin GA6 and its role in flowering of Lolium temulentum. Phytochemistry. 2003;62(1):77~82.
    53. Klee H,Estelle M. Molecular genetic approaches to plant hormone biology. Ann Rev Plant Physiol Plant Mol Biol, 1991,42:529~551.
    54. Koornneef M, Hanhart CJ,van der Veen JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thalina. Mol Gen Genet, 1991,229:57
    55. L.W.Nieisen and J.W. Moyer A FUSAPIUM ROOT ROT OF SWEETPOTATOES PLANT PISEASE REPORTER~May, 1979
    56. Lee I I, Foster KR, Morgan PW. Effect of Gibberellin Biosynthesis Inhibitors on Native Gibberellin Content, Growth and Floral Initiation in Sorghum bicolor. J Plant Growth Regul. 1998;17(4):185~195.
    57. Lee I,Aukerman MJ,Gore SL et al. Isolation of LUMINIDEPENDENS: A gene involved in the control of flowering time in Arabidopsis. Plant Cell, 1994,6:75
    
    
    58. Lemaire E Sintes G, Morel P, Ito T, Tognoui F, Namili T, Nukaya A. Mineral needs of Begoniax elatior during the growing period and the flowering time. Acta Hort, 1995,396:219~226
    59. Leon GD, Reglinski T, Newton AC. Novel disease control componds: the potential to immunized plants against infection. Plant Pathol. 1995,44:407~427.
    60. Levin JZ, Meyerowitz EM. UFO:An Arabidopsis gene involved in both floral meristem and floral organ development. The Plant Cell, 1995,7:529
    61. Imqvist C. Timing of GA(4/7) application and the flowering of Pinus sylvestris grafts in the greenhouse. Tree Physiol. 2003;23(6):413~418
    62. Lu C, Fedoroff N. A Mutation in the Arabidopsis HYL1 Gene Encoding a dsRNA Binding Protein Affects Responses to Abscisic Acid, Auxin, and Cytokinin Plant Cell 2000,12(12): 2351-2365.
    63. Marre E. Fusicoccin: a tool in plant physiology.Ann Rev Plant Physiol, 1979,30:273~288
    64. Mazzola M,White FF. A mutation in the indole~3~acetic biosynthesis pathway of Pseudomonas syringae pv.syringae affects growth in Phaseolus vulgaris and syrimgomycin production. J Bacteriol, 1994,176:1374~1382.
    65. Menzel G,Apel K,Melzer S. Indentification of two MADS box genes that are expressed in the apical meristem of the long~day plant Sinapis alba in transition to flowering. The Plant J, 1996,9(3):399
    66. McCIure,T.T., Fusarium foot rot of sweet potato sprouts. Phytopathol. 1951.41:72~77
    67. Miguel A.Blazquez, Roland Green,et al. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter.The Plant Cell 1998,10:190~800
    68. Misaghi Ij. Physiology and Biocheistry of Plant~Pathogen Interactions. New York:Plenum
    69. Mitchell PL,Tjian R. Transcription regulation in mammalian cells by sequence~specific DNA binding protein. Science, 1989,245:371
    70. Morris RO. Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Ann Tev Plant Physiol Plant Mol Biol, 1986,37:1839~1845.
    71. Moyer, J.W. etc. Stem canke of sweet potato induced by Fusarium solani. Pal.Dis. 1981,66(1):65~66
    72. Nilsson O,Lee I,Blazquez MA, Weigel D.1998. Flowering~time genes modulate the response to LEAFY activity. Genetics 150:403~410
    73. Ohta H,Suzuki G,Awai K et al. Distinct pathways for jasmonate and elicitor~induced expression of cytochrome P450 gene in soybean suspension~cultured cells. Physiol Plant. 1997,100:647~652
    74. P.J Davies.1995.Plant hormones,physiology, biochemistry and molecular biology.Kluwer academic publishers. 617~646
    75. Page T, Macknight R,Yang C~H,Dean C. 1999.Genetic interactions of the Arabidopsisflowering time gene FCA,with genes regulating floral initiation.Plant J. 17:231~139
    76. Paul R.N, Amots D, Martin G. Floral sysmmetry and its role in plant~pollinator systems:terminology, distribution,and hypotheses. Annu.Rev.Ecol.Syst. 1998,29:345~373
    77. Penmesta VR, Cook DR. A legume ethylene~insensitive mutant hyperinfected by its rhizobial symbiont. Science. 1997,275:527~530.
    78. Peter W.B, Frantisek B. Cytoskeletal perspectives on root growth and morphogenesis. Annu.Rev. Plant Physiol. Plant Mol. Biol.2000,51:289~322
    79. Pineiro M, Coupland G. 1998. The control of flowering time and floral identity in Arabidopsis.Pant physiol. 117:1~8
    80. Plant physiol, 1996,81:1103~1109.
    
    
    81. Plant Plysiol,1990, 94:554~560
    82. Prinsen E,Costacurta A,Michiels K et al. Azospirillum brasilense indole~3~acetic acid biosynthesis: evidence for a nonptrytophan dependent pathway. Mol PlantpMicrobe Interact, 1993,6:609~615.
    83. Putterill J, Robson F, Lec K et al. The CONSTANTS gene of Arabidopsis promotes flowering and encodes a protein shoeing similarities to zinc finger transcription factors. Cell. 1995,80:847
    84. Putterill J,Robson F, Lee K,Simon R, Coupland G.1995.The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors.Cell 80:847~857
    85. Ratcliffe OJ,Amaya I,Vincent CA,Rothstein S,Carpenter R,et al. 1998.A common mechanism controls the life cycle and architecture of plants.Development 125:1109~1120
    86. Robinette D,Matthysse AG. Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanaoi of development of the hypersensitive response elicitored by Pseudomonas syringae pv.phaseolicola. J Bacteriol. 1990,172:5742~5749.
    87. Ruffer M, Steipe B,Zenk MH. Evidence against specific binding of salicylic acid to plant catalase.FEB S letter. 1996,377:125~136.
    88. Samuels R I, Charnley A K, Reynolds S E The role of destruxins in the pathologicity of 3 strains of Metarrhizium anisopliae for the tobacco hornworm Manduca sexta. Mycopathologia, 1988,104:51~58
    89. Seo S, Sano H, OhashiY.Jasmonic acid in wound signal transduction pathway. Physiol Plant. 1997,101:740~745.
    90. Sequera L. Hormone metabolism in diseased plants. Ann Rev plant physiol, 1973,24:353~380.
    91. Shannon S,Meeks~Wagner DR. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development.Plant Cell 1991,3(3):877~892
    92. Shen WH,Daviod E,David C et al. Hight sensitivity to anxin is common feature of hair root.Plant physiol, 1990,94:554~560.
    93. Shen WH,Davioud E,David C et al. High sensitivity to anxinis common feature of hair root.
    94. Shinshi H, Mohnen D, Meins FJ. Regulation of a plant pathogenesis~related enzyme: inhibition of chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin.Proc Nat Acad Sci USA.1987,84:89~93
    95. Shizufumi T, Hiroshi Harada.1981.Chemical factors controlling floral bud formation of Torenia fournieri stem segments cultured in vitro.Plant & cell physiol.22(3):543~550
    95a. Simon R, Igeno MI,Coupland G.1996.Activation of floral meristem identity genes in Arabidopsis.Nature 282:59~62
    96. Steadman JR,Segueira L. Abscisic acid in tobacco plants:tentative identification and its relation to stunting induced by Pseudomornas solanacearum. Plant Physiology. 1970,45:691~697.
    97. Sundas Larsson A,Landberg K,Meeks~Wagner DR.1998. The TERMINAL FLOWER2(TFL2) gene controls the reproductive transition and meristem identity in Arabidopsis thaliana.Genetics 149:597~605
    98. Sung ZR, Belachew A, Shunong B et al. EMF, an Arabidopsis gene required for vegetative shoot development. Science, 1992,3:771
    99. Surico G,Evidente A,Iacobellis NS et al. A new cytokinin from the clture filtrate of Pseudomonas
    
    syringae pv.ssavastanoi. Phytochemistry, 1985,24:1499~1502.
    100. Takahide M,Tadao A,Shigeo Y et al. The processes inhibited and promoted by abscisic acid in photoperiodic flowering of Pharbitis nil. Journal of Plant Physiology.2000,157:421~427.
    101. Takeno K. Evidence for the involvement of calcium ions in the photoperiodic induction of flowering in Pharbitisnil. Plant and Cell Physiol, 1993,34(2):221~225
    102. Tian GZ,Yuan QP, Huang QC et al. Effects of plant regulators and phenolic compouds on paulownia culture in vitro infected with MLO. Int J Tropical Plant dis, 1994,12:43~52.
    103. Tretyn A, Czaplewska J, Cymerski M,Kopcewicz J,Kendrick RE. The mechanism of calcium action on flower induction in Pharbitis nil. J Plant Physiol, 1994, 144(4~5)562~568
    104. Tuomi T. Interaction of abscisis acid and indole~3~acctic acid~producing fungi with Salixleaves. J.Plant Growth Regul. 1993,12:149~156.
    105. Van Loon LC.Effects of auxin on the locatition of tobacco mosaic virus in hypersensitively reacting tobacco.Physiol Plant Path, 1979,14:213~226
    106. Veronese P, Narasimhan ML, Stevenson RA, et al. Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant J. 2003;35(5):574~587.
    107. Ward EWB. Abscisis acid suppression of phenylalanine ammonia~lyase activity and mRNA and resistance of soybeans to Phytophthora megasperma f sp.glycinea.Plant physiology.1989,91:23~27.
    108. Weigel D,Nilssin O.1995. A developmentl switch sufficient for flower initiation in diverse plants. Nature 377:495~500
    109. Whenham RJ. Tobacco mosaic virus~induced increase inabscisic acid concentration in tobacco leaves:Intracellular location in light and darkgreen areas and relationshio to symptom development. Planta. 1986,168:592~598.
    110. Whenhan RJ. Tobacco mosaic virs induced increase in abscisis acid concentration on tobacco leaves: intracellular location and relationship to symptom severity and to exlent of virus multiplication. Physiol.Plant Pathol. 1985,26:379~387.
    111. Wiese MV, Devay JE. Growth regulator changes in cotton absiciated with defeliation caused by Verticillium albo~atrum,Plant Physiology, 1970,45:304.
    112. Yamada T. The role of auxin in Plant~disease development.Ann Rev Phytopathol. 1993,31:253~273
    113. Yu Diqiu, Liu Yidong, Fan Baofang et al. Is the high basal lever of salicylic acid important for disease resistance in potato? Plant Physiol. 1997,115:343~349
    114. Zuzana Kadlecova, Milos Faltus, llja Prasil .Relationship between abscisic acid content,dry weight and freezing tolerance in barley cv.Lunet. Journal of plant physiology.2000,157:291~29
    115.陈捷主编.植物病理生理学.辽宁.科学技术出版社,1994:110~117
    116.陈利锋 甘薯根腐病的研究 南京农业大学1988年 博士论文18~21
    117.陈利锋 徐雍皋 方中达 甘薯根腐病菌病原菌的鉴定及甘薯品种(系)抗病性的测定 江苏农业学报.1990.6(2):27~32
    118.陈利锋,徐敬友.农业植物病理学.北京.中国农业出版社2001b,167~172
    119.陈世苹,高玉葆,梁宇等.水分胁迫下内生真菌感染对黑麦草叶内游离脯氨酸和脱落酸含量的影响.生态学报.2001,21(12):1964~1972.
    
    
    120.丁克学.甘薯根腐病的发生与防治.植物医生.1996(4):7
    121.董金皋,朱希.真菌毒素生物测定方法研究概况.河北农业大学学报,1992,15(4):99~102
    122.方树民,李世伟等.莆田沿海甘薯根腐病发生情况与防治对策.福建农业科技,1996(3).17—18
    123.方中达.植病研究方法.北京.中国农业出版社.1998;46~47,62~65
    124.胡公洛等.甘薯根腐病病原的研究.植物病理学报.1982:12(3):47~48
    125.加藤幸雄,志佐诚.植物生殖生理学.北京:科学出版社.1987,77~88.
    126.江苏省农业科学院等主编.中国甘薯栽培学.上海.科学技术出版社,1984:1~3
    127.李怀方,裘维蕃.细胞分裂素感染烟草花叶病毒的番茄品种中对抗病性的作用.中国科学B辑.1986,86:276~282.
    128.李梅兰,曾广文,朱祝军.5~氮胞苷(5~azaC)和赤霉素(GA_3)对白菜开花的影响,上海交通大学学报(农业科学版)2002,20(2):125~130
    129.李宗霆,周燮.植物激素及其免疫技术,1996,南京:江苏科学技术出版社
    130.陆文樑,白书农,张宪省.外源激素对风信子再生花芽发育的控制 植物学报,2000,42(10):996~1002
    131.山东省烟台地区农业科学研究所.甘薯.北京.科学出版社,1978:62~68
    132.盛家廉等.甘薯栽培技术.北京.中国农业出版社,1980:30~40
    133.孙顺娣,茄病镰孢毒素的研究,甘肃农业大学学报,1994 29(2):140~144腾胜,梁海曼,钟华鑫等.Ca~(+2)对黄瓜子叶离体培养物花芽分化的影响.植物生理学报.2000,26(5):413~416
    134.田国忠,袁巧平,黄钦才等.类菌原体病原(MLO)的致病机理探讨.中国植物病理学会第二届青年学术研讨会论文选编.中国农业科技出版社.1995.303~307.
    135.田国盅,张锡津,罗飞.感染MLO泡桐组陪苗代谢变化与致病机理的关系.中国科学B辑,1994,24:484~490
    136.田国盅,张锡津,罗飞.抗病与感病泡桐感染MLO后过氧化物酶IAA氧化酶变化比较.~林业科学研究.1996,9(专刊):47~52
    137.王拱辰,等.常见镰刀菌鉴定指南.北京:中国农业出版社,1996.22~34
    138.王庆成.徐德兰.赤霉素(GA_3)对杨树开花结实的效应 植物生理学通讯2001,37(6):510~512
    139.王勇.杨秀荣.杨依军.等茄根腐病致病病原——茄病镰刀菌及其蓝色变种的生物学特性研究 天津农学院学报2000 6(3):4~5
    140.卫杨斗.华中农业大学硕士论文,1986,5~10
    141.邬景禹,方树民等.甘薯根腐病的认识及防治措施.福建农业科技。1993(2).30
    142.吴江,郑衍,管晓春.植物病原产生ABA的初步研究.菌物系统.1998,17(4):356~360.
    143.吴献忠,李怀方,裘维蕃.烟草抗病N基因不同表达状态下苯甲酸羟化酶对水杨栓酸合成的影响.见:彭于发,王慧敏,彭友良主编.植物病理学研究。北京:中国农业科技出版社.1997,298~299.
    144.吴志凤,陈利锋,章元寿,等.小麦赤霉病菌细胞壁提取物(HCW)的生物活性.菌物系统,1999,18(4):400~404
    
    
    145.杨美林,谭红,沈嘉祥.微生物生产天然脱落酸研究新进展.云南农业大学学报.1996,11(4):203~208.
    146.姚泉洪,刘宗镇.DON对小麦胚芽鞘伸长生长的作用.上海农业学报,1991,7(增):79~80
    147.叶琪明 中国南方镰胞属的研究:马特组Section Martiella的分类研究,2000,12(6):378~381浙江农业学报
    148.张惠群,罗金~堂,卢迪等.广东农业科学.1994,5:19~22
    149.章元寿 植物病理生理学 江苏科学出版社.1996,50~177
    150.中国农业百科全书.植物病理卷,北京:农业出版社.1996,63~78.
    151.周丽鸿,胡公洛.甘薯根腐病菌生物学特性的研究。南京农学院学报。1984(2):32~37
    152.周丽萍,张维一.外源激素和病原侵染对采后葡萄呼吸及组织内源激素的影响.植物生理学报.1997,23(4):353~356.
    153.赵儒,李秀方等.红茹根腐病的发生规律及防治技术研究.四川农业科技.1991(5):20~21
    154.赵儒,张全淑.红苕根腐病的田间症状诊断和病原菌鉴定.四川农业科技.1990(5):16~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700