银杏种实发育过程及中种皮PCD研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续两年选择银杏(Ginkgo biloba L.)的三个核用主栽品种佛指、洞庭皇和龙眼为试验材料,从盛花后15 d开始定期取样,分别测定分析种实的发育进程及其相关的解剖结构、超微结构和成分变化,并对中种皮的PCD进行了分析研究,结果表明:
     (1)银杏发育过程中,种实纵、横径和单粒重在盛花后60 d内,生长速率较快,盛花后80 d至种实成熟生长趋于平缓。纵、横径的主要生长天数为56~58 d,单粒重的主要生长天数多于纵、横径4~9 d。三个品种的纵、横径主要生长天数基本相同,但龙眼发育进程最快,进入旺盛生长期较早,同时进入盛末期也最早,且单粒重主要生长天数比佛指和洞庭皇少3~5 d。
     (2)种实含水量在盛花后不断增加,45~60 d达最大值,后开始下降;可溶性糖含量在盛花后45 d左右出现第一个高峰,后出现下降,盛花后80 d至种实成熟又显著升高;淀粉含量在盛花后一直上升,其中洞庭皇和龙眼的淀粉含量在盛花后100 d有所降低;蛋白质含量在种实发育过程中始终呈下降趋势,盛花后15 d含量最高,达到20.16%,第30~60 d缓慢降低,第60~80 d急剧下降,此后至种实成熟趋于稳定;钙含量在种实发育过程中逐渐下降,与蛋白质的变化规律相似,三个品种中平均钙含量从大到小依次为佛指、龙眼和洞庭皇。
     (3)银杏种实盛花后30 d出现第一个呼吸高峰,第30~60 d呼吸强度急剧下降,此后至成熟,呼吸强度变化相对稳定。在种实发育过程中,外种皮、中种皮和内种皮细胞排列及形状的差异逐渐明显。随着细胞增大,单位面积内细胞数目减少,其中佛指尤为最明显。种实发育的Ⅰ-Ⅳ期细胞形状由椭圆形变为近圆形,到Ⅳ期长宽比值显著增大,细胞变为长卵圆形。其中内种皮的长宽比值变化高于同时期的外种皮和中种皮。三个品种中,龙眼种实中种皮分化最早,Ⅱ期结构就已明显,Ⅳ期其已木质化。
     (4)银杏中种皮形成过程中,细胞发育进程不一,细胞核形状多样,在Ⅳ期前5 d细胞核开始趋向细胞壁,核内有核仁,各种细胞器结构完整。随着中种皮细胞的生长,Ⅳ期佛指和洞庭皇的中种皮细胞壁染色为深蓝色,核仁消失,细胞核浓缩,
    
    扬州人学硕士学位论文
    细胞器开始解体。W期后sd核膜消失,核崩解成碎片趋向细胞壁,细胞器进一
    步解体。经提取种实的DNA作琼脂糖凝胶电泳,三个品种在W期都出现了明显的
    条带,而前三个时期则不明显,说明银杏中种皮的形成过程是细胞程序性死亡
    (尸CD)。
    (5)银杳中种皮由若干层管胞组成,管胞上有不同程度的穿孔破裂,其破裂的形状、
    大小和数量依品种而异,并随着种实的日趋成熟,管胞穿孔的数目和面积增加。
    品种间管胞直径经测定为龙眼>佛指>洞庭字.。
Fozhi, Dongtinghuang and Longyan, three important seed-purpose cultivars of Ginkgo biloba L., were selected to sample on schedule 15 d after full blossom for measuring and analyzing the seed development and the related changes of anatomical, ultra-structure and components in following two years, and PCD of mesosperm were also studied. The results were as follows:
    (1) During development of Ginkgo biloba ,the length ,diameter and weight of seed, increased faster within 60 d after full blossom, which growth rate tended to slow from 80 d after full blossom to ripeness. The main growth days of length and diameter were 56~58 d, and those of single seed weight were 4~9 d more than length and diameter. The main growth days of length and diameter were similar among the three cultivars, but Longyan developed fast, which entered blooming earliest and stop growth earliest, too.Its main growth days of weight were 3~5 d less than those of Fozhi and Dongtinghuang cultivars.
    (2) The relative components in seed varied during development, water content increased and reached to the maximum on 45~60th d after full blossom, then decreased after that; content of soluble sugar had a top on 45 d after full blossom and raised obviously from 80 d after full blossom to ripeness; starch content increased after full blossom and had a decrease for Dongtinghuang and Longyan on the 100th d; protein content decreased during seed development and reached to the highest level , 20.16%,on 15 d after full blossom, then fell slow on 30-60 d and decreased sharply on 60~100 d, the growth showed stable till harvest; change rules of both calcium and protein were resemble , which inclined to decline during development. The average calcium content from highest to slowest was Fozhi, Longyan , Dongtinghuang in order.
    
    
    (3) The respiratory intensity (RI) of seed had a maximum on 30 d after full blossom, RI fell rapidly from 30 to 60 d and changed little after then till maturity. Difference of cell arrangement and shape of episperm, mesosperm and endopleura became obvious during seed development. Cell size increased, number in unit area decreased. The reduce of Fozhi was in evidence. Cell shape changed from ellipse to round, the ratio of length to width increased obviously and cell changed to long ellipse. Ratio of length to width of endopleura was higher than that of episperm and mesosperm. Among the three cultivars, Longyan differentiated earliest, which structure was apparent at phase II and mesosperm lignified at phase IV.
    (4) The cells development of seed varied during mesosperm formation in Ginkgo biloba. Karyon shape diversified and began to move to the cell wall 5 d before phase IV,at that time nucleolus existed in the cell and organelle kept intact. Mesosperm cells wall of Fozhi and Dongtinghuang was dyed to blackblue at phase IV. Nucleolus disappeared and karyon condensed,organelle began disaggregation.On 5 d after phase IV,karyotheca disappeared, karyon broke down and the fragment moved to the cell wall. Organelle disaggregated further. DNA ladder was found on phase IV by agar gel electrophoresis after seed DNA was extracted, while the ladder couldn't be seen in phase I to phase III. All these showed the formation of mesosperm of Ginkgo biloba was programmed cell death(PCD).
    (5) The mesosperm of seed was made up of layers of tracheids , which had different kinds of holes on it, and the changes of shape, size and number of holes were dependent on the cultivars. With the ripening of seed, the number and area of break of tracheids was increasing. The diameter of tracheids was Longyan) Fozhi >Dongtinghuang in order.
引文
1.郭善基主编.中国果树志.银杏卷.中国林业出版社,1999
    2.陈鹏等.银杏品种选优及其结构调整.全国第八次银杏学术研讨会专题报告.全国第八次银杏学术研讨会论文集.湖北科学技术出版社,2000
    3.陈鹏.目前国内外银杏研究进展概况.浙江林业科技,1991,11(4):70-75
    4.王莉,陈鹏,程英等.银杏种核贮藏保鲜技术的研究及应用进展.浙江林业科技,2002,22(6):33-38
    5.许慕农,胡大维主编.银杏栽培和产品加工技术.北京:中国林业出版社,1993
    6.门秀元,王玉芬.银杏种子构造及其发育节律.落叶果树,1989,1:20-22
    7.曹帮华,蔡春菊.银杏种子生理研究进展.山东农业科学,2001,1:40-42
    8.王伏雄,陈祖铿.银杏胚胎发育的研究—兼论银杏目的亲缘关系.植物学报,1983,25(3):199-206
    9.邢世岩,孙霞.银杏胚胎发育研究述评.武汉植物研究,1996,14(3):279-286
    10. Li Dahui, Yang Xiong, Cui Xu, et al. Early development of pollen chamber in Ginkgo biloba ovule. Acta Bot Sin, 2002, 44(7):757~763
    11.福斯特A S,小吉福德E M[美].李正理,张新英,李荣敖等译.维管植物比较形态,科学出版社.1983
    12.邢世岩,侯九寰.银杏优良单株种子品质的研究.1:形态品质:落叶果树,1993,3:15-18
    13.史继孔,樊卫国,文晓鹏.银杏雌花芽形态分化的研究.园艺学报,1998,25(1):33-36
    14.傅秀红,李锋,许成琼等.银杏良种江苏大佛手种实生长及内含物研究.广西植物,1997,17(3):263-269
    15.王建,王九龄,辛学兵.银杏种子生长特性及其生理变化的研究.应用生态学报,2000,11(4):507-512
    16. Favre Duchartre M. Contribution a Petude de la reproduction chez le Ginkgo biloba. Rev Cytol Veg. 1956, 17:1-218
    
    
    17.何凤仁.银杏的栽培.南京:江苏科技出版社,1989
    18. Chen Peng, He Fengren, Tao Jun et al. Female plant types of Ginkgo Biloba L. in China. Forestry studies in China, 2003, 5(2): 17-22
    19.凌裕平,周卫东,周宏根,等.银杏种壳超微结构的观察.扬州大学学报(农业与生命科学版),2002,23(1):76-78
    20.邢世岩.银杏丰产栽培.济南出版社,1997
    21.王建,贾玉彬,张钢民.银杏种子生长发育过程中营养元素含量相关性分析.河北林果研究,1998,13(1):49-53
    22.王建,魏刚,高成德,等.银杏种子矿质元素含量的季节变化及其与落种的关系.林业科学研究,1998,11(5):469-473
    23.陈鹏,何凤仁,韦军,等.银杏种实丰产单株选优研究.园艺学报,1997,24(2):205-207
    24. Chen Peng, He Fengren, Yu Biyu, Ling Hsieh. Seed stone shape and the relative components in the kernel of Ginkgo biloba. Forestry studies in China. 1999, 1 (1):42-47
    25.潘建伟,陈虹,顾青等.环境胁迫诱导的植物细胞程序性死亡.遗传,2002,24(3):385-388
    26.尤瑞麟.小麦珠心细胞衰退过程的超微结构观察.植物学报,1985,27(4):345~353
    27. Greenberg J T, Guo A, Klessig D F, et al. Programmed cell death in plant:A pathogen-triggered response activated coordinately with multiple defense function. Cell, 1994, 77:551~563
    28. Greenberg J T. Programmed cell death:A way of life for plants. Proc Natl Acad Sci USA, 1996, 93:12094-12097
    29. Gluchsman A. Cell deaths in normal vertebrate. Ontogeny Bio Rev Cambride Philos Soc., 1951, 26:59-86
    30.陈毅坚.细胞凋亡及其机制研究.昭通师范高等专科学校学报,2000, 22(3):83~85
    31. Wacker P R, Sikorska M. New aspects of the mechanism of DNA fragmentation in apoptosis. Biol, 1997, 75:287~299
    
    
    32. Kerr J F R, Wyllie A H, Currie A R. Apoptosis:a basis biological phenomenon with wild-ranging implications in tissue kinetics. Br J Cancer, 1972, 26:239~257
    33.王忠主编.植物生理学.北京:中国农业出版社,1999,36
    34. Lee RH, Chen SH. Programmed cell death during rice leaf senescence is nonapoptotic. New Phytol, 2002, 155(1):25-32
    35. Jacobson M D, Weil M. Programmed cell death in animal development. Cell, 1997, 88:347~354
    36.王雅清,崔克明.杜仲次生木质部导管分子分化中的程序性死亡.植物学报,1998,40(12):1102-1107
    37.潘建伟,董爱华,朱睦元.高等植物的PCD研究进展.遗传,2002,24(3):385-383
    38. Eleftherious E P. Ultrastructural studies on protophloem sieve elements in Triticum aestivum L. nuclear degeneration. J Ultract Mol Struct Res, 1986, 95:47~60
    39.肖华山,吕柳新,王湘平,等.荔枝(Litichi chinensis Sonn.)花芽分化过程的细胞超微结构观察.福建师范大学学报(自然科学版),2002,18(2):57-60
    40. Yeung E C, Meinke D W. Embryogenesis in angiosperms:development of the suspensor. Plant Cell, 1993, 5:1371-1381
    41. Giuliani C, Consonni G, Gavazzi G, et al. Programmed cell death during embryogenesis in maize. Annal of Botany, 2002, 90(2):287-292
    42. Miller R, Lam E. In situ detection of nDNA fragmentation during the differentiation of tracheary elements on higher plants. Plant Physiol, 1995, 108:489~493
    43.华志明,陈睦传,沈明山.植物生长发育中程序性细胞死亡.生物工程进展,1998,18 (3):32~36
    44. Pontier D, Ganc S, Amasino R M, et al. Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Mol Bio., 1999, 39:1243-1255
    45.陈鹏,何凤仁,韦军,等.~(60)Co和速冻对银杏种胚及氢氰酸含量的影响.江苏农学院学报.1994,15(1):53~56
    46.林久生,王根轩.渗透胁迫诱导的小麦叶片细胞程序性死亡.植物生理学
    
    报,2001,27(3):221~225
    47. Orzaez D, Granell A. DNA fragmentation is regulated by ethylene during carpel senescence in Pisum satirum. Plant J, 1997, 11: 137~144
    48. Morgan P W, Drew M C, Jordan W R, et al. Ethylene signal transduction and programmed cell death during aerenchyma formation in maize roots. Plant Physiology, 1997, 114:31003
    49. He C J, Morgan P W, Drew M C. Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma fomation induced by hypoxia. Plant physiol, 1996, 112(4):463~472
    50. McConkey D J, Orrenius S. Calcium and cyclosporin in the regulation of apoptosis. In:Kroemer G, Martinerz C, eds. Apoptosis in Immundogy. Berlin:Springer-Verlag, 1995:95~105
    51. Roberts A W, Haigler C H. Rise in chlorotetracycline fluorescene accompanies tracheary element differentiation in suspension cultures of zinnia. Protoplasma, 1989, 152(1):37~45
    52. Raz V, Fluhr R. Ethylene signal is transduced via proteins phosphorylation events in plant. Plant cell, 1993, 5(5): 523~530
    53. Gaido M L, Cidlowski J A. Identification, purification, and characterization of a calcium-dependent endonuclease(NUC 18) from apoptotic rat thymocytes, NUC 18 is not histone H2B. J Biol Chem, 1991, 266(28): 18580~18585
    54.罗非君,胡智,邓锡云,等.茶多酚诱导鼻咽癌细胞caspase-3活化.癌症,2000,19(12):1082-1086
    55. James F. D, Riikka P, Tom B, et al. Changes in hydrogen peroxide homeostasis trigger an active cell death progress in tobacco. The Plant Journal, 2003, 33(4):621
    56. Florence A, Rene M, Ghislaine V S, et al. Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescene. New Phytol, 2003, 158(1):131-138
    
    
    57. Dominique P, Claudine B, Dominique R. The hypersensitive response:A programmed cell death associated with plant resistance. Comptes Rendus de i'Académie des Sciences-Series Ⅲ-Sciences de la Vie, 1998, 321(9): 721~734
    58.谭晓华,姜泊,张亚历,等.紫外线诱导体外培养的LOVO、HT-29细胞的凋亡.肿瘤,1997,17(5):255-257
    59.谭晓华,张亚历,周殿元,等.绿茶水提取物诱导体外培养的大肠癌LOVO细胞的凋亡.癌症,1998,17(3):171-173
    60. Wang H, Li J, Bostock R M, et al. Apoptisis:a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell, 1996, 8:375~391
    61.周军,朱海珍,姜晓芳,等.乙烯诱导胡萝卜原生质体凋亡.植物学报,1999,41(7):747~750
    62.孙英丽,赵允,刘春香,等.细胞色素C能诱导植物PCD.植物学报,1999,41(4):379~383
    63.张亚历,姜泊,周殿元.程序化细胞死亡常用研究方法,姜泊等主编:分子生物学常用实验方法.北京:人民军医出版社,1996:170~183
    64.姜晓芳,朱海珍,周军,等.彗星电泳法在植物原生质体凋亡检测中的应用.植物学报,1998,40(10):928~932
    65. Rosl F. A simple and rapid method for detection of apoptosis in human cells. Nucleic Acid Res, 1992, 20:5243~5244
    66.张宗申,利容千,王建波.导管分子程序化死亡过程中Ca~(2+)的时空变化.科学通报,2001,46(13):1098-1100
    67. Baker S J, Newton A C, Gurr S J. Cellular characteristics of temporary partial breakdown of mlo-resistance in barely to powdery mildew. Physiological and molecular plant pathology, 2000, 56(1): 1-11
    68. Schwartz B W, Yeung E C, Meinke D W. Disruption or morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis.
    
    Development, 1994, 120(11):3253-3245
    69. Dietrich R A, Richberg M H, Schmidt R, et al. A novel zinc fingerprotein is emoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88(5):685-694
    70.王忠,顾蕴洁等.小麦胚乳的发育及其分输入的途径.作物学报.1998,24(5):536-547
    71.孟祥红,王建波,利容千.绒毡层乌氏体在Ca~(2+)运输中的作用.科学通报,1999,44(24):2640-2643
    72.张彪,金银根,淮虎银主编.植物形态解剖学实验.东南大学出版社,2001
    73.邹琦主编.植物生理学实验指导.中国农业出版社,2000
    74.中国科学院上海植物生理研究所、上海市植物生理学会.现代植物生理学实验指南.科学出版社,1999
    75.王志芹,杨建昌.水分胁迫下外源多胺对水稻叶片光合速率与籽粒充实的影响.中国水稻科学,1998,12(3):185-188
    76.罗充,彭抒昂,马湘涛.草莓成花过程中及成花物质含量变化.山地农业生物学报,2000,11(4):507-512
    77.姜玲,蔡礼鸿.一种提取银杏中DNA的方法.植物生理学通讯,2000,36(4):340-342
    78.莫开菊,汪兴平.钙与果实采后生理.植物生理学通讯,1994,30(1):44-47
    79.陈敏资,张治平.多效唑对花生荚果形成过程中生理活性和物质积累的调控.东北师范学报(自然科学版),1994,4:66-70
    80. Gahan P B. Biochemical changes during xylem element differentiation. In: Barnett J Red, Xylem Cell Development. Tunbridge Wells:Castle House Publication, 1981, 168-191
    81.杨煜升,杨凤仙.果树木质部导管细胞的扫描电镜研究.电子显微学报,1998,17(4):371-372
    82. Laurin D, Jean C C, Tremouillaux G J. Direct embryogeneais from femal haploid
    
    protoplasts of Ginkgo biloba L., a medicinal woody species. Plant Cell Report, 1993, 12(11):656-660
    83.陈鹏,卜娟,冯波等.银杏生长相关气象因子的分解及其对种核产量的影响研究.江苏农学院学报,1996,17(3):67-70
    84.陈鹏,何凤仁,刘昌迎,等.银杏种子和叶片产量形成的研究.江苏农学院学报,1996,17(1):43-46
    85.刘存德,张素梅,李桐柱,等.番茄成熟时乙烯的产生及过氧化物酶活性及其同工酶的变化.植物学报,1979,21(2):163-169
    86. Srivastava L M, O'Brien T P. On the ultrastructure of cambium and its vascular derivatives Ⅰ. Cambium of Punus strobes L. Protoplasma, 1996, 61:257-276
    87. Schulz P, Jensen W A. Pre-fertilization ovule development in Capsella:Ultrastructure and ultracytochemical localization of acid phosphatase in the meicyte. Protoplasma, 1981, 107:27-45
    88. Halestrap A P, Doran E, Gillespie J P, et al. Mitochondria and cell death. Biochem Soc Trans, 28:170-177
    89.徐昌杰,陈昆松,Hong Ding.等.植物程序性死亡检测技术.遗传,2004,26(1):127-132
    90. Xu F X, Chye M L. Expression of cystein proteinase during developmental events associated with programmed cell death in brinjal. Plant J, 1999, 17:321-327
    91.杨征,蔡陈鲮,覃瑞,等.原癌基因ras在玉米中同源序列的检出及其荧光原位杂交定位.遗传学报,2000,27:338-343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700