氟非尼酮局部施用形式的探索及其干预大鼠皮肤瘢痕形成的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、目的
     通过对氟非尼酮(fluorofenidone, AKF-PD)基本理化性质的研究,构建并初步评价AKF-PD凝胶、乳膏和SLN凝胶,探索AKF-PD局部施用的理想形式;研究AKF-PD在大鼠皮肤瘢痕形成中的作用及其可能的作用机制,为AKF-PD新适应症的研究开发提供实验依据。
     二、方法与结果
     1.AKF-PD基本性质处方前研究
     建立AKF-PD含量测定方法,并测定AKF-PD的溶解度及油/水分配系数。结果表明AKF-PD在水中微溶,溶解度为2.5 mg-mL-1(25℃),pH对溶解度影响小;AKF-PD易溶于乙醇,可溶于PEG400、丙二醇和异丙醇,微溶于甘油。AKF-PD略有亲脂性,LogP值为1.182。
     2.AKF-PD三种剂型的构建与评价
     通过单因素实验筛选了溶剂、成胶基质种类和用量、pH调节剂、防腐剂、抑晶剂,确定凝胶剂处方并制备0.5% AKF-PD溶液型凝胶,该凝胶剂避光在高温和低温条件下均可保存10d。制备载药量为1%的混悬型凝胶,供后续比较不同载药量凝胶间的差异。
     AKF-PD加入油相后,以Tween 80和单硬脂酸甘油酯为乳化剂,高温乳化后获得AKF-PD乳膏,乳膏中AKF-PD量为1%时为溶液型,载药量为2%时为混悬型。1%乳膏在高温和低温条件下均可保存10d。
     采用超声乳化后低温固化法制备SLN,单因素考察后经正交实验优化处方与工艺条件,所得SLN粒径为179.3±4.8 nm,包封率较低,为19.08±0.68%。该SLN赋型于卡波姆中构建了AKF-PD SLN凝胶,载药量为0.36%;SLN与SLN凝胶均对温度敏感,可在4℃条件下保存10d。
     3.三种AKF-PD外用形式的体外经皮渗透实验
     考察AKF-PD0.5%与1%凝胶、1%与2%乳膏、0.36%凝胶与SLN凝胶在离体乳猪皮肤中体外经皮渗透行为。建立体外经皮渗透实验方法,于1、2、4、8、12、24h取样,考察t时间的单位面积累积渗透量Q。和24h的皮肤滞留量。
     凝胶中AKF-PD透皮速度较快,且载药量在0.5%-1%范围内,24h的单位面积累积渗透量(Q24)和皮肤滞留量均存在剂量相关性;1%乳膏与2%乳膏Q24无显著差别,但Q24均较1%凝胶少,而皮肤滞留量与1%凝胶无显著差别;0.36%SLN凝胶与同浓度的普通凝胶经皮渗透行为无显著差别,未能较普通凝胶提高AKF-PD皮肤滞留量。选择0.5%凝胶、1%凝胶和1%乳膏进行药效学实验。
     4.AKF-PD对大鼠皮肤瘢痕形成的干预及其机制研究
     建立大鼠皮肤线性瘢痕模型,考察AKF-PD0.5%凝胶剂、1%凝胶和1%乳膏对大鼠皮肤瘢痕形成的干预及其作用机制。结果表明AKF-PD能抑制成纤维细胞的增殖和胶原纤维的沉积,但是会延缓切口愈合时间;其中对成纤维细胞的抑制作用具有剂量相关性,1%凝胶与1%乳膏的作用效果约为0.5%凝胶的2倍。实验组瘢痕组织中的TGF-β1的表达略高于其他对照组,可能与取样点不足以及取样点时间延后有关。
     三、结论
     AKF-PD具有较好的经皮渗透能力,凝胶及乳膏均为可选剂型;外用施予AKF-PD能抑制大鼠线性瘢痕中成纤维细胞的增殖和胶原的沉积,且对成纤维细胞的抑制作用具有剂量相关性,但AKF-PD抑制瘢痕形成的作用机制以及该作用与药物皮肤滞留和经皮渗透之间的关系仍有待进一步研究。
OBJECTIVES
     To prepare and evaluate fluorofenidone (AKF-PD) gel, cream and SLN-gel on the basis of physicochemical property of AKF-PD to explore the ideal topical preparation. To study the effect and machanism of AKF-PD in inhibiting scar formation in rat cutaneous wounds and provide experimental basis for a new indication of AKF-PD. METHODS AND RESULTS
     The analytical method of AKF-PD was set up and the determination of its solubility and oil/water partition coefficient was performed. The results showed that AKF-PD was slightly soluable in water, and the solubility was 2.5 mg-mL-1 (25℃) which was not sensitive to pH; AKF-PD was freely soluble in ethanol, soluble in PEG400, propylene glycol and isopropanol, and slightly soluable in glycerin. AKF-PD was partial lipophilic and the value of LogP was 1.182.
     The optimal prescription of 0.5% AKF-PD gel was obtained by formulation screening of solvent, kind and amount of gel matrix, pH adjusting agent, preservative, inhibiting crystal agent. The gel away from light could be deposited for 10 d at high temperature and low temperature conditions. Preparation of 1% AKF-PD gel had crystallization suspended and could be offered to compare the difference between gels with different drug loading.
     The cream of AKF-PD was prepared by incorporating AKF-PD in oil phase, and emulsification by Tween80 and glyceryl monostearate at high temperature. AKF-PD in 1% cream was soluble, but 2% cream had crystallization suspended.1% AKF-PD cream could be deposited for 10 d at high temperature and low temperature conditions.
     SLN was prepared by ultrasound emulsification and solidification at low temperature and the prescription were optimized by orthogonal test. The size of optimal formulation was 179.3±4.8 nm, and its low encapsulation efficiency was 19.08±0.68%. Then SLN was loaded in gel matrix and the drug loading was 0.36%. SLN and SLN gel were both sensitive to temperature and could be deposited for 10 d at 4℃.
     The penetration behavior of AKF-PD through excised skin of piglet in vitro was studied among 0.5% and 1% gel,1% and 2% cream,0.36% SLN gel and general gel. The method of in vitro permeation of AKF-PD was established to study the amout of percutaneous penetration per unit area,Qt (1-24 h) and retention in the skin at 24 h.
     AKF-PD from gels penetrated fast through piglet skin, and Q24 and retention in the skin had dose-dependence between 0.5%-1% drug loading. Q24 of AKF-PD from 1% and 2% cream had no significant difference and were both lower than that of 1% gel, but skin retention of AKF-PD from creams had no significant difference with 1% gel. There was no significant difference of penetration behavior between SLN gel and general gel. Finally,0.5% gel,1% gel and 1% cream of AKF-PD were chosen to study pharmacodynamics.
     The model of scar in rat cutaneous wounds was established for the pharmacodynamics of AKF-PD of 0.5% gel,1% gel,1% cream. The results showed that AKF-PD could inhibit fibroblast (FB) proliferation and collagen deposition, but would delay the wound healing. The dose-dependence of inhibiting FB was significant and there was no difference between 1% gel and 1% cream. The study on mechanism of inhibiting scar formation in rat cutaneous wounds showed that the content of TGF-β1 in scar tissue of the experimental group was slightly higher than other control groups.
     CONCLUSIONS
     AKF-PD penetrated fast through piglet skin, and gel and cream were both optional preparation. Topical application of AKF-PD could inhibit the proliferation of FB and the deposition of collagen, and the dose-dependence of inhibiting FB of AKF-PD was significant. However, the mechanism of action in inhibiting scar formation and its relation with percutaneous penetration and retention in the skin need to be further clarified.
引文
[1]陈洪,农晓琳.皮肤病理性瘢痕的基础理论研究与进展.中国组织工程研究与临床康复,2008,12(42):8458-8361.
    [2]陈苏丽,刘流.增生性瘢痕发病机制研究进展.现代生物医学进展,2009,9(13):2565-2568.
    [3]Beanes S. R., Dang, C., Soo, C., et al.Skin repair and scar formation:the central role of TGF-beta.Expert Rev Mol Med,2003,5(8):1-22.
    [4]Lu L., Saulis, A. S., Liu, W. R., et al.The temporal effects of anti-TGF-betal,2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation. J Am Coll Surg,2005,201(3):391-397.
    [5]Reid R. R., Roy, N., Mogford, J. E., et al.Reduction of hypertrophic scar via retroviral delivery of a dominant negative TGF-beta receptor II.J Plast Reconstr Aesthet Surg,2007,60(1):64-72.
    [6]Eslami A., Gallant-Behm, C. L., Hart, D. A., et al.Expression of integrin alphavbeta6 and TGF-beta in scarless vs scar-forming wound healing. J Histochem Cytochem,2009,57(6):543-557.
    [7]Ghahary A., Shen, Y. J., Scott, P. G., et al.Immunolocalization of TGF-beta 1 in human hypertrophic scar and normal dermal tissues. Cytokine,1995,7(2): 184-190.
    [8]刘玲,陈敏亮.转化生长因子-β1对瘢痕形成的影响.中国美容医学,2009,18(2):264-266.
    [9]屈纪富,程天民,郝利.参与皮肤伤口愈合的细胞及其作用的研究进展.现代康复,2001,5(12):74-75.
    [10]Gilmore M. A.Phases of wound healing.Dimens Oncol Nurs,1991,5(3):32-34.
    [11]Yu W., Naim, J. O.,Lanzafame, R. J.Expression of growth factors in early wound healing in rat skin.Lasers Surg Med,1994,15(3):281-289.
    [12]刘立强,张作峰,刘德伍等.粉防己碱对兔瘢痕组织作用的实验研究.江西医学院学报,2001,41(4):29-31.
    [13]Moulin V.Growth factors in skin wound healing. Eur J Cell Biol,1995,68 (1):1-7.
    [14]蔡景龙.现代瘢痕学.北京:人民卫生出版社,2008.19-22.
    [15]Shah M., Foreman, D. M.,Ferguson, M. W.Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci,1994,107 (5): 1137-1157.
    [16]Mead A. L., Wong, T. T., Cordeiro, M. F., et al.Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery.Invest Ophthalmol Vis Sci,2003,44(8):3394-3401.
    [17]Shah M., Foreman, D. M.,Ferguson, M. W.Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring.J Cell Sci,1995,108 (3):985-1002.
    [18]Frank S., Madlener M., Werner S. Transforming growth factors β1,β2, andβ3 and their receptors are differentially regulated during normal and impaired wound healing. J. Bio. Chem.,1996,271(17):10188-10193.
    [19]武晓莉.利用可溶性TGF-β受体抑制大鼠瘢痕形成的实验研究.[博士学位论文],上海,上海第二医科大学,2005.
    [20]Sadick H., Herberger, A., Riedel, K., et al.TGF-betal antisense therapy modulates expression of matrix metalloproteinases in keloid-derived fibroblasts. Int J Mol Med,2008,22(1):55-60.
    [21]Riedel K., Koellensperger, E., Ryssel, H., et al.Abrogation of TGF-beta by antisense oligonucleotides modulates expression of VEGF and increases angiogenic potential in isolated fibroblasts from radiated skin. Int J Mol Med,2008,22(4):473-480.
    [22]Zhang Z., Li, X. J., Liu, Y., et al.Recombinant human decorin inhibits cell proliferation and downregulates TGF-beta1 production in hypertrophic scar fibroblasts. Burns,2007,33(5):634-641.
    [23]Zhang Z., Garron, T. M., Li, X. J., et al.Recombinant human decorin inhibits TGF-beta1-induced contraction of collagen lattice by hypertrophic scar fibroblasts. Burns,2009,35(4):527-537.
    [24]Kretschmer A., Moepert, K., Dames, S., et al.Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4. Oncogene,2003, 22(43):6748-6763.
    [25]Cao W., He, L., Liu, W., et al.Determination of AKF-PD in whole blood of rat by HPLC-UV. J Chromatogr B,2006,833(2):257-259.
    [26]陶立坚,胡高云.1-(取代苯基)-5-甲基-2-(1H)吡啶酮(Ⅰ)化合物用于制备抗除肾间质纤维化外其他器官纤维化或组织纤维化药物的应用.中国专利,1846699A,2006-10-18.
    [27]刘春燕..AKF-PD对大鼠肾间质纤维化的疗效观察.[硕士学位论文],长沙:中南大学,2005.
    [28]胡静.AKF-PD抗大鼠肾间质纤维化的作用机制研究.[硕士学位论文],长沙:中南大学,2005.
    [29]黄凯.氟非尼酮对人增生性瘢痕成纤维细胞增殖的影响.[硕士学位论文],南昌:南昌大学,2008.
    [30]陶立坚,胡高云,丁劲松.1-芳基-2(1H)吡啶酮类化合物在制备治疗皮肤瘙痒药物中的应用.中国专利,101371833A,2009-02-25.
    [31]薛克营,张浩,陈燕.新型抗纤维化药物吡非尼酮.中国新药杂志,2005,14(8):1070-1073.
    [32]侯铁宁,辛伟红,董震.氮酮促进胰岛素经鼻吸收的功能和病理研究.中华耳鼻咽喉科杂志,2002,37(4):271-273.
    [33]高艳,郝永科,张宏霞.外用水凝胶研究进展.中国医药指南,2007,5(11):226-228.
    [34]王迎春,刘晓霞.凝胶剂临床应用研究分析.广东药学,2003,13(3):21-23.
    [35]张志荣.药剂学.北京:高等教育出版社,2007,290-300.
    [36]Mehnert W.,Mader, K.Solid lipid nanoparticles:production, characterization and applications.Adv Drug Deliv Rev,2001,47(2-3):165-196.
    [37]Schafer-Korting M., Mehnert, W.,Korting, H. C.Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev, 2007,59(6):427-443.
    [38]Lombardi Borgia S., Regehly, M., Sivaramakrishnan, R., et al.Lipid nanoparticles for skin penetration enhancement-correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy.J Control Release,2005,110(1):151-163.
    [39]倪倩,丁虹,刘洁等.咪喹莫特固体脂质纳米粒的制备及体外透皮作用.中国医药工业杂志,2006,37(8):537-540.
    [40]徐文,孙进,张婷婷等..HPLC法测定冬凌草甲素的平衡溶解度和表观油水分配系数.沈阳药科大学学报,2007,24(4):220-223.
    [41]宋桂军,柳菡,冯芳等.替米沙坦油水分配系数的测定及意义.药物分析杂志,2007,27(11):1704-1706.
    [42]薛璟,贾晓斌,谭晓斌等.雷公藤甲素表观油水分配系数的测定及其对吸收预测的研究.中国药学杂志,2009,44(20):1560-1563.
    [43]何琪莹.局部药用凝胶剂的研究新进展与新应用.中国药物与临床, 2006,6(5):384-387.
    [44]李飞.伊曲康唑凝胶剂的研制.[硕士学位论文],沈阳:沈阳药科大学,2004.
    [45]金睿.氢醌凝胶剂的研究.[硕士学位论文],沈阳:沈阳药科大学,2002.
    [46]Werner M.,S.Yamauchi.Topical formulation of alkyl-, phenyl-pyridone.美国专利,US6492395(B1),2002-12-10.
    [47]李宝齐,邓英杰,杨静文.超滤-HPLC法测定盐酸拓扑替康脂质体包封率.中国新药杂志,2007,16(1):58-62.
    [48]王卫国,郭彦亮.固体脂质纳米粒给药系统的研究进展.山西医药杂志,2008,37(9):806-808.
    [49]刘凯,孙进,何仲贵.新型纳米结构脂质载体系统的研究进展.沈阳药科大学学报,2008,25(3):236-242.
    [50]Jensen L. B., Magnussson, E., Gunnarsson, L., et al.Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. Int J Pharm, 2010,390(1):53-60.
    [51]陈玲,周建平.固体脂质纳米粒研究新进展.药学进展,2003,27(6):354-358.
    [52]Muller R. H., Radtke, M.,Wissing, S. A.Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv Drug Deliv Rev,2002,54 (Suppl 1):131-155.
    [53]Freitas C.,Muller, R. H.Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm,1999,47(2):125-132.
    [54]Simon G A.,Maibach, H. I.The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations-an overview.Skin Pharmacol Appl Skin Physiol,2000,13(5):229-234.
    [55]Sintov A. C.,Botner, S.Transdermal drug delivery using microemulsion and aqueous systems:influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. Int J Pharm, 2006,311(1-2):55-62.
    [56]王凤军.凡丁糖对大鼠皮肤切割伤伤口愈合影响的实验研究.[硕士学位论文],辽宁:锦州医学院,2002.
    [57]郭尚琴.维拉帕米抑制大鼠皮肤瘢痕增生的实验研究.[硕士学位论文],河北:华北煤炭医学院,2004.
    [58]周明芳,程天民,冯正直.抑郁对大鼠创面愈合过程中胶原含量的影响.第三军医大学学报,2008,30(13):1293-1295.
    [59]燕小宁,马华,王青等.中药芪红合剂对肺问质纤维化模型大鼠肺组织中TGF-β表达的影响.山西中医学院学报,2007,8(2):11-13.
    [60]Cromack D. T., Sporn, M. B., Roberts, A. B., et al.Transforming growth factor beta levels in rat wound chambers.J Surg Res,1987,42(6):622-628.
    [61]王旭平,任道凤.皮肤屏障研究方法的新进展.国外医学:皮肤性病学分册,1999,25(6):326-329.
    [62]王慧君,李东,杨木兰等.在大鼠皮肤切创愈合过程中TGF-β1基因及蛋白表达变化与损伤时间关系的实验研究.中国法医学杂志,2001,16(4):193-197.
    [1]陈洪,农晓琳.皮肤病理性瘢痕的基础理论研究与进展.中国组织工程研究与临床康复,2008,12(42):8458-8361.
    [2]陈苏丽,刘流.增生性瘢痕发病机制研究进展.现代生物医学进展,2009,9(13):2565-2568.
    [3]Beanes S. R., Dang, C., Soo, C., et al.Skin repair and scar formation: the central role of TGF-beta.Expert Rev Mol Med,2003,5(8):1-22.
    [4]Lu L., Saulis, A. S., Liu, W. R., et al.The temporal effects of anti-TGF-betal,2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation.J Am Coll Surg,2005,201(3):391-397.
    [5]Reid R. R., Roy, N., Mogford, J. E., et al.Reduction of hypertrophic scar via retroviral delivery of a dominant negative TGF-beta receptor II. J Plast Reconstr Aesthet Surg,2007,60(l):64-72
    [6]Eslami A., Gallant-Behm, C. L., Hart, D. A., et al.Expression of integrin alphavbeta6 and TGF-beta in scarless vs scar-forming wound healing.J Histochem Cytochem,2009,57(6):543-557.
    [7]Ghahary A., Shen, Y. J., Scott, P. G., et al.Immunolocalization of TGF-beta 1 in human hypertrophic scar and normal dermal tissues.Cytokine,1995,7(2): 184-190.
    [8]刘玲,陈敏亮.转化生长因子-β1对瘢痕形成的影响.中国美容医学,2009,18(2):264-266.
    [9]姜孟臣.TGF-β对创伤修复的调控作用.武警医学,2002,13(3):356-358.
    [10]王慧君,李东,杨木兰等.在大鼠皮肤切创愈合过程中TGF-β1基因及蛋白 表达变化与损伤时间关系的实验研究.中国法医学杂志,2001,16(4):193-197.
    [11]Tredget E. E., Wang, R., Shen, Q., et al.Transforming growth factor-beta mRNA and protein in hypertrophic scar tissues and fibroblasts: antagonism by IFN-alpha and IFN-gamma in vitro and in vivo. J Interferon Cytokine Res,2000,20(2):143-151.
    [12]Cordeiro M. F., Bhattacharya, S. S., Schultz, G S., et al.TGF-betal,-beta2, and -beta3 in vitro:biphasic effects on Tenon's fibroblast contraction, proliferation, and migration.Invest Ophthalmol Vis Sci,2000,41(3):756-763.
    [13]Shah M., Foreman, D. M.,Ferguson, M. W.Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci,1995,108 (3):985-1002.
    [14]Cowin A. J., Holmes, T. M., Brosnan, P., et al.Expression of TGF-beta and its receptors in murine fetal and adult dermal wounds. Eur J Dermatol,2001, 11(5):424-431.
    [15]Ashcroft G. S., Yang, X., Glick, A. B., et al.Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol,1999,1(5):260-266.
    [16]Kretschmer A., Moepert, K., Dames, S., et al.Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4. Oncogene,2003,22 (43):6748-6763.
    [17]Frank S., Madlener M.,S., Werner.Transforming growth factors β1,β2, andβ3 and their receptors are differentially regulated during normal and impaired wound healing. J Bio Chem,1996,271(17):10188-10193.
    [18]Yu W., Naim, J. O.,Lanzafame, R. J.Expression of growth factors in early wound healing in rat skin.Lasers Surg Med,1994,15(3):281-289.
    [19]Moulin V.Growth factors in skin wound healing.Eur J Cell Biol,1995,68 (1):1-7.
    [20]蔡景龙.现代瘢痕学.北京:人民卫生出版社.2008,19-22.
    [21]刘海峰,郭冉,刘洁婷等.转化生长因子β与增生性瘢痕的研究进展.牡丹江医学院学报,2009,30(5):83-85.
    [22]Chodon T., Sugihara, T., Igawa, H. H., et al.Keloid-derived fibroblasts are refractory to Fas-mediated apoptosis and neutralization of autocrine transforming growth factor-betal can abrogate this resistance.Am J Pathol, 2000,157(5):1661-1669.
    [23]肖刚,王智园,谭敏等.转化生长因子p1对病理性瘢痕中成纤维细胞增殖及凋亡水平的影响.实用医学杂志,2008,24(13):2242-2245.
    [24]Chen S. J., Yuan, W., Mori, Y., et al.Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3.J Invest Dermatol,1999,112(1):49-57.
    [25]谢举临,利天增,祁少海等.p1转化生长因子对瘢痕成纤维细胞纤维粘连蛋白及其受体α5β1整合素表达的影响.中华医学美学美容杂志,2004,10(5):289-292.
    [26]Ferrara N.VEGF:an update on biological and therapeutic aspects.Curr Opin Biotechnol,2000,11 (6):617-624.
    [27]Hirai R.,Kaji, K.Transforming growth factor beta 1-specific binding proteins on human vascular endothelial cells.Exp Cell Res,1992,201(1):119-125.
    [28]翟虹,李大铁.增生性瘢痕与血管内皮生长因子相关性的研究进展.遵义医学院学报,2008,31(6):635-637.
    [29]傅华,刘小菁,杨丽等.TGFβ1对人血管内皮细胞整合素β3及粘着斑激酶表达的影响.华西医科大学学报,2001,32(1):21-23.
    [30]徐文俊,方木平.药物治疗瘢痕的现况.中国现代医生,2008,46(13):37-38.
    [31]Shah M., Foreman, D. M.,Ferguson, M. W.Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet,1992,339 (87):213-214.
    [32]Shah M., Foreman, D. M.,Ferguson, M. W.Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci,1994,107(5): 1137-1157.
    [33]Yamauchi T.Effects of TGF-beta and TGF-beta-neutralizing antibody on normal skin fibroblasts and scar-derived fibroblasts. Kurume Med J,2002, 49(4):171-176.
    [34]肖刚,谭敏,胡少为等.TGF-β3对病理性瘢痕中成纤维细胞增殖凋亡的影响.中国医疗前沿,2008,3(12):13-14.
    [35]韩军涛,陈璧,张晓辉等.转化生长因子-β1Ⅱ型受体同源序列1对瘢痕疙瘩中成纤维细胞胶原合成的影响.中华创伤杂志,2000,16(8):485-487.
    [36]罗梅,姬永忠.反义TGF-β1抑制兔耳增生性瘢痕的实验研究.中国美容医学,2004,13(1):18-21.
    [37]商庆新,袁荣,王炜.反义TGF-β1抑制瘢痕疙瘩成纤维细胞增殖的研究.中 华整形外科杂志,2001,17(6):325-327.
    [38]崔童星.小分子蛋白多糖Decorin对兔耳增生性瘢痕的抑制作用.[硕士学位论文],山东:青海大学,2009.
    [39]陈伟,付小兵,孙同柱等.增生性瘢痕形成和成熟过程中转化生长因子-β1及下游信号分子的基因表达变化.中华实验外科杂志,2005,22(6):740-742.
    [40]唐汉钧,王振宜,肖秀丽等.复黄生肌愈创油膏对糖尿病模型创面TGF-β1与smad3、smad7水平的动态影响.上海中医药大学学报,2009,23(1):52-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700