CuI催化氨基酸促进的Ullmann类碳—碳键交叉偶联反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属催化的交叉偶联反应可以方便地生成sp~2碳-碳、碳-杂键,是有机合成的重要手段之一。与钯、镍等过渡金属相比,铜是一种廉价而且低毒的金属,用铜来催化这些交叉偶联反应不仅可以节省贵金属的消耗以降低成本,而且可以减少对环境的污染、促进绿色化学的发展。不对称碳-碳键的合成反应,尤其是手性季碳中心的构建反应,是有机合成研究的一个重点和难点所在,对于有机合成的应用和发展具有重要意义。本文的主要工作就是氨基酸促进的铜催化的芳基卤化物与活泼亚甲基化合物的交叉偶联反应以及不对称的2-取代-β-酮酯的α-芳基化反应研究。
     在本文的第二章中,我们研究了铜催化氨基酸促进的芳基卤化物与活泼亚甲基化合物的交叉偶联反应。以4-碘茴香醚与乙酰乙酸乙酯为模板反应,我们考察了不同反应条件对反应结果的影响,最后筛选出了最佳反应条件:0.2 eq CuI、0.4eq L-proline、4eq Cs_2CO_3、DMSO、40℃。以此标准条件,我们对以不同结构的芳基碘化物作为底物和不同的活泼亚甲基化合物的反应进行了考察,并发现大部分的芳基碘化物都可以与乙酰乙酸乙酯、丙二酸二乙酯或苯甲酰乙酸乙酯发生偶联反应得到良好收率的偶联产物。芳环吸电子基取代的芳基碘化物表现出更高的反应活性。我们还研究了芳基溴化物与活泼亚甲基化合物的偶联反应,并发现在相似的反应条件下,大部分的芳基溴化物都可以与乙酰乙酸乙酯、丙二酸二乙酯或苯甲酰乙酸乙酯发生偶联反应得到中等至良好收率的偶联产物。我们对反应的机理进行了推测,并认为反应是按照氧化加成/还原消除的机理进行的。
     在第三章中,我们研究了铜催化氨基酸促进的2-取代-β-酮酯的不对称α-芳基化反应。我们对不同底物、反应物、溶剂、配体和碱对反应的影响进行了研究,通过研究我们发现,在配体、邻基效应和溶剂的共同作用下,反应可以很好的进行,当以邻碘三氟乙酰苯胺衍生物为底物、2-甲基乙酰乙酸叔丁酯为反应物、CuI为催化剂、L-羟基脯氨酸为配体、NaOH为碱、DMF为溶剂、添加适量水时,反应在-45℃即可进行,并且当芳环上带有推电子基取代时,反应给出了最好的立体选择性,最高达到93%ee,而芳环上带有吸电子基取代的底物,在一定条件下也可反应,并给出较好结果。通过将一个反应产物转化为已知的氧化吲哚类化合物,我们确定了产物的绝对构型为S。对于芳基溴化物以及其它的一些β-酮酯化合物,在相似的条件下反应也可进行,但不对称选择性相对较差。我们也对反应的机理进行了一些研究,初步认为反应是按照氧化加成/还原消除的机理进行的,并对实验中的一些特殊现象进行了解释。
The transition metal-catalyzed cross-coupling reactions to form sp~2 C-C or C-hetero atom bonds have received considerable attention in the past decades.In comparison with Pd and Ni,copper is a cheaper metal with lower toxicity.Asymmetric carbon-carbon bond cross-coupling reactions,especially the construction of all-carbon quaternary stereo center, are an important part of organic synthesis and still full of challenge.In this dissertation we wish to report our recent investigations on the cross-coupling reactions of aryl halides with activated methylene compounds under the catalysis of CuI and amino acids,and the asymmetricα-arylation reaction of 2-substitutedβ-keto esters.
     In the chapter 2 of this dissertation,we reported the cross-coupling reaction of aryl halides with activated methylene compounds under the catalysis of CuI and amino acid. Using the coupling of 4-iodoanisole with ethyl acetoacetate as a model reaction,we explored the optimized conditions.These conditions were then tested by using several electron-rich or electron-deficient aryl iodides,β-keto esters and diethyl malonates.It was found that most of them were successfully converted to the corresponding products in good to excellent yields.Further studies indicated that aryl bromides under the similar reaction conditions gave moderate to good yields of coupling products.Electron-rich aryl iodides or bromides showed higher reactivities in comparison with electron-deficient ones.We proposed that this reaction might go through the oxidative addition/reductive elimination mechanism.
     In the chapter 3 of this dissertation,we studied the asymmetricα-arylation reaction of 2-substitutedβ-keto esters under the catalysis of CuI and amino acid.After screening substrates,reactants,solvents,ligands and bases,we found that when 2-iodotrifluoroacetanilides were used as the substrates,t-butyl 2-methylacetoacetates as a coupling partner,CuI as the catalyst,L-4-hydroxyproline as the ligand,NaOH as a base, DMF as the solvent and small amount of water as additive,the reactions can be carried out at -45℃to give the corresponding coupling products in good yields and good to excellent enatioselectivity.By converting a coupling product into a known oxindole compound in two steps,we concluded that the absolute configuration of our coupling products is S.We also proposed that this reaction might go through the oxidative addition/reductive elimination mechanism.
引文
1. (a) Tamao, K.; Miyaura, N. Introduction to Cross-coupling Reactions [J]. Topics in Current Chemistry 2002, 219, 1. (b) Prim, D; Campagne, J.-M.; Joseph, D.; Andrioletti, B. Palladium-catalyzed Reactions of Aryl Halides with Soft, non-Organometallic Nucleophiles [J]. Tetrahedron 2002, 58, 2041.
    2. (a) Negishi, E. Palladium- or Nickel-catalyzed Cross Coupling. A New Selective Method for Carbon-carbon Bond Formation [J]. Acc. Chem. Res. 1982, 15, 340. (b) Murahashi, S.-I.; Davies, S. G.Transition Metal Catalyzed Reactions [M]. Blackwell Science, 1999.
    3. Diederich, F.; Stang, P. J. Metal-Catalyzed Cross-Coupling Reactions [M]. Wiely-VCH, Weinheim, 1998.
    4. (a) Horn, K. A. Regio- and Stereochemical Aspects of the Palladium-catalyzed Reactions of Silanes [J]. Chem. Rev. 1995, 95, 1317. (b) Kosugi, M.; Shimazu, K.; Ohtani, A.; Migita, T. Palladium Catalyzed Reaction of Hexabutylditin with Aryl Bromides: Preparation of Negatively Substituted Aryltributyltin [J]. Chem. Lett. 1981, 829. (c) Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(0)-cataIyzed Cross-coupling Reaction of Alkoxydiboron with Haloarenes: a Direct Procedure for Arylboronic Esters [J]. J. Org. Chem. 1995, 60, 7508.
    5. Ullmann, F.; Bielecki, J. Synthesis in the Biphenyl Series. I. [J]. Chem. Ber. 1901, 34, 2174.
    6. Ullmann, R A New Path for Preparing Diphenylamine Derivatives [J]. Chem. Ber. 1903, 36, 2382.
    7. For reviews see: (a) Lindley, J. Copper-assisted Nucleophilic Substitution of Aryl Halogen [J]. Tetrahedron 1984, 40, 1433. (b) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl Bond Formation One Century After the Discovery of the Ullmann Reaction [J]. Chem. Rev. 2002,102, 1359.
    8. Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, R Accelerating Effect Induced by the Structure of a-Amino Acid in the Copper-catalyzed Coupling Reaction of Aryl Halides with α-Amino Acids. Synthesis of Benzolactam-V8 [J] .J. Am. Chem. Soc. 1998,120,12459.
    9. Ma, D.; Xia, C. CuI-catalyzed Coupling Reaction of P-Amino Acids or Esters with Aryl Halides at Temperature Lower Than That Employed in the Normal Ullmann Reaction. Facile Synthesis of SB-214857 [J] Org. Lett. 2001,3, 2583.
    10. (a) Klapars, A.; Antilla, J.; Huang, X.; Buchwald, S. L. A General and Efficient Copper Catalyst for the Amidation of Aryl Halides and the N-Arylation of Nitrogen Heterocycles [J]. J. Am. Chem. Soc. 2001,123, 7727. (b) Wolter, M.; Klapars, A.; Buchwald, S. L. Synthesis of N-Aryl Hydrazides by Copper-catalyzed Coupling of Hydrazides with Aryl Iodides [J]. Org. Lett. 2001, 3, 3803. (c) Antilla, J. C.; Klapars, A.; Buchwald, S. L. The Copper-catalyzed N-Arylation of Indoles [J]. J. Am. Chem. Soc. 2002, 124, 11684. (d) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Copper-catalyzed Coupling of Alkylamines and Aryl Iodides: an Efficient System Even in an Air Atmosphere [J]. Org. Lett. 2002, 4, 581. (e) Kwong, F. Y.; Buchwald, S. L. A General, Efficient, and Inexpensive Catalyst System for the Coupling of Aryl Iodides and Thiols [J]. Org. Lett. 2002, 4, 3517. (f) Gelman, D.; Jiang, L.; Buchwald, S. L. Copper-catalyzed C-P Bond Construction via Direct Coupling of Secondary Phosphines and Phosphites with Aryl and Vinyl Halides [J]. Org. Lett. 2003, 5, 2315. (g) Kiyomori, A.; Marcoux, J.; Buchwald, S. L. An Efficient Copper-catalyzed Coupling of Aryl Halides with Imidazoles [J]. Tetrahedron Lett. 1999, 40, 2657.
    11. (a) Ma, D.; Cai, Q.; Zhang, H. Mild Method for Ullmann Coupling Reaction of Amines and Aryl Halides [J]. Org. Lett. 2003, 5, 2453. (b) Ma, D.; Cai, Q. N,N-Dimethyl Glycine-promoted UUmann Coupling Reaction of Phenols and Aryl Halides [J]. Org. Lett. 2003, 5, 3799. (c) Ma, D.; Cai, Q. L-Proline-promoted Ullmann-type Coupling Reactions of Aryl Iodides with Indoles, Pyrroles, Imidazoles or Pyrazoles [J]. SynLett 2004, 128. (d) Pan, X.; Cai, Q.; Ma, D. CuI/N,N-Dimethylglycine-catalyzed Coupling of Vinyl Halides with Amides or Carbamates [J]. Org. Lett. 2004, 6, 1809. (e) Ma, D.; Liu, F. Cul-catalyzed Coupling Reaction of Aryl Halides with Terminal Alkynes in the Absence of Palladium and Phosphine [J]. Chem. Commun. 2004, 1934. (f)Zhu, W.; Ma, D. Synthesis of Aryl Sulfones via L-Proline-promoted CuI-catalyzed Coupling Reaction of Aryl Halides with Sulfinic Acid Salts.[J].J.Org.Chem..2005,7,2696.
    (g)Cai,Q.;Zou,B.L.;Ma,D.W.Ullmann-type biaryl Ethyl Formation Reaction by Combination of ortho-Substituentand Ligand Effects[J].Angew.Chem.Int.Ed.2006,45,1276.
    12.(a) Deng,W.;Wang,Y.F.;Zou,Y.;Liu,L.;Guo,Q.X.Amino Aid-mediated Goldberg Reactions Between Amides and Aryl Iodides[J].Tetrahedron Lett.2004,45,2311.
    (b)Deng,W.;Zou,Y.;Wang,Y.-F.;Liu,L.;Guo,Q.-X.CuI-catalyzed Coupling Reactions of Aryl Iodides and Bromides with Thiols Promoted by Amino Acid Ligands[J].Synlett 2004,1254.
    13.For reviews,see:(a) Finet,J.-P.;Fedorov,A.Y.;Combes,S.;Boyer,G.Recent Advances in Ullmann Reaction:Copper(Ⅱ) Diacetate Catalyzed N-,O- and S-Arylation Involving Polycoordinate Heteroatomic Derivatives[J].Current Org.Chem.2002,6,597.
    (b) Ley,S.V.;Thomas,A.W.Modern Synthetic Methods for Copper-mediated C(aryl)-O,C(aryl)-N,and C(aryl)-S Bond Formation[J].Angew.Chem.Int.Ed.2003,42,5400.
    (c) Kunz,K.;Scholz,U.;Ganzer,D.Renaissance of Ullmann and Goldberg Reactions-Progress in Copper Catalyzed C-N-,C-O- and C-S-Coupling[J].Synlett 2003,2428.
    (d) Beletskaya,I.P.;Cheprakov,A.V.Metal Complexes as Catalysts for C-C Cross-coupling Reactions[J].Coordination Chemistry Reviews 2004,248,2337.
    (e) Deng,W.;Liu,L.;Guo,Q.-X.Recent Progress in Copper-catalyzed Cross-coupling Reactions[J].Chin.J.Org.Chem.2004,24,150.
    14.(a) Hurtley,W.R.H.Replacement of Halogen α-Bromobenzoie Acid[J].J.Chem.Soc.1929,1870.
    (b) Bruggink,A.;Ray,S.J.;McKillop,A.Copper Catalyzed Arylation of β-Dicarbonyl Compounds:2-(1-Acetyl-2-oxopropyl)benzoic Acid[J].Org.Synth.1978,58,52.For related studies,see:
    (c) Cirigottis,Ritchie,E.;Taylor,W.C.Study on the Hurtley Reaction[J].Aust.J.Chem.1974,27,2209.
    (d) Bruggink,A.;McKillop,A.A Study of the Copper-catalysed Direct Arylation of β-Dicarbonyl Compounds with 2-Bromobenzoic Acids[J].Tetrahedron 1975,31,2607.
    (e)Shinkwin,A.E.;Whish,W.J.D.;Threadgill,M.D.Synthesis of Thiophenecarboxamides,Thieno[3,4-c]pyridin-4(5H)-ones and Thieno[3,4-d]pyrimidin-4(3H)-ones and Preliminary Evaluation as Inhibitors of Poly(ADP-ribose)polymerase(PARP)[J].Bioorg.Med.Chem.1999,7,297.
    (f)Bryson,T.A.;Stewart,J.J.;Gibson,J.M.;Thomas,P.S.;Berch,J.K.Green Heterocycle Synthesis,lsochromenones and Artemidin[J].Green Chem.2003,5,174.
    15.(a) Setsune,J.;Matsukawa,K.;Wakemoto,H.;Kaito,T.Copper(Ⅰ)-promoted Coupling Reaction of Aryl Halides with Sodium Diethylmalonate[J].Chem.Lett.1981,10,367.
    (b) Setsune,J.;Matsukawa,K.;Kaito,T.Synthesis of Benzofuran-2-one Derivatives by Copper(Ⅰ)-promoted Coupling Reactions of o-Bromophenol with Active Methylene Compounds[J].Tetrahedron Lett.1982,23,663.
    (c) Suzuki,H.;Kobayashi,T.;Yoshida,Y.;Osuka,A.A Simple One-Pot Conversion of Aryl Halides into Arylacetonitriles[J].Chem.Lett.1983,12,193.
    (d)Suzuki,H.;Yi,Q.;Inoue,J.;Kusume,K.;Ogawa,T.Synthesis of α-Arylated Phenylsulfonylacetonitriles.A Useful Precursor for Substituted α-Arylalkanoic Acid and Their Derivatives[J].Chem.Lett.1987,16,887.
    (e) Okuro,K.;Furuune,M.;Miura,M.;Nomura,M.Copper-catalyzed Reaction of Aryl Iodides with Active Methylene Compounds[J].J.Org.Chem.1993,58,7606.
    (f) Pivsa-Art,S.;Fukui,Y.;Miura,M.;Nomura,M.Copper-Promoted Reaction of Aryl Iodides with Activated Methine Compounds[J].Bull.Chem.Soc.Jpn.1996,69,2039.
    16.Okuro,K.;Furuune,M.;Miura,M.;Nomura,M.Copper-catalyzed Reaction of Aryl Iodides with Active Methylene Compounds[J].J.Org.Chem.1993,58,7606.
    17.Hennessy,E.J.;Buchwald,S.L.A General and Mild Copper-Catalyzed Arylation of Diethyl Malonate[J].Org.Lett.2002,4,269.
    18.张慧,博士学位论文,氨基酸促进的铜(Ⅰ)催化的乌尔曼反应的研究——芳基卤化物与硫酚(醇)、胺、含氮杂环交叉偶联反应的研究[D].上海:复旦大学,2005.
    19.竺伟,博士学位论文,氨基酸促进的铜催化的芳基卤化物与叠氮化钠、亚磺酸钠及频哪醇硼烷的交叉偶联反应研究[D].上海:复旦大学,2005.
    20.Jiang,Y.;Wu,N.;Wu,H.;He,M.An Efficient and Mild CuI/l-proline-catalyzed Arylation of Acetylacetone or Ethyl Cyanoacetate[J].Syn.Lett.2005,18,2731.
    21.Sau Y.;Yee H.;Cheung H.;Zhou Z.;Kwong F.Room-Temperature Copper-catalyzed α-Arylation of Malonates[J].Org.Lett.2007,9,3469
    22.(a) Douglas,C.J.;Overmann,L.E.Asymmetric Catalysis Special Feature Part Ⅰ:Catalytic Asymmetric Synthesis of All-carbon Quaternary Stereocenters[J].Proc.Nat.Acad.Sci.U.S.A.2004,101,5363.(b) Christoffers,J.;Baro,A.Construction of Quaternary Stereocenters:New Perspectives through Enantioselective Michael Reactions[J].Angew.Chem.,Int.Ed.2003,42,1688.
    23.Luo,W.;Yu,Q.S.;Kulkarni,S.S.;Parrish,D.A.;Holloway,H.W.;Tweedie,D.;Shafferman,A.;Lahiri,D.K.;Brossi,A.;Greig,N.H.Inhibition of Human Acetyland Butyrylcholinesterase by Novel Carbamates of(-)- and (+)-Tetrahydrofurobenzofuran and Methanobenzodioxepine[J].J.Med.Chem.2006,49,2174.
    24.Grubbs,A.W.;Artman Ⅲ,G.D.;Williams,R.M.Concise Syntheses of the 1,7-Dihydropyrano[2,3-g]indole Ring System of the Stephacidins,Aspergamides and Norgeamides[J].Tetrahedron Lett.2005,46,9013.
    25.Marti,C.;Carreira,E.M.Total Synthesis of(-)-Spirotryprostatin B:Synthesis and Related Studies[J].J.Am.Chem.Soc.2005,127,11505.
    26.Kozmin,S.A,,Iwama,T.,Huang,Y.& Rawal.V.H.An Efficient Approach to Aspidosperma Alkaloids via[4+2]Cycloadditions of Aminosiloxydienes:Stereocontrolled Total Synthesis of(±)-Tabersonine.Gram-Scale Catalytic Asymmetric Syntheses of(+)-Tabersonine and(+)-16-Methoxytabersonine.Asymmetric Syntheses of(+)-Aspidospermidine and(-)-Quebrachamine[J].J.Am.Chem.Soc.2002,124,4628.
    27.Spielvogel,D.J.;Buchwald,S.L.NickeI-BINAP Catalyzed Enantioseleetive α-Arylation of α-Substituted γ-Butyrolactones[J].J.Am.Chem.Soc.2002,124,3500.
    28.Bhattacbarya,A,;Dolling,U.-H.;Grabowski,E.J.J.;Karady,S.;Ryan,K.M.;Weinstock,L.Enantioselective Robinson Annelations via Phase-Transfer Catalysis [J].Angew.Chem.Int.Ed.Engl.1986,25,476.
    29.You,S.L.;Hou,X.L.;Dai,L.X.;Zhu,X.Z.Highly Efficient Ligands for Palladium-Catalyzed Asymmetric Alkylation of Ketone Enolates[J].Org.Lett.2001, 3,149-151.
    30.Lebsack,A.D.;Link,J.T.;Overman,L.E.;Steams,B.A.Enantioselective Total Synthesis of Quadrigemine C and Psyeholeine[J].J.Am.Chem.Soc.2002,124,9008.
    31.Cai,Q.;Zou,B.;Ma,D.Mild Ullmann-Type Biaryl Ether Formation Reaction by Combination of ortho-Substituent and Ligand Effects[J].Angew.Chem.Int.Ed.2006,45,1276.
    32.(a) Yutaka,Y.;Yukiyoshi,W.;Shuhei,O.1,3-Oxazines and Related Compounds.ⅩⅢ.Reaction of Aeyl Meldrum's Acids with Sehiff Bases Giving 2,3-Disubstituted 5-Acyl-3,4,5,6-tetrahydro-2H-1,3-oxazine-4,6-diones and 2,3,6-Trisubstituted 2,3-dihydro-1,3-oxazin-4-ones[J].Chem.Pharm.Bull.1987,3.5,1860.(b) Frederic,D.;Francoise,H.;Heic,V.;Chantal,F.;Raphael,D.;Jean-Louis,P.;Christian,C.Synthesis of Two Optically Active Calcium Channel Antagonists Labeled with Carbon-11 for in vivo Cardiac PET Imaging[J].Bioorg.Med.Chem.1997,5,794.
    33.Dalko P.;Moisan L.In the Golden Age of Oganocatalysis[J].Angew.Chem.Int.Ed.2004,43,5138.
    34.(a) Vogl,E.M.;Groger,H.;Shibasaki,M.Towards Perfect Asymmetric Catalysis:Additives and Cocatalysts[J].Angew.Chem.,Int.Ed.1999,38,1570.(b) Dosa,P.I.;Fu,G.C.Towards Perfect Asymmetric Catalysis:Additives and Cocatalysts[J].J.Am.Chem.Soc.1998,120,445.(c) Taylor,M.S.;Jacobsen,E.N.Enantioselective Michael Additions to α,β-Unsaturated Imides Catalyzed by a Salen-Al Complex[J].J.Am.Chem.Soc.2003,125,11204.
    35.Takayuki,Y.;Tomoko,K.;Masazumi,I.;Jun'ichi,U.Remarkable Rate Acceleration of the Solvent-free Baeyer-Villiger Reaction on the Surface of NaHCO_3 Crystals for Sterically Congested Cyclic and Acyclic Ketones[J].Tetrahedron Letters 2002,43,6925-6927.
    36.Monde,K.;Taniguchi,T.;Miura,N.;Nishimura,S.-I.;Harada,N.;Dukor,R.K.;Nafie,L.A.Preparation of Cruciferous Phytoalexin Related Metabolites,(-)-Dioxibrassinin and(-)-3-Cyanomethyl-3-hydroxyoxindole,and Determination of Their Absolute Configurations by Vibrational Circular Dichroism(VCD)[J]. Tetrahedron Lett.2003,44,6017.
    37.Anthony G.M.B.;Hiten G.S.Studies on the Nactins:Total Synthesis of (±)-tert-Butyl 8-O-(tert-butyldimethylsilyl)nonactate[J]J.Org.Chem.1983,48,5017.
    38.Rumi,K.;Tanemasa,N.;Hideki,T.A New Synthetic Method for the Preparation of α,β-Didehydroamino Acid Derivatives by Means of a Wittig-type Reaction.Syntheses of(2S,4S)-and(2R,4R)-4-hydroxyproline[J].Bull.Chem.Soc.Jpn.2002,11,2517.
    39.Itagaki,N.;Kimura,M.;Sugahara,T.;Iwabuchi,Y.Organocatalytie Entry to Chiral Bicyelo[3.n.1]alkanones via Direct Asymmetric lntramolecular Aldolization[J].Org.Lett.2005,7,4185.
    40.Ohtake,H.;Imada,Y.;Murahashi,S.I.Regioselective Synthesis of Nitrones by Deearboxylative Oxidation of N-Alkyl-α-amino Acids and Application to the Synthesis of 1-Azabicyclic Alkaloids[J].Bull.Chem.Soc.Jpn.1999,72,2737.
    41.Kitchin,J.;Bethell,R.C.;Cammack,N.;Dolan,S.;Evans,D.N.;Holman,S.;Holmes,D.S.;McMeekin,P.;Mo,C.L.et al.Synthesis and Structure-Activity Relationships of a Series of Penicillin-Derived HIV Proteinase Inhibitors:Heterocyclic Ring Systems Containing P1' and P2' Substituents[J].J.Med.Chem.1994,22,3707.
    42.(a) Nagasawa,H.T.;Goon,D.J.W.;Muldoon,W.P.;Zera,R.T.2-Substituted Thiazolidine-4(R)-carboxylic Acids as Prodrugs of L-cysteine.Protection of Mice Against Acetaminophen Hepatotoxicity[J].J.Med.Chem.1984,27,591.(b)Refouvelet,B.;Pellegrini,N.;Robert,J.-F.;Crini,G.;Blacque,O.;Kubicki,M.M.Synthesis and Stereochemical Studies of 2-Substituted Thiazolidine-4-carboxamide Derivatives[J].J.Heterocycl.Chem.2000,37,1425.(c) Udo,L.;Dorit,B.;Wilfried,H.;Helmut,M.;Wemer,S.;Wolfgang,H.Orally Active Thrombin Inhibitors.Part 2:Optimization of the P2-moiety[J].Bioorg.Med.Chem.Lett.2006,16,2648.
    43.Ma,C.;Liu,X.;Li,X.;Flippen-Anderson,J.;Yu,S.;Cook,J.M.Efficient Asymmetric Synthesis of Biologically Important Tryptophan Analogues via a Palladium-mediated Heteroannulation Reaction[J].J.Org.Chem.2001,66,4525.
    44.Lizos,D.E.;Murphy,J.A.Concise Synthesis of(±)Horsfiline and(±)Coerulescine by Tandem Cyclisation of lodoaryl Alkenyl Azides[J].Org.BiomoL Chem.2003,1,117
    45.Spivey,A.C.;McKendrick,J.;Srikaran R.Solid-Phase Synthesis of an A-B Loop Mimetic of the CE3 Domain of Human IgE:Macrocyclization by Sonogashira Coupling[J].J.Org.Chem.2003,68,1843.
    46.Gabriele,B.;Salerno,G.;Veltri,L.;Costa,M.;Massera,C.Stereoselective Synthesis of (E)-3-(Methoxycarbonyl)methylene-1,3-dihydroindol-2-ones by Palladium-catalyzed Oxidative Carbonylation of 2-Ethynylanilines[J].Eur.J..Org.Chem.2001,2001,4607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700