阔叶薰衣草芳樟醇合酶基因的克隆与植物表达载体的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阔叶薰衣草(Lanvandula spica)是唇形科(Lamiaceae)薰衣草属(Lanvandula)的多年生草本植物,原产于地中海,耐热、耐湿,全株都能散发出宜人的香味,具有醒目提神、舒缓神经等功效,是薰衣草类较能适应海南高温高湿环境的一种。芳樟醇合酶一般通过植物叶片、花、果实等提取获得,是合成芳樟醇的关键酶,能在亲电机制的条件下将单一底物GPP催化形成单一产物芳樟醇。芳樟醇作为一种天然功能性单萜,是植物精油的主要成分,具有极高的经济价值和药用价值,广泛应用于医药、食品、化妆品和日化等行业。本实验通过对阔叶薰衣草芳樟醇合酶基因的克隆和序列分析,并构建基因转化载体,为热带园林植物中无香味或者香味较淡的物种进行定向遗传改良、培育出色、香、形俱全的优良转基因植物品种奠定基础。主要研究结果如下:
     1、根据芳樟醇合酶同源序列设计出特异性引物,通过RT-PCR技术,成功从阔叶薰衣草叶片中克隆出芳樟醇合酶基因,其cDNA序列全长为1809bp,编码602个氨基酸,具有完整的开放读码框。
     2、将克隆得到的阔叶薰衣草芳樟醇合酶基因与其他芳樟醇合酶基因进行蛋白质序列比对,该序列具有单萜类合酶的所有保守氨基酸功能序列,包括DDXXD以及5端的RR功能基团和(N, D)D(L, I, V)X(S, T)XXXE等高度保守功能域,属于芳樟醇合酶家族。Lslis和Lllis的蛋白二级结构预测结果表明,两者在整体结构上基本保持一致,但Lslis相对于Lllis要少一个α螺旋结构。因此将阔叶薰衣草芳樟醇合酶基因命名为Lslis。
     3、利用植物双元表达载体pCAMBIA1303的CaMV35S启动子和NOS终止子可构成完整表达框的原理,将Lslis的片段插入到pCAMBIA1303载体中,成功构建了植物表达载体。再通过电转法将重组表达载体导入农杆菌LBA4404中,为进一步的Lslis转化植物中的遗传表达研究奠定良好的基础。
Lavandula spica, a kind of perennial herbage originating in Mediterranean, belonging to the lavender from the Family Labiatae, is hot and Submergence tolerance, which is a kind of lavender better adapted to the high temperature and humidity in Hainan. The whole plant of Lavandula spica could emit the pleasant fragrance with the effectiveness of striking refreshing_and relieving nervous. Linalool synthase usually extracted from leaves, flowers, fruit, and so on.It is a key enzyme,which can accept a single substrate geranyl diphosphate and transform it to a single product—linalool,under the condition of electrophilic mechanism. Linalool as a natural functional monoterpenes, is the main component of plant essential oils. So it has very high economic value and medicinal value, which is widely used in medicine, food, cosmetics and daily chemicals industry._In this experiment, the linalool synthase gene was extracted from the leaves of Lavandula spica, then cloning and sequences analysis of linalool synthase gene were performed. Then a plant expression vector of linalool synthase gene was constructed uccessfully. This study was targeted to clone the linalool synthase gene and construct the gene transfer vector, so to lay a foundation for the genetic advance of tropical landscape plants with no fragrance or lighter fragrance species. The main research results were as follows:
     1、According to the linalool synthase homologous sequences, specific primers were designed, then linalool synthase gene was successfully cloned from the leaves of lavandula spica through the RT-PCR technology, which cDNA sequence was1809bp, encoding602amino acids, with a complete open reading frame sequence.
     2、protein sequences of the linalool synthase gene cloned by lavandula spica was compared with others. The sequence has all conserved amino acid function sequences of the monoterpene synthase, including DDXXD and the5'RR functionalgroup and (N, D) D (L, I, V) X (S, T) XXXE and other highly conserved functional domains, belonging to the linalool synthase family. The results of predicted secondary structure for Lllis and Lslis showed that both the mostly structures kept consistent, but Lslis had less a a helix than Lllis. so linalool synthase gene from lavandula spica was named Lslis.
     3、Using the binary expression vector (including CaMV35S promoter and NOS Terminator) of plant expression vector pCAMBIA1303, the sense Lslis plant expression vectors were constructed and transferred into Agrobacterium LBA4404by electroporation.
引文
[1]. Bach TJ, Lichtenthaler HK. Mevinolin:a highly specific inhibitor of microsomal 3-hydroxy-3-methylglutarylcoenzymeA reductase of radish plants[J]. Z Naturforsch, 1982 (37c):46-50.
    [2]. Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C. Is the reaction catalyzed by 3-hydroxy-3-methylglutarylcoenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants[J].Plant Physiology,1995(109):1337-1343
    [3]. Chris C. N. van Schie Michel A. Haring Robert C. Schuurink. Tomato linalool synthase is induced in trichomes by jasmonic acid[J]. Plant Mol Biol.2007,64:251-263.
    [4]. Christian L, Barbara F, Maria F et al, Cloning and functional characterization of three terpene synthasesfrom lavender (Lavandula angustifolia) [J], Archives of Biochemistry and Biophysics.2007,465:417-29.
    [5]. Chu C L.Liu W T.Zhou T. Fumigation of sweet cherries with thymol and acetic acid to reduce postharvest brown rot and blue mold rot [J].Fruits,2001,56:123-130.
    [6]. Colby S M. Alonso W R,Katahira E J,et al.4S-limonene synthase from the oil glands of spearmint (Mentha spicata) cDNA isolation, characterization,and bacterial expression of the catalytically active monoterpene cyclase[J].Bio/Chem,1993.268(31):23016-23024.
    [7]. Dixon RA, Natural products and plant disease resistance[J]. Nature,2001,411:843-847.
    [8]. Dubey N K,Kishore N.Exploitation of higher plant products as natural fumigants[C]. Proceedings of the Fifth International Congress on Plant Pathology.Kyoto(Japan),1988.
    [9]. Dudareva N, Cseke L, Blanc V M, Pichersky E. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower[J]. The Plant Cell,1996,8:1137-1148.
    [10]. Dudareva N.,Pichersky E.,and Gershenzon J., Biochemistry of plant volatiles[J],Plant Physiol.,2004,135(4):1893-1902.
    [11]. Facehini P J,Chavpsll J. Gene family for an elicitor-induced sesqniterpene cyclase in tobacco[J].Ptoc Nail Acad Sci.1992.89:11088-11092.
    [12]. Hyatt DC,Youn B, ZhaoY,et al. Structure of limonene synthase,a simple model for terpenoid cyclase catalysis[J]. Science. USA,2007,104(13):5360-5365.
    [13]. Jun-Wei Jia, John Crock, Shan Lu et al. (3R)-Linalool Synthase from Artemisia annua L.:cDNA isolation, characterization, and wound induction[J].. Biochemistry and Biophysics,1999.372:143-149.
    [14]. Krasnyanski S, May RA, Loskutov A, Ball TM and Sink KC. Transformation of the limonene synthase gene into peppermint(Mentha piperita L)and preliminary studies on the essential oil profiles of single transgenic plants[J].Theor.Appl.Genet,1999, 99:676-682.
    [15]. Lavy M,Zuker A,Lewinsohn E,Larkov O,Ravid U,Vainstein A,Weiss D.Linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene[J].Mol Breeding,2002,9:103-111.
    [16]. Lewinsohn E, Schalechet F, Wilkinson J, Matsui J, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E. Enhanced levels of the aroma and flavour compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits[J]. Plant Physiol,2001,127:1256-1265.
    [17]. Liu W T.Chu C L.Zhou T.Thymol and acetic acid vapors reduce post harvest brown rot of apricot and plums [J].Hort Science,2002,37:151-156.
    [18]. Lucker J, Bouwmeester H J, Schwab W, Blass J, van der Plas LHW, Verhoeven HA. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside[J]. Plant,2001,27(4):315-324.
    [19]. Naoko Masumoto, Miyuki Korin, Michiho Ito,Geraniol and linalool synthases from wild species of perilla [J]. Phytochemistry,2010 (71):1068-1075.
    [20]. Pellegrineshi A, Damon J P,Valtorta'N,et al.Improvement of ornamental characters and fragrance production in lemon-scented geranium through genetic transformation by Agrobacterium rhizogenes[J].Bio/Technology,1994, (12):64-68.
    [21]. Pichersky E, Lewinsohn E, Croteau R. Purification and characterization of S-linalool synthase, an enzyme involved in the production of floral scent in Clarkia breweri[J]. Archives of Biochemistry and Biophysics,1995,316(2):803-807.
    [22]. Sanz C,Olias J M,Perez A G. Aroma biochemistry of fruits and vegetables[M]._New York:Oxford University Press Inc.1997.P125-155.
    [23]. Singh N., Singh R. K., Bhunia A. K etal, Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing escherichia coli O157:H7 on lettuce and baby Carrots[J]. Lebensm.-Wiss. u.-Technol.,2002,35:720-729.
    [24]. Takahashi S, Kuzuyama T, Walanabe H, Seto H. A 1-deoxy-D-xylulose 5-phosphate reductoismerase catalyzingthe formation of 2-C-methyl-D-erythritol 4-phosphate inan alternative nonmevalonate pathway for terpenoid biosynthesis[J]. Proc Natl Acad Sci USA,1998,95:9879-9884.
    [25]. Vasiliki F, Tariq A.A, Thuong T.H. et al. The Tomato Terpene Synthase Gene Family[J].Plant Physiology.2011,157(2):770-789.
    [26]. Villemont E, Dubois F, Sangwan R S, etal. Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia:evidence of an S-phase control mechanism for T-DNA transfer[J]. Planta,1997,201:160-172.
    [27]. Xiuyin C, Yar-Khing Y, Niels J,et al. Characterisation of an (S)-linalool synthase from kiwifruit (Actinidia arguta) that catalyses the first committed step in the production of floral lilac compounds[J]. Functional Plant Biology,2010,37:232-243.
    [28]. Yang Li-mei,Per Mercke,Joop JA et al,Expression in Arabidopsis of a Strawberry Linalool Synthase Gene Under the Control of the Inducible Potato PI2 Promoter[J],Agricultural Sciences in China,2008,7(5):521-534.
    [29]. Yang T,Li J, Wang HX, et al. A geraniol synthase gene from Cinnamomum tenuipilum[J]. Phytochemistry,2005,66(3):285-293.
    [30]. Yoko I, Rachel DR, Eyal F,et al. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil[J],Plant Physoil,2004,136:3724-3736.
    [31]. Zeidler J, Schwender J, Miiller C, et al,. Inhibition of the non-mevalonate 1-deoxy-D-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin[J]. Z Naturforsch,1998,53:980-986.
    [32].陈德新,海南岛热带天然香料发展战略的思考[M].海南香料香精产业发展研讨会,海口,2010.
    [33]. 杜中军,徐兵强,黄俊生,王家保,徐立,一种改进的富含多糖的芒果组织中完整RNA提取方法[J],植物生理学通讯,2005,41(2):202-204.
    [34].郭翠英,蓝色花形成相关基因的cDNA克隆与植物表达载体构建[D],咸阳:西北农林科技大学,2007.
    [35].郝培尧.北京芳香植物资源开发利用初探[J],山东林业科技,2007,4:64-67.
    [36].贺竹梅,刘秋云.生物技术[J],1996,6(1):37-38.
    [37].黄培堂译,J.萨姆布鲁克D.W.拉塞尔著,分子克隆实验指南上册[M],北京:科学出版社,2009,P97.
    [38].黄士诚,张绍扬,芳香植物名录汇编(一)[J],香料香精化妆品,2006,1:44.
    [39].黄玉山,傅建熙,许平安等.植物精油研究进展[J],河南林业科技,1999,19(4):23—26.
    [40].林翔云,天然芳樟醇与合成芳樟醇[J],化学工程与装备,2008,7:21-26.
    [41].刘智,余龙江,李春艳等,磷甘霉素和洛伐它汀处理对中国红豆杉悬浮培养细胞生物合成紫杉醇的影响[J],植物生理与分子生物学学报,2005,31(2):199-204.
    [42].吕季娟,薄荷和留兰香柠檬烯合酶基因的克隆和序列分析[D],成都:四川农业大学,2009.
    [43].罗永明,刘爱华,李琴,植物萜类化合物的生物合成途径及其关键酶的研究进展(续完),江西中医学院学报,2003,2(15):46-49.
    [44].潘瑞炽,植物生理学[M],北京:高等教育出版社,2004:P129.
    [45]. 山蓝,王保莉,张继澍,从富含多糖和多酚的柿果中提取具转录活性RNA的方法,植物生理学通讯,2002,38(5):463-466.
    [46].孙明,李萍,张启翔等.芳香植物的功能及园林应用[J],林业实用技术,2007,(5):46-47.
    [47].孙明,张启翔,李萍.我国芳香植物资源及其园林应用[J],种质资源,2005:9-14.
    [48]. 唐丽,刘有全等,金桂芳樟醇合成酶基因的克隆与序列分析[J].林业科学.2009,45(5):11-19.
    [49].王海波,不同生境两种生态型芦苇Rubisco蛋白分子的差异分析,[D].兰州:兰州大学,2006.
    [50]. 王家保,徐碧玉,杜中军,赖建勋,金志强,改良CTAB法从采后荔枝果皮中提取总RNA.农业生物技术学报.2006,14(6):998-999.
    [51].王建华,王汉忠.果蔬芳香物质的研究方法[J].山东农业大学学报,1996,27(2):219-226.
    [52].王镜岩,生物化学[M].北京:高等教育出版社,2002.
    [53]. 吴卓珈,徐哲民,李春涛.芳香植物研究进展[J],安徽农业科学,2005,33(12):2393-2396.
    [54].杨献光,齐志广,赵宝存等.碱裂解法提取质粒DNA的研究[J],生物技术通报,2003,6:24-26.
    [55].岳跃冲,范燕萍,植物萜类合成酶及其代谢调控的研究进展[J],园艺学报.
    [56].张慧,张杰,刘明.芳香疗法溯源及中药精油的研究进展[J],中医研究,2005,10(18):62-64.
    [57].张吉通,薰衣草及其栽培[J],经济作物,2003,4:25.
    [58].张雪荣.薰衣草芳樟醇合成酶基因的克隆、功能鉴定及转基因技术的研究[D].呼和浩特:内蒙古农业大学,2007.
    [59]. 张婷,邹天才,刘海燕.贵州芳香植物资源及其开发利用的探讨[J],贵州林业科技,2009,37(2):18-27.
    [60].张雅琼,郭华春.魔芋叶片中4种总RNA提取方法的比较[J],分子植物育种.2010,8(1):196--200.
    [61].赵印泉,周斯建,彭培堂等,植物花香代谢调节与基因工程研究进展[J],热带亚热带植物学报,2011,19(4):381-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700