币族及铁族金属表面增强红外吸收基底的湿法构造与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当分子吸附在纳米岛状结构的金属颗粒表面上,红外吸收信号得到10—1000倍显著的增强,这一现象被称为表面增强红外吸收效应(Surface-enhanced Infrared Absorption Effect,简称SEIRA)。该效应的发现促进了红外光谱在表面化学及分析化学研究中的应用,表面增强红外光谱(SEIRAS)由于其具有表面灵敏度高、选律简单,可以应用于金属—液(气)相界面的分子级别的实时研究。但是SEIRAS技术远不如与其姊妹技术—表面增强拉曼技术(SERS)那样发展迅速、应用广泛,主要原因是:
     首先,金属纳米颗粒的形状、尺寸,及相互连接程度制约着SEIRA效应的大小,构造表面纳米结构可控的SEIRA活性基底具有挑战性。其次,表面电化学是电化学研究的热点之一,如何制备SEIRA效应强和稳定性高、导电性好,以及电化学响应合理的金属纳米薄膜电极也是开展电化学SEIRAS研究的关键和难点。红外窗口上金属薄膜的传统制备主要采用真空蒸镀和溅射等干法,仪器费用高、耗时,样品容易被污染,光谱重现性差,并且易出现双极和谱峰扭曲的现象。而现有的湿法镀膜技术单调、种类有限,特别是无法获得具有ATR-SEIRA活性的铁族金属(铁,钴,镍)薄膜电极。
     本论文拟主要针对以上问题,研究如何应用湿法在硅表面上构造各类具有SEIRA活性的新型纳米金属薄膜,拓宽制膜技术和SEIRAS的应用领域,尤其开展铁族金属薄膜电极上的现场ATR-SEIRAS研究。我们提出并实现了制备币族金属薄膜的通用方法—“种子生长法”以及拓展“两步全湿法”到铁族金属膜的制备,并且深入研究了这些电极表面的吸附与反应;我们还结合纳米颗粒的合成和表面组装,在薄硅片上制备了尺寸可调的金和银纳米有序薄膜,探索其作为透射模式SEIRAS基底的可行性。
     主要研究内容小结如下:
     1提出一种用于SEIRAS研究的二维有序和结构可控的金纳米薄膜制备方法。
     构造二维有序可控纳米金属可提供SEIRA机制的研究平台。文献上报道的SEIRA基底,具有表面聚集程度及表面粗糙度难控制的缺点,而近年来单层自组装技术的发展为解决上述问题提供了可能。我们采用硅上羟基化后偶联氨基硅烷粘结一层不同尺寸的纳米金溶胶,制备二维有序可控的SEIRA基底。该方法操作简单,基底易于调控,有利于了解金属纳米结构与SEIRA关系并探索其机制。
     我们还初步提出种子生长法制备金薄膜,具有较小尺寸的纳米溶胶作为之后化学镀的催化种子层,在含有氯金酸和羟胺的水溶液中,通过调控生长时间可得到不同颗粒大小、聚结度和膜厚度的金膜。这些不同阶段得到的金纳米膜可以用于透射或现场电化学内反射表面红外研究,并呈现可调控的SEIRA效应。
     上述方法制得的金纳米薄膜具有较强的SEIRA效应,过程无氟无钯,降低了在还原过程中引入其他金属杂质的可能性,它有希望成为理论和实际研究中的一类新型和重要的SEIRAS基底。
     2具有SEIRA效应的银纳米膜(电极)的“种子生长法”制各及应用
     我们发展了上一节中的“种子生长法”,用于制备硅上Ag纳米薄膜(含电极)的制备。首先由两种路径获得具有SEIRA活性的银纳米品种,一是基于银溶胶粒子在硅表面的自组装,二基于硅在硝酸银和氢氟酸混合溶液中形成的银纳米粒子层。红外透射实验证明通过该两种路径均能获得较高SEIRA效应的Ag基底。后者更快速方便、效果更佳,有望成为一种红外传感器。我们进而利用“种子生长法”在硅基底上制备银纳米薄膜电极:两种路径形成的银晶种经过无电镀后形成可导电的银膜,两种银膜电极具有和本体电极可比性,均具有较好的SEIRA活性,为现场ATR-SEIRAS研究Ag电极上的吸脱附创造了前提条件。ATR-SEIRAS的增强机理及选律简单,无需对Ag电极进行类似于SERS研究中的ORC粗糙处理,呈现出良好的电极电位稳定性,更方便可靠地判断吡啶分子在银电极表面的吸附构型。
     3铁族电极ATR-SEIRAS的拓展与应用
     铁族金属(镍、钴、铁)电极在电催化和腐蚀研究具有重要地位,有必要拓展ATR-SEIRAS方法到其上的现场研究。为此需要在红外窗片上制备具有SEIRA活性的铁族金属薄膜电极。首先在半圆硅柱的反射面上化学镀上一层60nm厚的Au膜底层,后在其上恒电位沉积几无针孔的数十纳米厚的Ni、Fe和Co外层,选择CO为探针分子,检验上述膜的SEIRA效应,并且较详细地研究吸附CO的电氧化动态过程。以镍电极为例,我们不仅实时获得了信噪比高、单向无异常的CO吸收信号,而且检测到氢键遭破坏的界面自由水信号,发现线式及桥式CO吸附模式的转换,观测到CO在镍氧化物上的吸附峰。
     我们应用ATR-SEIRAS技术从分子水平上获得有机分子特别是缓蚀分子(苯并三氮唑)在铁族电极表面的吸附信息,为腐蚀防护机制研究提供了新的分析工具。我们还利用该项技术确定了模型分子吡啶在Ni、Fe电极上吸附构型。
     4“种子生长法"制备金、银膜的特殊应用拓展
     非金属基底上涂覆金属技术(主要蒸镀和溅射)在工业上得到广泛的应用,但是对某些特殊表面,如可作为流动分析用毛细管内壁和遥感用的光纤端面上的金属沉积,以上方法都不适合。采用上述“种子生长法”在较毛细管内壁成功沉积金属,可满足各种形状管道的加工要求,而且所得的金属层均匀连续、厚度可调快速、成本低。“种子生长法”还成功应用于对光纤传感器件的端面镀上金、银膜,反射率也优于蒸镀膜,表明这种新型的“光纤端面金属膜形成技术”具有很好推广前景。
     总之,本论文工作在解决阻碍SEIRAS拓展与应用的几个重要问题做了一些有益的探索,初步揭示了SEIRAS方法是表面电化学、腐蚀、分析化学和纳米科学研究领域中的重要分析工具。希望本论文工作能为发展SEIRAS成为一种与SERS相媲美的一种普及性研究方法奠定基础。
Molecules adsorbed on metal island films or metal colloids exhibit 10-1000 times more intense infrared absorption than would be expected from conventional measurements without metals. This effect is called surface-enhanced infrared absorption (SEIRA), the discovery of which promotes the application of infrared spectroscopy in surface chemistry and analytical chemistry. Owing to its high signal sensitivity and simple surface selection rule, SEIRAS has been regarded as an important spectroscopic method for in situ characterization of surface adsorption and reaction at metal-electrolyte as well as metal-ambient interfaces. However, SEIRAS has not yet been developed to an extent as compared to its counterpart surface enhanced Raman spectroscopy (SERS) in term of its application in surface trace analysis and interfacial electrochemistry, probably due to the following difficulties.
     The SEIRA-activity greatly depends on the morphology of the nanofilm such as the particle size, proximity and aggregation. So the fabrication of nano-structured metal films with tunable size, shape and proximity is a challenging issue for exploring and exploiting SEIRA effect. Surface electrochemistry is a very important and relatively new interdiscipline that attracts the attention of many chemists. The prerequisite for practicing electrochemical ATR-SEIRAS is to fabricate metallic nanofilm electrodes which possess simultaneously high SEIRA activity, stability and reasonable electrochemical responses. Although dry processes such as evaporation or sputtering in vacuum have predominantly been used in depositing various metals on IR windows in the SEIRAS measurements, several disadvantages exist such as the requirement of a high-cost vacuum evaporator, time-consuming operation, sample contamination by organic species, poor enhancement reproducibility, and the severely distorted spectra. Before our project, the success of the wet process was restricted to very few metals and tactics. In particular, the Fe-group metal nanofilm electrodes with ATR-SEIRA activity was not achieved.
     To address the problems mentioned above, we aim to develop more flexible wet processes to fabricate new SEIRA-active templates of different kinds, and to broaden the application areas of SEIRAS with an emphasis on extending in situ ATR-SEIRAS to practically important Fe group metal electrodes. In this thesis, we present a ubiquitous "seeded-growth approach" to prepare SEIRA-active coinage metal substrates for ambient and electrochemical applications, and extended the "two-step wet process" to prepare nanofilm electrodes of Fe group metals. With these templates, in situ ATR-SEIRAS investigation of the adsorption and reaction at the desired electrodes were carried out. By means of colloid synthesis and surface self-assembly, structure-tunable Au and Ag nanoparticle films were fabricated on the silicon wafer, the feasibility of these templates in transmission SEIRAS was probed.
     Main research topics of the thesis are summarized as follows:
     (1) Fabrication of Structure-Tunable and SEIRA-active Au Nanofilms on Si
     Structure-tunable Au nanoparticle films provide a platform for studying the mechanism of SEIRA effect. Virtually no reports on controlling surface roughness and aggregation of nanoparticles have been found in SEIRAS measurements, and thus poor reproducibility in SEIRA effect can be expected. The strategy of self-assembly on Si has been adapted to solve the above-mentioned problems. We demonstrate a wet process that can be used to fabricate nanoscale-tunable SEIRA-active template by self-assembling two-dimensional arrays of colloidal Au particles using the APTMS as the organic glue. This process is simple and favorable for controlling the surface morphology of the substrate, in favor of understanding the size and spacing dependent SEIRA effect.
     The further growth of initial self-assembled Au nuclei with subsequent electroless deposition in a gold-plating bath with hydroxylamine as the reducing agent will increase the mass thickness of the Au nanofilm. By controlling the plating time, the nanoparticle size, interparticle spacing and aggregation state (thus conductivity) can be readily tuned. The Au nanofilm fabricated with the above seeded-growth tactics can serve as good SEIRA templates both in transmission SEIRAS and electrochemical ATR-SEIRAS measurements.
     This unique wet process does not require corrosive and reactive Fˉand Pd nuclei layers for the deposition to proceed, thus preventing the co-deposition of unwanted metals. It is expected the strategy can be a useful alternate wet process for preparing SEIRA-tunable substrate for both phenomenological and practical viewpoint.
     (2) Seeded-Growth Approach to Fabrication of Silver Nanoparticle Films on Silicon for SEIRAS
     The seeded-growth tactics proposed in the above section was extended to fabricate the Ag nanofilm on Si. An Ag seed layer on Si has been attained either by self-assembly of Ag colloids on aminosilanized Si surfaces or deposition of Ag discrete nanoparticles from reduction of Ag~+ in a HF-bearing solution on Si surfaces. The two kinds of the substrates can serve as good enhancement amplifier in the transmission experiment. It should be noted that the second seeding process is more convenient and reproducible, and thus be promising for potential IR sensor application.
     The initial immobilizing discrete Ag nanoparticles on Si as catalytic seeds followed by further growth of Ag nanofilms can produce ATR-SEIRA active Ag nanofilm electrodes. Conductive, adhesive and SEIRA-active Ag films served as the working electrode to examine the adsorption configuration of pyridine by in situ ATR-SEIRAS measurement. Owing to simple surface selection rule, stable SEIRA effect with potential excursion, and needless ORC pretreatment in Clˉ-containing electrolytes, the end-on adsorption configuration of pyridine on Ag electrode can be deduced in a straightforward and reliable way.
     (3) Extension of in situ ATR-SEIRAS to Fe-Group Metal Electrodes
     It is of significant interest to investigate electrocatalytic reaction and corrosion inhibition on Fe-group metal electrodes. The two-step wet process strategy makes it possible for this kind of in situ ATR-SEIRAS study. The strategy combines the initial electroless deposition of an 60-nm-thick Au underlayer on Si with subsequent electrodeposition of the desired Fe group metal overlayers with tens nanometer in thickness. The SEIRA effects of the as-deposited Ni, Fe and Co nanofilms were examined with probe molecule CO. Greatly enhanced IR absorption was detected while maintaining unipolar and normally directed bands. The real-time monitoring of CO electroxidation on Ni nanofilm electrode was cited as an example here. The series of spectroscopic data reveal that the active participation of coadsorbed free H_2O molecules, the conversion of bridge to linear CO and as well as the discovery of CO_(Ni)~o.
     Meanwhile, we are interested in applying ATR-SEIRAS to probe the interfacial structures of adsorbed aromatic molecules on Fe-group metal electrodes. In this regard, benzotriazole film formation and its inhibition effect on Fe electrode were investigated by in situ ATR-SEIRAS. In addition, the adsorption configurations of pyridine on Ni and Fe electrodes were clarified.
     (4) Other Practical Applications of the "Seeded-Growth Fabrication" Tactics
     Metal coating is of wide interest in the industry, evaporation and sputtering are mostly used for nonconductive substrates of simple shapes. However, in the special cases like the coating on inner wall of a capillary for the flow detection and on the ends of silica fiber for the remote control, the vacuum dry process is not applicable or costly. The successive deposition of metals inside the fine capillary with seeded-growth method proved to be convenient and simple to for capillaries of various shapes, and the resultant Au or Ag layer is uniform and easily-controlled in thickness.
     The seeded growth process was also successfully applied to deposit Au and Ag film on the end of the fiber sensors with high reflectivity comparable to and even better than that made by sputtering or evaporation. What's more it is much more cost-effective and material-saving.
     In summary, the present work was made to explore how to overcome the difficulties which limited the development and application of SEIRAS in the past years. The thesis reveals that SEIRAS, especially ATR-SEIRAS is an important analytical tool not only in surface chemistry, analytical chemistry and nano-science, but also in corrosion and interfacial electrochemistry. We hope that this work has made useful contribution to the development of SEIRAS into a general tool in phenomenological and practical viewpoint.
引文
[1] A. Hartstein, J. R. Kirtley, J. C. Tsang. Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers [J]. Phys. Rev. Lett., 1980, 45: 201-204.
    [2] M. Osawa. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy [J]. Bull. Chem. Soc. Jpn., 1997, 70: 2861-2880.
    [3] A. Hatta, T. Ohshima, W. Suetaka. Observation of the enhanced infrared-absorption of para-nitrobenzoate on Ag island films with an ATR technique [J]. Appl. Phys. A-Mater., 1982, 29(2): 71-75.
    [4] A. Hatta, Y. Suzuki, W. Suetaka. Infrared-absorption enhancement of monolayer species on thin evaporated Ag films by use of a Kretschmann configuration-evidence for 2 types of enhanced surface electric-fields [J]. Appl. Phys. A-Mater., 1984, 35(3): 135-140.
    [5] G. Q. Lu, S. G. Sun, S. P. Chen. In Electrode Processes Ⅵ, A Wieckowski, K Itaya, (Eds),The Electrochemical Society, Inc., 1996, PV 96-8: 436-445.
    [6] G. Q. Lu, S. G. Sun, L. R. Cai, et al. In situ FTIR spectroscopic studies of adsorption of CO, SCN~-, and poly (o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd, and Rh: Abnormal infrared effects (AIREs)[J]. Langmuir, 2000, 16: 778-786.
    [7] S. G. Sun. Abnormal infrared effects of nanometer-scale thin film material of platinum group metals and alloys at electrode-electrolyte interfaces, Chapter 21 in Catalysis and Electrocatalysis of nanoparticles[M], E. R. Savinova, C. G. Vayenas and A. Wieckowski(Eds), Marcel Dekker. Inc., New York, 2003.
    [8] M. S. Zheng, S. G. Sun, S. P. Chert. Abnormal infrared effects and electrocatalytic properties of nanometer scale thin film of PtRu alloys for CO adsorption and oxidation[J]. J. Appl. Electrochem., 2001, 31: 749-757.
    [9] G. Q. Lu, S. G. Sun, S. P. Chen et al. Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy[J]. J. Electroanal. Chem., 1997, 421: 19-23.
    [10] H. Gong, S. G. Sun, J. T. Li, et al. Surface combinatorial studies of IR properties of nanostructured Ru film electrodes using CO as probe molecule[J]. Electrochim. Acta, 2003, 48:2933-2942.
    [11] G. Q. Lu, L. R. Cai, S. G. Sun et al. In situ FTIR spectroscopic studies of CO adsorption on electrodes of nanometer-thin layer of Pt-Ru and Pt-Pd surface alloys[J]. Chinese Sci. Bulletin,1999, 44(11): 1470-1473.
    [12] M. S. Zheng, S. G. Sun. In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions[J]. J. Electroanal. Chem.,2001, 500: 223-232.
    [13] Z. Chert, S. G. Sun, N. Ding. Abnormal infrared effects of nanometer scale thin film material of PtPd alloy in CO adsorption[J]. Chinese Sci. Bulletin, 2001,46:1439-1442.
    [14] W. G. Lin, S. G. Sun, Z. Y. Zhou, et al. Abnormal infrared effects of nanostructured rhodium thin films for CO adsorption at solid/gas interfaces[J]. J. Phys. Chem. B, 2002, 106: 11778-11783.
    [15] G. Orozco, C. Gutierrez. Adsorption and electro-oxidation of carbon monoxide, methanol, ethanol and formic acid on osmium electrodeposited on glassy carbon[J]. J. Electroanal. Chem., 2000, 484: 64-72.
    [16] R. Ortiz, A. Cuesta, O. P. Marquez, et al. Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates[J]. J. Electroanal. Chem., 1999, 465: 234-238.
    [17] 贡辉,陈卢培,孙安刚等.阵列Pt微电极上CO吸附的原位显微FTIR反射光谱研究[J].科学通报,2001,46:996-998。
    [18] W. Chen, S. G. Sun, Z. Y. Zhou. IR optical properties of Pt nanoparticles and their agglomerates investigated by in situ FTIR using CO as the probe molecule[J]. J. Phys. Chem. B,2003, 107: 9808-9812.
    [19] U. Fano. Effects of configuration interaction on intensities and phase shifts[J]. Phys. Rev.,1961, 6: 1866-1878.
    [20] Y. Zhu, H. Uchida, M. Watanabe. Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated reflection technique[J]. Langmuir, 1999, 15: 8757-8764.
    [21] O. Krauth, G. Fahsold, A. Pucci. IR-spectoscopy of CO on iron ultrathin fihns[J]. J. Mol. Struct., 1999, 482-483: 237-240.
    [22] O. Krauth, G. Fahsold, A. Pucci. Asymmetic line shape and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001)[J]. J. Chem. Phys., 1999, 110(6): 3113-3117.
    [23] O. Krauth, G. Fahsold, N. Magg, et al. Anomalous infrared transmission of adsorbates on ultrathin metal films: Fano effect near the percolation threshold[J]. J. Chem. Phys., 2000, 113(15): 6330-6333.
    [24] A. E. Bjerke, P. R. Griffiths, W. Theiss. Surface-enhanced infrared absorption of CO on platinized platinum[J]. Anal. Chem., 1999, 71: 1967-1974.
    [25] M. Osawa, K. Ataka, K. Yoshii, et al. Surface-enhanced infrared spectroscopy: The origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles[J]. Appl. Spectrosc., 1993, 47(9): 1497-1502.
    [26] R. K. Chang and T. E. Furutak (Eds), 'Surface Enhanced Raman Scattering', Plenum, New York (1982).
    [27] H. Metiu.[J]. Prog. Surf. Sci., 1984, 17: 153.
    [28] M. Moskovits.[J]. Rev. Mod. Phys., 1985, 57: 783.
    [29] Y. Nakao and H. Yamada. Enhanced infrared ATR spectra of surface layers using metal films[J]. Surf. Sci., 1986, 176(1-3): 578-592.
    [30] R. Aroca and B. Price. A new surface for surface-enhanced infrared spectroscopy: Tin island films[J] J. Phys. Chem. B, 1997, 101(33): 6537-6540.
    [31] T. Yoshidome, T. Inoue and S. Kamata. Intensity enhancement of the infrared transmission spectra of p-nitrobenzoic acid by the presence of the Pb films[J] Chem. Lett., 1997, 6: 533- 534.
    [32] G. Q. Lu, S. G. Sun, S. P. Chen and L. R. Cal. Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy[J] J. Electroanal. Chem., 1997, 421(1-2): 19-23.
    [33] S. Sato, K. Kamada and M. Osawa. Surface-enhanced IR absorption (SEIRA) of CO adsorbed on small Pt particles deposited on an island Au film[J]. Chem. Lett., 1999, 1: 15-16.
    [34] Y. Zhu, H. Uchida and M. Watanabe. Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated total reflection technique[J] Langmuir, 1999, 15(25): 8757-8764.
    [35] R. Oritz, A. Cuesta, O. P. Marquez, J. Marquez, J. A. Mendez and C. Gutierrez. Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates[J]. J. Electroanal. Chem., 1999, 465(2): 234-238.
    [36] M. Watanabe, Y. Zhu and H. Uchida. Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy[J]. J. Phys. Chem., 2000, 104(8): 1762-1768.
    [37] Y. Nishikawa, K. Fujiwara, K. Ataka and M. Osawa. Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface-analysis of semiconductors, glass, and polymers[J]. Anal. Chem., 1993, 65(5): 556-562.
    [38] P. Dumas, R. G. Tobin, P. L. Richards. Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy: Ⅰ. Silver[J]. Surf. Sci., 1986, 171, 555-578.
    [39] S. Badilescu, P. V. Ashrit, V. V. Truong. Enhanced infrared attenuated-total-reflection spectra of p-nitrobenzoic acid with Ag films[J]. Appl. Phys. Lett., 1988, 52: 1551-1553.
    [40] S. Badilescu, P. V. Ashrit, V. V. Truong, et al. Enhanced infrared ATR spectra of o-nitrobenzoic, m-nitrobenzoic and p-nitrobenzoic acid with Ag films[J]. Appl. Spectrosc., 1989. 43(3): 549-552.
    [41] G. T. Merklin, P. R. Griffiths. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films[J]. Langmuir, 1997, 13(23): 6159-6163.
    [42] H. Uchida. Preparation and optical nonlinearity ofquantized Inas nanocrystals[J]. Chem. Mater., 1993, 5(5): 716-719.
    [43] H. Uchida, C. J. Curtis, P. V. Kamat, et al. Optical-properties of Gaas Nanocrystals[J]. J. Phys. Chem., 1993, 96(3): 1156-1160.
    [44] S. A. Bilmes, J. C. Rubim, A. Otto, et al. SERS from pyridine adsorbed on electrodispersed platinum electrodes[J]. Chem. Phys. Lett., 1989, 159(1): 89-96.
    [45] Z. Q. Tian, B. Ren, B. W. Mao. Extending surface Raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces[J]. J. Phys. Chem., 1997, 101(8): 1338-1346.
    [46] Z. Q. Tian, J. S. Gao, B. Ren, et at. Can surface Raman spectroscopy be a general technique for surface science and electrochemistry?[J]. J. Raman Spectrosc., 1998, 29(8): 703-711.
    [47] B. Ren, X. Q. Li, Z. Q. Tian. Surface Raman spectroscopy as a versatile technique to study methanol oxidation on rough Pt electrodes[J]. Electrochim. Acta, 2000, 46(2-3): 193-205.
    [48] M. Osawa and M. Ikeda. Surface-enhanced infrared absorption of para-nitrobenzoic acid deposited on silver island films-contributions of electromagnetic and chemical mechnisms[J]. J. Phys. Chem., 1991, 95(24): 9914-9919.
    [49] K. Ito, K. Hayashi, Y. Hamanaka, et al. Infrared and Raman scattering spectroscopic study on the structures of Langmuir-Blodgett monolayers containing a merocyanine dye[J]. Langmuir, 1992, 8(1): 140-147.
    [50] Y. Nishikawa, K. Fujiwara and T. Shima. Qualitative analysis of nanogram samples with Fourier transform infrared transmission surface electromagnetic wave spectroscopy[J]. Appl. Spectrosc., 1990, 44(4): 691-694.
    [51] Y. Nishikawa, K. Fujiwara and T. Shima. A study on the qualitative and quantitative analysis of nanogram samples by transmission infrared spectroscopy with the use of silver island films[J]. Appl. Spectrosc., 1991, 45(5): 747-751.
    [52] R. Kellner, B. Mizaikoff, M. Jakusch, H. D. Wanzeneb ock and N. Weissenbacher. Surface-enhanced vibrational spectroscopy: A new tool in chemical IR sensing?[J]. Appl. Spectrosc., 1997, 51(4): 495-503.
    [53] S. Sato and T. Suzuki. Study of surface-enhanced IR absorption spectroscopy over evaporated Au films in an ultrahigh vacuum system[J]. Appl. Spectrosc., 1997, 51(8): 1170-1175.
    [54] E. Johnson and R. Aroca. Surface-enhanced infrared spectroscopy of monolayers[J]. J. Phys. Chem., 1995, 99(23): 9325-9330.
    [55] H. D. Wanzenbock, B. Mizaikoff, N. Weissenbacher and R. Kellner. Surface enhanced infrared absorption spectroscopy (SEIRA) using external reflection on low-cost substrates[J]. Fresenius' J. Anal. Chem., 1998, 362(1): 15-20.
    [56] Y. Nishikawa, T. Nagasawa, K. Fujiwara and M. Osawa. Silver island films for surface-enhanced infrared absorption spectroscopy-effect of island morphology on the absorption enhancement[J]. Vib. Spectrosc., 1993, 6(1): 43-53.
    [57] T. Wadayama, O. Suzuki, Y. Suzuki and A. Hatta. lnfrared absorption enhancement of p-cyanobenzoic acid on silver island films deposited on oxidized and hydrogen-terminated Si(100) surfaces[J]. Appl. Phys. A, 1997, 64(5): 501-506.
    [58] W. B. Cai, L. J. Wan, H. Noda, et al. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy [J]. Langmuir, 1998, 14 (24): 6992-6998.
    [59] H. Miyake, S. Ye, M. Osawa. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry [J]. Electrochem. Commun., 2002, 4(12): 973-977.
    [60] A. Hatta, Y. Chiba and W. Suetaka. Infrared absorption study of absorbed species at metal/water interface by use of the Kretschmann configuration [J]. Surf. Sci., 1985, 158(1-3): 616-623.
    [61] Y. X. Diao, M. J. Han, L. J. Wan, et al. Adsorbed structures of 4, 4 '-bipyridine on Cu(111) in acid studied by STM and IR [J]. Langmuir, 2006, 22(8): 3640-3646.
    [62] H. Miyake, M. Osawa. Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution [J]. Chem. Lett., 2004, 33(3): 278-279.
    [63] M. Osawa, K. Ataka, M. Ikeda, H. Uchihara and R. Namba. [J]. Anal. Sci., 1991, 7 (Suppl.): 503.
    [64] Y. Suzuki, K. Sagisaka and A. Hatta. Infrared-absorption enhancement of species at the lithium metal electrolytic solution interface [J] Appl. Surf. Sci., 1995, 84(1): 1-7.
    [65] R. Aroca and R. Bujalski. Surface enhanced vibrational spectra of thymine [J]. Vib. Spectrosc., 1999, 19(1): 11-21.
    [66] 李巧霞,严彦刚,徐群杰.镉电极上的衰减全反射表面增强红外光谱[J].高等学校化学学报,2006,27(12):2414-2416.
    [67] A. Miki, S. Ye and M. Osawa. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions [J]. Chem. Commun., 2002, 1500-1501.
    [68] Y. G. Yan, Q. X. Li, S. J. Huo, et al. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces [J]. J. Phys. Chem. B, 2005, 109(16): 7900-7906.
    [69] 严彦刚,李巧霞,霍胜娟.铂和钌纳米电极的全湿法制备及表面增强红外效应[J],化学学报,2005,63(6):545-549。
    [70] H. Miyake, E. Hosono, M. Osawa. Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes [J]. Chem. Phys. Lett., 2006, 428(4-6): 451-456.
    [71] M. Futamata and L. Q. Luo. Adsorbed water and CO on Pt electrode modified with Ru [J]. J. Power Sources, 2007, 164 (2): 532-537.
    [72] T. R. Jensen, R. P.V. Duyne, S. A. Johnson and V. A. Maroni. Surface-enhanced infrared spectroscopy: A comparison of metal island films with discrete and nondiscrete surface plasmons [J]. Appl. Spectrosc., 2000, 54(3): 371-377.
    [73] N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seugling and J. C. A. Foss. Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene [J]. J. Phys. Chem. B, 1998, 102(2): 361-371.
    [74] Osawa, M. In Handbook of Vibrational Spectroscopy Chalmers, Chalmers J. M., Griffiths, P. R.,( Eds.); John Wiley & Sons: Chichester, U.K., 2002; Vol. 1, pp785-799.
    [75] H. D. Wanzenbock, B. Mizaikoff, N. Weissenbacher and R. Kellner. Multiple internal reflection in surface enhanced infrared absorption spectroscopy (SEIRA) and its significance for various analyte groups [J]. J. Mol. Struct., 1997, 410-411: 535-538.
    [76] F. Maroun, F. Ozanam, J. N. Chazalviel and W. Theiss. In situ infrared investigation of metals electrodeposited for SEIRAS[J]. Vib. Spectrosc., 1999, 19(2), 193: 193-198.
    [77] A. Rodes, J. M. Orts, J. M. Perez, J. M. Feliu, A. Aldaz. Sulphate adsorption at chemically deposited silver thin film electrodes: time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy[J]. Elctrochem. Commun. 2003, 5(1): 56-60.
    [78] J. M. Delgado, J. M. Orts, A. Rodes. ATR-SEIRAS study of the adsorption of acetate anions at chemically deposited silver thin film electrodes[J]. Langmuir 2005, 21(19): 8809-8816.
    [79] S. J. Huo, Q. X. Li, Y. G. Yan, et al. Tunable surface-enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth of colloidal particles[J]. J. Phys. Chem. B, 2005, 109(33): 15985-15991.
    [80] S. J. Huo, X. K. Xue, Q. X. Li, et al. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy[J]. J. Phys. Chem. B, 2006, 110(51): 25721-25728.
    [81] H. F. Wang, Y. G. Yan, S. J. Huo. Wet process fabrication of Cu-on-Si electrodes for In situ SEIRAS Application[J]. Electrochim. Acta., 2007, 52(19): 5950-5957.
    [82] S. Y. Kang, I. C. Jeon, and K. Kim. Infrared absorption enhancement at silver colloidal particles[J]. Appl. Spectrosc., 1998, 52(2): 278-283.
    [83] A. A. Kamnev, L. A. Dykman, P. A. Tarantilis and M. G. Polissiou. Spectroimmunochemistry using colloidal gold bioconjugates[J]. Biosci. Rep., 2002, 22(5-6): 541-547.
    [84] C. Domingo, J. V. Garcia-Ramos, S. Sanchez-Cortes, and J. A. Aznarez. "SERS and SEIR Joint Studies on Gold, Silver and Copper Nanostructures", in Proceedings of the ⅩⅧ ICORS(John Wiley and Sons, New York, 2002), pp.295.
    [85] A. Bewick; K. Kunimatsu; B. S. Pons, J. W. Russell, Electrochemically Modulated Infrared-Spectroscopy (Emirs)-Experimental Details[J]. J. Electroanal. Chem., 1984, 160(1-2): 47-61.
    [86] A. Bewick, K. Kunimatsu, B. S. Pons. Infrared-spectroscopy of the electrode-electrolyte interphase[J]. Electrochim. Acta, 1980, 25(4): 465-468.
    [87] A. Bewick, K. Kunimatsu. Infrared-spectroscopy of the electrode-electrolyte interphase[J]. Surf. Sci., 1980, 101(1-3): 131-138.
    [88] R. G. Greenler. Infrared study of adsorbed molecules on metal surfaces by reflection techniques[J]. J. Chem. Phys., 1966, 44(1): 310-314.
    [89] R. J. Nichols. 'IR Spectroscopy of Molecules at the Solid-Solution Interface', in "Adsorption of Molecules at Metal Electrodes", eds. J. Lipowski and P.N. Ross, VCH, New York, 347-389(1992), and references cited therein.
    [90] M. Osawa, K. Yoshii. In situ and real-time surface-enhanced infrared study of electrochemical reactions[J]. Appl. Spectrosc., 1997, 51(4): 512-518.
    [91] P. Christensen, A. Hamnett. In-situ techniques in electrochemistry-ellipsometry and FTIR[J]. Electrochim. Acta, 2000, 45(15-16): 2443-2459.
    [92] J. G. Li, J. Daschbach, J. J. Smith, M. D. Morse, S. Pons. The infrared-spectra of surface metal atom vibrations-SNIFTIRS studies in the far infrared region using time resolved FTIR techniques[J]. J. Electroanal. Chem., 1986, 209(2): 387-390.
    [93] J. T. Lu, A. Bewick. In situ lr Spectroscopy with a Gas-Diffusion Cell-CO Adsorption and Oxidation on Pt[J]. J. Electroanal. Chem., 1989, 270(1-2): 225-235.
    [94] T. M. Vess, D. W. Wertz. Spectroelectrochemistry using a movable electrode[J]. J. Electroanal. Chem., 1991, 313(1-2): 81-94.
    [95] B. R. J. Nichols. SNIFTIRS with a flow cell: the indentification of the reaction intermediates in methanol oxidation at Pt anodes[J]. Electrochim. Acta, 1988, 33(11): 1691-1694.
    [96] J. O. Bockris, B. Yang. A thin-layer flow cell for in situ infrared reflection absorption spectroscopic measurements of the electrode electrolyte interphase[J]. J. Electroanal. Chem., 1988, 252(1): 209-214.
    [97] H. Neff, P. Lange, D. K. Roe, J. K. Sass. A modulated infrared-ATR spectroscopic study of water in the electric double-layer[J]. J. Electroanal. Chem., 1983, 150(1-2): 513-519.
    [98] P. Lange, V. Glaw, H. Neff, E. Piltz, et al. Infrared attenuated total reflection spectroscopy at the metal electrolyte interface[J]. Vacuum, 1983, 33(10-1): 763-766.
    [99] E. Kretschmann. Determination of optical constants of metals by excitation of surface plasmons[J]. Zeitschrift Fur Physik, 1971, 241(4): 313.
    [100] M. Hoon-Khosla, W. R. Fawcett, J. D. Goddard, W. Q. Tian and J. Lipowski. Reflection FTIR studies of the conformation of 2, 2'-bipyridine adsorbed at the Au(111) electrode/electrolyte interface[J]. Langmuir, 2000, 16: 2356-2362.
    [101] H. Noda, T. Minoha, L. J. Wan and M. Osawa. Adsorption and ordered phase formation of 2,2 '-bypyridine on Au(111): a combined surface-enhanced infrared and STM study[J]. J. Electroanal. Chem., 2000, 481(1): 62-68.
    [102] M. Osawa, K. Yoshii, Y. Hibino, T. Nakano and I. Noda, Two-dimensional infrared correlation analysis of electrochemical reactions[J]. J. Electroanal. Chem., 1997, 426(1-2): 11-16.
    [103] K. Ataka, T. Yotsuyanagi and M. Osawa. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy[J]. J. Phys. Chem., 1996, 100(25): 10664-10672.
    [104] S. M. Moon, C. Bock, B. MacDougall. Setup, sensitivity and application of thin electrolyte layer ATR-FTIR spectroscopy[J]. J. Electroanal. Chem., 2004, 568: 225-233.
    [105] H. Noda, K. Ataka, L. J. Wan and M. Osawa. Time-resolved surface-enhanced infra-red study of molecular adsorption at the electrochemical interface[J]. Surf. Sci., 1999, 427-428: 190-194.
    [106] S. G. Sun, W. B. Cai, L. J. Wan and M. Osawa. Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy[J]. J. Phys. Chem., 1999, 103(13): 2460-2466.
    [107] K. Ataka, G. Nishina, W. B. Cai, S. G. Sun and M. Osawa. Dynamics of the dissolution of an underpotentially deposited Cu layer on Au(111): a combined time-resolved surface-enhanced infrared and chronoamperometric study[J]. Electrochem. Commun., 2000, 2(6): 417-421.
    [108] W. B. Cai, L. J. Wan, H. Noda, Y. Hibino, K. Ataka and M. Osawa. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy[J]. Langmuir, 1998, 14(24): 6992-6998.
    [109] K. Ataka and M. Osawa. In situ infrared study of cytosine adsorption on gold electrodes[J]. J. Electroanal. Chem., 1999, 460(1-2): 188-196.
    [110] D. S. Corrigan, L. W. H. Leung, M. J. Weaver. Single potential-alteration surface infrared-spectroscopy-examination of absorbed species involved in irreversible electrode-reactions[J]. Anal. Chem., 1987, 59(18): 2252-2256.
    [111] S. Pons, T. Davidson, A. Bewick. Vibrational spectroscopy of the electrode-electrolyte interface. 4. Fourier transform infrared spectroscopy: experimental considerations[J]. J. Electroanal. Chem., 1984, 160(1-2): 63-71.
    [112] W. F. Lin, S. G. Sun. In situ FTIRS investigations of surface processes of Rh electrode -Novel observation of geminal adsorbates of carbon monoxide on Rh electrode in acid solution[J]. Electrochim. Acta, 1996, 41(6): 803-809.
    [113] W. Russell, J. Overend, A. Bewick, et al. Infrared-spectrum of CO in a platinum electrode in acidic solution[J]. J. Phys. Chem. B, 86(16), 1982: 3066-3070.
    [114] S. G. Sun, S. J. Hong, S. P. Chen, et al. In situ scanning FTIR microscopy and IR imaging of Pt electrode surface towards CO adsorption[J]. Science in China Series B-Chemistry, 1999, 42(3): 261-267.
    [115] K. Ataka, Y. Hara, M. Osawa.A new approach to electrode kinetics and dynamics by potential modulated Fourier transform infrared spectroscopy[J]. J. Electroanal. Chem., 1999, 473(1-2): 34-42.
    [116] Y. X. Chen, A. Miki, S. Ye, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode[J]. J. Am. Chem. Soc., 2003, 125(13): 3680-3681.
    [117] S. I. Yaniger, D. W. Vidrine. Dynamic FT-IR. Part Ⅰ: Rapid-scan mrthods in spectroelectrochemistry[J]. Appl. Spectrosc., 1986, 40(2): 174-180.
    [118] B. O. Budevska, P. R. Griffiths. Step-scan FT-IR external reflection spectrometry of the electrode-electrolyte interface by ootential modulation[J]. Anal. Chem., 1993, 65(21): 2963-2971.
    [119] S. Matsuda, F. Kitamura, M.Takahashi and M. Ito. Dynamic aspects of methanol oxidation on Pt electrodes by time resolved infrared reflection absorption-spectroscopy[J]. J. Electroanal. Chem., 1989, 214: 305-312.
    [120] W. H. Schrotter, H. W. Klochner. Vol. 11 in Raman spectroscopy of gases and liquids[M], A Weber, Ed.; Springer-Verlag: Berlin, 1979.
    [121] M. Fleischmann, P. J. Hendra, A. J. Mcquilla. Raman-spectra of pyridine adsorbed at a silver electrode[J]. Chem. Phys. Lett., 1974, 26(2): 163-166.
    [122] D. L. Jeanmaire, R. P. Van Duyne. Surface Raman spectroelectrochemistry: 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode[J]. J. Electroanal. Chem., 1977, 84(1): 1-20.
    [123] M. G. Albrecht, J. A. Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. J. Am. Chem. Soc., 1977, 99(15): 5215-5217.
    [124] J. Gui, T. M. Devine. Obtaining surface-enhanced Raman-spectra from the passive film on iron[J]. J. Electrochem. Soc., 1991, 138(5): 1376-1384.
    [125] L. J. Oblonsky, T. M. Devine, J. W. Ager, et al. Surface-enhanced Raman-scattering from pyridine adsorbed on thin-layers of stainless-steel[J]. J. Electrochem. Soc., 1994, 141(12): 3312-3317.
    [126] L. W. H. Leung, M. J. Weaver. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: Carbon monoxide adsorption and electrooxidation on platinum and palladium-coated gold electrodes[J]. J. Am. Chem. Soc., 1987, 109: 5113-5119.
    [127] S. Zou, M. J. Weaver. Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: Chemical bonding versus electrostatic field effects[J]. J. Phys. Chem. B, 1996, 100: 4237-4242.
    [128] S. Zou, M. J. Weaver, X. Q. Li, et al. New strategies for surface-enhanced Raman scattering at transition-metal interfaces: Thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon[J]. J. Phys. Chem. B, 1999, 103: 4218-4222.
    [129] S. Zou, M. J. Weaver. Surface-enhanced Raman scattering on uniform transition-metal films: Toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces? [J]. Anal. Chem., 1998, 70: 2387-2395.
    [130] S. Zou, C. T. Williams, E. K. Y. Chen, et al. Probing molecular vibrations at catalytically significant interfaces: A new ubiquity of surface-enhanced Raman scattering[J]. J. Am. Chem. Soc., 1998, 120(15): 3811-3812.
    [131] M. F. Mrozek, Y. Xie, M. J. Weaver. Surface-enhanced Raman scattering on uniform platinum-group overlayers: preparation by redox replacement of underpotential-deposited metals on gold[J]. Anal. Chem., 2001, 73(24): 5953-5960.
    [132] S. A. Bilmes, J. C. Rubim, A. Otto, et al. SERS from pyridine adsorbed on electrodispersed platinum electrodes[J]. Chem. Phys. Lett., 1989, 159: 89-96.
    [133] W. B. Cai, B. Ren, X. Q. Li, et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment[J]. Surf. Sci., 1998, 406: 9-22.
    [134] B. Ren, X. F. Lin, J. W. Yan, et al. Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy[J]. J. Phys. Chem. B, 2003, 107(4): 899-902.
    [135] P. G. Cao, J. L. Yao, B. Ren, et al. Surface-enhanced Raman scattering spectra of thiourea adsorbed at an iron electrode in NaClO_4 solution[J]. J. Phys. Chem. B, 2002, 106(39): 10150-10156.
    [136] Y. Xie, D. Y. Wu, G. K. Liu, et al. Adsorption and photon-driven charge transfer of pyridine on a cobalt electrode analyzed by surface enhanced Raman spectroscopy and relevant theories[J]. J. Electroanal. Chem., 2003, 554: 417-425.
    [137] Q. J. Huang, X. F. Lin, Z. L. Yang, et al. An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy[J]. J. Electroanal. Chem., 2004, 563(1): 121-131.
    [138] Z. Q. Tian, Z. L. Yang, B. Ren, et al. Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape[J]. Faraday Discuss., 2006, 132: 159-170.
    [139] M. H. Shao, P. Liu, R. R. Adzic. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes[J]. J. Am. Chem. Soc., 2006, 128(23): 7408-7409.
    [140] N. M. Markovic, J. P. N. Ross. Surface science studies of model fuel cell electrocatalysts[J]. Surf. Sci. Rep., 2002, 45(4-6): 121-229.
    [141] T. Iwasita Electrocatalysis of methanol oxidation[J]. Electrochim. Acta, 2002, 47(22-23): 3663-3674.
    [142] E. Herrero, W. Chrzanowski, A. Wieckowski. Dual path mechanism in methanol electrooxidation on a platinum-electrode[J]. J. Phys. Chem. 1995, 99(25): 10423-10424.
    [143] X. H. Xia, T. Iwasita, F. Ge, W. Vielstich. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum[J]. Electrochim. Acta, 1996, 41(5): 711-718.
    [144] B. Beden; J. M. Leger; C. Lamy. In Modern Aspects of Electrochemistry; Bockris, J. O. M., et al., Eds.; Plenum Press: New Yerk, 1992; Vol. 22, pp 97.. 264.
    [145] Y. Zhu, H. Uchida, T. Yajima, M. Watanabe. Attenuated total reflection-Fourier transform infrared study of methanol oxidation on sputtered Pt film electrode[J], Langmuir, 2001, 17(1): 146-154.
    [146] S. A. Johnson, N. H. Pham, V. J. Novick, V. A. Maroni. Application of surface-enhanced infrared absorption spectroscopy as a sensor for volatile organic compounds[J]. Appl. Spectrosc., 1997, 51(9): 1423-1426.
    [147] G. T., L. T. He and P. R. Griffiths. Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide[J]. Appl. Spectrosc., 1999, 53(11): 1448-1453.
    [148] J. A. Seelenbinder, C. W. Brown, P. Pivarnik and A. G. Rand. Colloidal cold filtrates as metal substrates for surface-enhanced infrared absorption spectroscopy[J]. Anal. Chem., 1999, 71(10): 1963-1966.
    [149] D. A. Heaps, P. R. Griffiths. Investigation of polysaccharide adsorption on protein conditioning films by attenuated total reflection infrared spectrometry[J]. Ana. Chem., 2005, 77(18): 5965-5972.
    [150] C. W. Brown, Y. Li, J. A. Seelenbinder, P. Pivarnik, et al. Immunoassays based on surface enhanced infrared absorption spectroscopy[J]. Anal. Chem., 1998, 70(14): 2991-2996.
    [151] H. Y. N. Holman, D. L. Perry and J. C. Hunter-Cevera. Surface-enhanced infrared absorption-reflectance (SEIRA) microspectroscopy for bacteria localization on geologic material surfaces[J]. J. Microbiol. Methods, 1998, 34(1): 59-71.
    [152] C. Kuhne, G. Steiner, W. B. Fischer and R. Salzer. Surface enhanced FTIR spectroscopy on membranes[J]. Fresenius' J. Anal. Chem., 360(7-8): 750-754.
    [153] K. P. Ishida and P. R. Griffiths. Theoretical and experimental investigation of internal-reflection at thin copper-films exposed to aqueous-solutions[J]. Anal. Chem., 1994, 66(4): 522-530.
    [154] K. P. Ishida and P. R. Griffiths. Investigation of polysaccharide adsorption on protein conditioning films by attenuated total reflection infrared spectrometry-Ⅱ. Thin copper films[J]. J. Colloid Interface Sci., 1999, 213(2): 513-524
    [155] M. Ma, Y. G. Yan, S. J. Huo, et al. In situ surface-enhanced IR absorption spectroscopy on CO adducts of iron protoporphyrin Ⅸ self-assembled on a Au electrode[J]. J. Phys. Chern. B, 2006, 110(30): 14911-14915.
    [156] S. Geng, J. Freidrich, J. Gahde and L. Guo, Surface-enhanced infrared absorption (SEIRA) and its use in analysis of plasma-modified surface[J]. J. Appl. Polym. Sci., 1999, 71(8): 1231-1237.
    [157] A. Kudelski. Characterization of thiolate-based mono- and bilayers by vibrational spectroscopy: A review[J]. Vib. Spectrosc., 2005, 39(2): 200-213.
    [158] J. A. Seelenbinder, C. W. Brown, D. W. Urish. Self-assembled monolayers of thiophenol on gold as a novel substrate for surface-enhanced infrared absorption[J]. Appl. Spectrosc., 2000, 54(3): 366-370.
    [159] D. Enders, S. Rupp, A. Kuller, A. Pucci. Surface enhanced infrared absorption on Au nanoparticle films deposited on SiO_2/Si for optical biosensing: Detection of the antibody-antigen reaction[J]. Surf. Sci., 2006, 600(23): L305-L308.
    [160] D. Enders, T. Nagao, A. Pucci, T. Nakayama. Reversible adsorption of Au nanoparticles on SiO_2/Si: An in situ ATR-IR study[J]. Surf. Sci., 2006, 600(6): L71-L75.
    [161] C. A. Melendres. in Spectroscopic and diffraction techniques in interfacial electrochemistry, (Eds. C. Gutierrez, C. Melendres), Kluwer Academic Publishers, Dordrecht, 1990, pp. 181-222.
    [162] C. A. Melendres, in Electrochemical and optical techniques for the study and monitoring of metallic corrosion. (Eds. M. G. S. Ferreira and C. A. Melendres), NATO-ASI Ser. 203, Kluwer Academic Publishers, Dordrecht, 1991, pp. 355-388.
    [163] J. L. Yao, H. C. Liu, P. G. Cao, B. Ren, B. W. Mao, R. A. Gu, Z. Q. Tian, Electrochemical Approach to Selected Corrosion and Corrosion Control Studies[M], 1999, pp37-46.
    [164] M. E. Biggin and A. A. Gewirth. Infrared Studies of Benzotriazole on Copper Electrode Surfaces Role of Chloride in Promoting Reversibility[J]. J. Electrochem, Soc., 2001, 48(5): C339-C347.
    [165] M. R. Vogt, R. J. Nichols, O. M. Magnussen and R. J. Behm. Benzotriazole Adsorption and Inhibition of Cu(100) Corrosion in HCl: A Combined in Situ STM and in Situ FTIR Spectroscopy Study[J]. J. Phys. Chem. B, 1998, 102(30): 5859-5865.
    [166] B. Pettinger, M. R. Philport, J. G. Gordon Ⅱ. Contribution of specifically adsorbed ions, water, and impurities to the surface enhanced Raman spectroscopy(SERS) of Ag electrodes[J]. J. Chem. Phys., 1981, 74(2): 934-940.
    [167] J. E. Pemberton, S. L. Joa. Water and electrolyte structure at Ag electrodes in nonaqueous butanol solutions using surface-enhanced Raman-scattering[J]. J. Electroanal. Chem., 1994, 378(1-2): 149-158.
    [168] Z. Q. Tian, Y. X. Chen, B. W. Mao, C. Z. Li, Z. F. Liu, Extending surface-enhanced Raman-spectroscopic studies on water at gold electrodes[J]. Chem. Phys. Lett., 1995, 240(1-3): 224-229.
    [169] Y. X. Chen, K. Q. Huang, Z. Q. Tian. SERS studies of electrode/electrolyte interfacial water part Ⅱ-Librations of water correlated to hydrogen evolution reaction[J]. J. Raman Spectrosc., 1998, 249 (8): 749-756.
    [170] T. Yajima, H. Uchida, M. Watanabe. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004, 108(8): 2654-2659.
    [171] H. Shiroishi, Y. Ayato, K. Kunimatsu, T. Okada. Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy)[J]. J. Electroanal. Chem., 2005, 581(1): 132-138.
    [172] S. J. Huo, X. K. Xue, Y. G. Yah, et al. Extending in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy to Ni electrodes[J]. J. Phys. Chem. B, 2006, 110(9): 4162-4169.
    [173] C. Gutierrez, J. A. Caram, B. Beden. In situ spectroscopic study of the adsorption of carbon-monoxide on a polycrystalline ruthenium electrode by EMIRS and PMRS[J]. J. Electroanal. Chem., 1991, 305(2): 289-299.
    [174] K. Nishimura, K. Kunimatsu, M. Enyo. Electrocatalysis on Pd+Au alloy electrodes.3. IR spectroscopic on the surface species derived from CO and CH_3OH in NaOH solution[J]. J. Electroanal. Chem., 1989, 260(1): 167-169.
    [175] P. S. Bagus, C. J. Nelin, W. Muller, et al. Field-induced vibrational frequency-shifts of CO and CN chemisorbed on Cu (100)[J]. Phys. Rev. Lett., 1987, 58(6): 559-562.
    [176] J. C. Campuzano, R. G. Greenler, The adsorption sites of CO on Ni(111) as determined by infrared reflection-absorption spectroscopy[J]. Surf. Sci., 1979, 83: 301-312.
    [177] L. Surnev, Z. Xu, J. T. Yates, Jr. Site interconversion in chemisorbed CO on Ni(111): IRAS and work function studies[J]. Surf. Sci., 1988, 201(1-2): 14-26.
    [178] A. Cuesta, C. Gutierrez. Study by Fourier transform infrared spectroscopy of the adsorption of carbon monoxide on a nickel electrode at pH 3-14[J]. Langmuir, 1998, 14: 3397-3404.
    [179] O. M. Magnussen. Ordered anion adlayers on metal electrode surfaces[J]. Chem. Rev., 2002, 102(3): 679-726.
    [180] J. T. Hupp, D. Larkin, M. J. Weaver. Specific adsorption of halide and pseudohalide ions at electrochemically roughened versus smooth silver aqueous interfaces[J]. Surf. Sci., 1983, 125(2): 429-451.
    [181] K. Ashley, M. G. Samant, H. Seki, M. R. Philpott. Cation effects on the vibrational frequencies of adsorbed thiocyanate on platinum[J]. J. Electroanal. Chem., 1989, 270(1-2): 349-364.
    [182] K. Ashley, F. Weinert, D. L. Feldheim. Infrared-spectroscopy to probe the electrochemical double-layer[J]. Electrochim. Acta, 1991, 36(11-12): 1863-1868.
    [183] M. Bron, R. Holze. The adsorption of thiocyanate ions at gold electrodes from an alkaline electrolyte solution: a combined in situ infrared and Raman spectroscopic study[J]. Electrochim. Acta, 1999, 45(7): 1121-1126.
    [184] R. A. Bailey, S. L. Kozak, T. W. Michelsen, W. N. Hiills. Infrared spectra of complexes of the thiocyanate and related ions[J]. Coord. Chem. Rev., 1971, 6: 407-445.
    [185] C. Pecile. Infrared studies of planar and tetrahedral inorganic thiocyanates[J]. Inorg. Chem., 1966, 5(2): 210-214.
    [186] S. Fronaeus, R. Larsson. Studies on metal complexes in aqueous solution by infrared spectrophotometry. 3. Further investigations on thiocyanato complexes[J]. Acta Chem. Scand., 1962, 16(6): 1447.
    [187] J. Lewis, P. W. Smith, R. S. Nyhohn. Structure of complex molybdenum(Ⅲ) thiocyanates[J]. J. Chem. Soc., 1961: 4590.
    [188] A. Sabatini, I. Bertini. Infrared spectra between 100 and 2500 cm~(-1) of some complex metal cyanates thiocyanates and selenocyanates[J]. Inorg. Chem., 1965, 4(7): 959-961.
    [189] S. AMand, J. Chatt, N. R. Davies. The relative affinities of ligand atoms for acceptor molecules and ions[J]. Q. Rev. Chem. Soc., 1958, 12(3): 265-276.
    [190] X. Li, A. A. Gewirth. Potential-dependent reorientation of thiocyanate on Au electrodes[J]. J. Am. Chem. Soc., 2003, 125(38): 11674-11683.
    [191] Z. Q. Tian, B. Ren, B. W. Mao. Extending surface Raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties ofthiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces[J]. J. Phys. Chem. B, 1997, 101(8): 1338-1346.
    [192] H. Luo, M. J. Weaver. Surface-enhanced Raman scattering as a versatile vibrational probe of transition-metal interfaces: Thiocyanate coordination modes on platinum-group versus coinage-metal electrodes[J]. Langmuir, 1999, 15(25): 8743-8749.
    [1] 黄惠忠,纳米材料分析,北京:化学工业出版社,2003。
    [2] 严凤霞,王莜敏,现代光学仪器分析选论,上海:华东师范大学出版社,1992。
    [3] 马礼敦,高等结构分析,上海:复旦大学出版社,2001。
    [4] 周伟舫,电化学测量,上海:科学技术出版社,1983。
    [5] 吴浩清,李永舫,电极过程动力学,北京:高等教育出版社,1998。
    [6]查全性等,电极过程动力学导论,北京:科学出版社,2002。
    [7] 田昭武,电化学研究方法,北京:科学出版社,1984。
    [8] 藤岛昭,相泽益男,井上撤著,陈震,姚建年译,电化学测定方法,北京:北京大学出版社,1995。
    [9] K. Ataka, T. Yotsuyanagi and M. Osawa. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy [J]. J. Phys. Chem., 1996, 100(25): 10664-10672.
    [10] E. Kretschmann. Determination of Optical Constants of Metals by Excitation of Surface Plasmons [J]. Zeitschrift Fur Physik, 1971. 241(4): 313.
    [1] 江龙.胶体化学概论[M].北京:科学出版社.2002.
    [2] 郑树亮.黑恩成,应用胶体化学[M].上海:华东理工大学出版社,1996,13-14.
    [3] W. P. Faulk, G. M. Taylor. An immunocolloid method for the electron microscope [J]. Immunochemistry, 1971, 8: 1081-1083.
    [4] Y. D. Jin, X. F. Kang, Y. H. Song, et al. Controlled nucleation and growth of surface-confined gold nanoparticles on a (3-aminopropyl)trimethoxysilane-modified class slide: A strategy for SPR substrates [J]. Anal. Chem. 2001, 73(13): 2843-2849.
    [5] W. L. Cheng, S. J. Dong, E. K. Wang. Two- and three- dimensional Au nanoparticle/CoTMPyP self-assembled nanotructured materials: Film structure, tunable electrocatalytic activity, and plasmonic properties [J]. J. Phys. Chem. B. 2004, 108(50): 19146-19154.
    [6] G. Frens. Controlled nucleation for the regulation of the particle size in monodisperse gold suspension [J]. Nature Phys. Sci., 1973, 241 (105): 20-21.
    [7] K. R. Brown, D. G. Walter, and M. J. Natan. Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape [J]. Chem. Mater. 2000, 12(2): 306-313.
    [8] K. R. Brown, M. J. Natan. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces [J]. Langmuir, 1998, 14(4): 726-728.
    [9] K. R. Brown, L. A. Lyon, A. P. Fox, et al. Hydroxylamine Seeding of Colloidal Au Nanoparticles. 3. Controlled Formation of Conductive Au Films [J]. Chem. Mater., 2000, 12(2): 314-323.
    [10] Z. H. Zhu, T. Zhu, Z. F. Liu. Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling [J]. Nanotechnology, 2004, 15 (3): 357-364.
    [11] Z. Q. Tian, B. Ren, D. Y. Wu. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures [J]. J. Phys. Chem. B, 2002, 106 (37): 9463-9483.
    [12] L. A. Dick, A. D. McFarland, C. L. Haynes, R. P. Van Duyne. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss [J]. J. Phys. Chem. B, 2002, 106 (4): 853-860.
    [13] L. Gunnarsson, E. J. Bjerneld, H. Xu, et al. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering [J]. Appl. Phys. Lett., 2001,78 (6): 802-804.
    [14] K. C. Grabar; R. G. Freeman, M. B. Hommer, et al. Preparation and characterization of Au colloidal monolayer [J]. Anal. Chem., 1995, 67 (4): 735-743.
    [15] R. G. Freeman, K. C. Grabar, K. J. Allison, et al. Self-assembled metal colloidal monolayers-an approach to SERS substrates [J]. Science, 1995, 267(5204): 1629-1632.
    [16] S. Y. Kang, I. C. Jeon, and K. Kim. Infrared absorption enhancement at silver colloidal particles [J]. Appl. Spectrosc., 1998.52(2): 278-283.
    [17] A. A. Kamnev, L. A. Dykman, P. A. Tarantilis and M. G. Polissiou. Spectroimmunochemistry using colloidal gold bioconjugates [J]. Biosci. Rep., 2002, 22(5-6): 541-547.
    [18] T. R. Jensen, R. P. V. Duyne, S. A. Johnson and V. A. Maroni. Surface-enhanced infrared spectroscopy: A comparison of metal island films with discrete and nondiscrete surface plasmons [J]. Appl. Spectrosc., 2000, 54(3): 371-377.
    [19] S. Park, A. Wieckowski., M. J. Weaver. Electrochemical infrared characterization of CO domains on ruthenium-decorated platinum nanoparticles [J]. J. Am. Chem. Soc., 2003, 125(8): 2282-2290.
    [20] F. Frederix, J.M. Friedt,; K. H. Choi, W. Laureyn, et al. Biosensing based on light absorption of nanoscaled gold and silver particles [J]. Anal. Chem. 2003, 75 (24): 6894-6900.
    [21] H, Menzel, M. D. Mowery, M. Cai et al. Surface-Confined Nanoparticles as Substrates for Photopolymerizable Self-Assembled Monolayers [J]. Adv. Mater. 1999, 11 (2): 131-134.
    [22] L. A. Lyon, D. J. Pena, and M. J. Natan. Surface Plasmon Resonance of Au Colloid-Modified Au Films: Particle Size Dependence [J]. J. Phys. Chem. B. 1999, 103, (28): 5826-5831.
    [23] K. C. Grabar, K. J. Allison, B. E. Baker, et al. Two-Dimensional Arrays of Colloidal Gold Particles: A Flexible Approach to Macroscopic Metal Surfaces [J]. Langmuir, 1996, 12(10): 2353-2361.
    [24] S. Geng, J. Freidrich, J. Gahde and L. Guo. Surface-enhanced infrared absorption (SEIRA) and its use in analysis of plasma-modified surface [J]. J. Appl. Polym. Sci., 1999, 71 (8): 123-1237.
    [25] K. C. Grabar, K. R. Brown. C. D. Keating, et al. Nanoscale characterization of gold colloid monolayers: A comparison of four techniques [J] Anal. Chem. 1997, 69 (3): 471-477.
    [26] J. W. Zheng, Z. H. Zhu, H. F. Chen, Z. F. Liu. Nanopatterned assembling of colloidal gold nanoparticles on silicon [J]. Langmuir, 2000, 16(10): 4409-4412.
    [27] D. J. Dunaway, R. L. McCarley. Scanning force microscopy studies of enhanced metal nucleation-Au vapor-deposited on self-assembled monolayers of substituted silanes [J]. Langmuir, 1994, 10 (10): 3598-3606.
    [28] X. Li, A. A. Gewirth. Potential-dependent reorientation of thiocyanate on Au electrodes [J]. J. Am. Chem. Soc., 2003, 125(38): 11674-11683.
    [29] K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A, Theory and Applications in Inorganic Chemistry, 5th Edition, John Wiley & Sons: New York, 1997.
    [30] C. Pecile. Infrared studies of planar and tetrahedral inorganic thiocyanates [J]. Inorg. Chem., 1966, 5(2): 210-214.
    [31] M. Osawa. In Handbook of Vibrational Spectroscopy; Chalmers J. M., Griffiths, P. R., Eds.; John Wiley & Sons: Chichester, U.K., 2002; Vol.1, pp785-799.
    [32] M. Osawa. Dynamic processes in electrochemical reactions studied by surface enhanced infrared absorption spectroscopy [J]. Bull. Chem. Soc. Jpn., 1997, 70: 2861-2880.
    [33] H. Gong, S. G. Sun, Y. J. Chen, S. P. Chen. In situ microscope FTIRS studies of CO adsorption on an individually addressable array of nanostructured Pt microelectrodes-an approach of combinatorial analysis of anomalous IR properties[J]. J. Phys. Chem. B, 2004, 108(31): 11575-11584.
    [34] J. H. W. Cramp, P. J. Hillson. J. Photogr. Sci. 1976, 24, 25-28.
    [35] I. Konstantinov, J. Malinowaki. J. Photogr. Sci. 1975, 23, 1-5.
    [36] X. Li, A. A. Gewirth. Potential-dependent reorientation of thiocyanate on Au electrodes[J]. J. Am. Chem. Soc., 2003, 125(38): 11674-11683.
    [37] R. A. Bailey, S. L. Kozak, Y. W. Michelsen, W. N. Hiills. Infrared spectra of complexes of the thiocyanate and related ions[J]. Coord. Chem. Rev., 1971, 6: 407-445.
    [38] Z. Q. Tian, B. Ren, B. W. Mao. Extending surface Raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces[J]. J. Phys. Chem. B, 1997, 101(8): 1338-1346.
    [39] A. E. Bjerke, P. R. Griffiths, W. Yheiss. Surface-enhanced infrared absorption of CO on platinized platinum[J]. Anal. Chem., 1999, 71: 1967-1974.
    [40] H. Miyake, S. Ye, M. Osawa. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry[J]. Electrochem. Commun., 2002, 4(12): 973-977.
    [41] M. H. Shao, R. R. A dzic. Spectroscopic identification of the reaction intermediates in oxygen reduction on gold in alkaline solutions[J]. J. Phys. Chem. B, 2005, 109(35): 16563-16566.
    [42] H. Noda, L. J. Wan, M. Osawa. Dynamics of adsorption and phase formation of p-nitrobenzoic acid at Au(111) surface in solution: A combined surface-enhanced infrared and STM study[J]. Phys. Chem. Chem. Phys., 2001, 3(16): 3336-3342.
    [43] X. Y. Xiao, S. G. Sun. Electrosorption of p-nitrobenzoic acid at a gold electrode in perchloric acid solutions studied by using cyclic voltammetry, EQCM, in situ FTIRS and Raman spectroscopy[J]. Electrochim. Acta, 2000, 45(18): 2897-2902.
    [44] G. T. Merklin, P. R. Griffiths. Effect of microscopic surface roughness in surface-enhanced infrared absorption spectrometry[J]. J. Phys. Chem. B, 1997, 101(30): 5810-5813.
    [45] N. H. Li, S. G. Sun, S. P. Chen. Studies on the role of oxidation states of the platinum surface in electrocatalytic oxidation of small primary alcohols[J]. J. Electroanal. Chem. 1997, 430(1-2): 57-67.
    [46] S. G. Sun, W. B. Cai, L. J. Wan, M. Osawa. Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy[J]. J. Phys. Chem. B. 1999. 103 (13): 2460-2466.
    [1] 黄少强,邱文革,李生华.非金属材料表面化学镀银[J].北京工业大学学报,2005,31(1):75-80。
    [2] 刘正春,贺全国,肖鹏峰,梁波,何农跃,陆祖宏.自组装化学镀银[J].化学学报,2002,60(4):627-632。
    [3] R. G. Freeman, K. C. Grabar, K. J. Allison, et al. Self-assembled metal colloidal monolayers-an approach to SERS substrates [J]. Science, 1995, 267(5204): 1629-1632.
    [4] L. H. Lu, I. Randjelovic, R. Capek, et al. Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy [J]. Chem. Mater., 2005, 17(23): 5731-5736.
    [5] Z. Q. Tian, B. Ren, D. Y. Wu. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures [J]. J. Phys. Chem. B, 2002, 106 (37): 9463-9483.
    [6] M. Osawa. In Handbook of Vibrational Spectroscopy; Chalmers J. M., Griffiths, P. R., Eds.; John Wiley & Sons: Chichester, U.K., 2002; Vol.1, pp785-799.
    [7] D. J. Maxwell, S. R. Emory, S. M. Nie. Nanostructured thin-film materials with surface-enhanced optical properties [J]. Chem. Mater., 2001, 13 (3): 1082-1088.
    [8] D. Roy, J. Fendler. Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials [J]. Adv. Mater., 2004, 16 (6): 479-508.
    [9] R. F. Aroca, R. A. Alvarez-Puebla, N. Pieczonka. et al. Surface-enhanced Raman scattering on colloidal nanostructures [J]. Adv. Colloid Interface Sci., 2005, 116(1-3): 45-61.
    [10] S. J. Huo, Q. X. Li, Y. G. Yan, et al. Tunable surface-enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth of colloidal particles [J]. J. Phys. Chem. B, 2005, 109(33): 15985-15991.
    [11] A. E. Bjerke, P. R. Griffiths, W. Tbeiss. Surface-enhanced infrared absorption of CO on platinized platinum [J]. Anal. Chem., 1999, 71(10): 1967-1974.
    [12] R. F. Aroca, D, J. Ross, C. Domingo. Surface-enhanced infrared spectroscopy [J]. Appl. Spectrosc., 2004, 58 (11): 324A-338A.
    [13] T. R. Jensen, R. P. Van Duyne, S. A. Johnson, V. A. Maroni. Surface-enhanced infrared spectroscopy: A comparison of metal island films with discrete and nondiscrete surface plasmons [J]. Appl. Spectrosc., 2000, 54 (3): 371-377.
    [14] T. Yajima, H. Uchida, M. Watanabe. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy [J]. J. Plays. Chem. B, 2004, 108(8): 2654-2659.
    [15] M. Futamata, L. Q. Luo, C. Nishihara. ATR-SEIR study of anions and water adsorbed on platinum electrode [J]. Surf. Sci., 2005, 590 (2-3): 196-211.
    [16] L. Q. Luo, M. Futamata. Competitive adsorption of water and CO on Pd modified Pt electrode from CH_3OH solution [J]. Elctrochem. Commun., 2006, 8 (2): 231-237.
    [17] M. H. Shao, R. R. Adzic. Spectroscopic identification of the reaction intermediates in oxygen reduction on gold in alkaline solutions [J]. J. Phys. Chem. B, 2005, 109 (35): 16563-16566.
    [18] M. H. Shao, R. R. Adzic. Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study [J]. Electrochim. Acta, 2005, 50 (12): 2415-2422.
    [19] H. Shiroishi, Y. Ayato, K. Kunimatsu, T. Okada. Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy) [J]. J. Electroanal. Chem., 2005, 581 (1): 132-138.
    [20] S. Pronkin, T. Wandlowski. ATR-SEIRAS-an approach to probe the reactivity of Pd-modified quasi-single crystal gold film electrodes [J]. Surf. Sci., 2004, 573 (1): 109-127.
    [21] K. Ataka, T. Yotsuyanagi and M. Osawa. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy [J]. J. Phys. Chem., 1996, 100(25): 10664-10672.
    [22] A. Rodes, J. M. Orts, J. M. Perez, J. M. Feliu, A. Aldaz. Sulphate adsorption at chemically deposited silver thin film electrodes: time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy [J]. Elctrochem. Commun.. 2003, 5(1): 56-60.
    [23] J. M. Delgado, J. M. Orts, A. Rodes. ATR-SEIRAS study of the adsorption of acetate anions at chemically deposited silver thin film electrodes [J]. Langmuir, 2005, 21(19): 8809-8816.
    [24] L. Magagnin, R. Maboudian, C. Carraro. Gold deposition by galvanic displacement on semiconductor surfaces: Effect of substrate on adhesion [J]. J. Phys. Chem. B, 2002, 106 (2): 401-407.
    [25] R. M. Bright, D. G. Walter, M. D. Musick, et al. Chemical and electrochemical Ag deposition onto preformed Au colloid monolayers: Approaches to uniformly-sized surface features with Ag-like optical properties [J]. Langmuir, 1996, 12 (3): 810-817.
    [26] K. R. Brown, D. G. Walter, and M. J. Natan. Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape[J]. Chem. Mater., 2000, 12(2): 306-313.
    [27] Z. H. Zhu, T. Zhu, Z. F. Liu. Raman scattering enhancement contributed from individual gold nanoparticles and interparticte coupling[J]. Nanotechnology, 2004, 15(3): 357-364.
    [28] F. Frederix, J. M. Friedt, K. H. Choi, W. Laureyn, et al. Biosensing based on light absorption of nanoscaled gold and silver particles[J]. Anal. Chem., 2003, 75(24): 6894-6900.
    [29] M. N. Li, C. M. Wang. Electroless silver deposition on Si(100) substrate based on the seed layer of silver itself[J]. Electrochim. Acta, 2003, 48(17): 2473-2477.
    [30] N. Shirtcliffe, U. Nickel, S. Schneider. Reproducible preparation of silver sols with small panicle size using borohydride reduction: For use as nuclei for preparation of larger particles[J]. J. colloid Interface Sci., 1999, 211(1): 122-129.
    [31] C. R. Kagan, C. B. Murray, M. G. Bawendi. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids[J]. Phys. Rev. B, 1996, 54(12): 8633-8643.
    [32] T. G. Schaaff, M. N. Shafigullin, J. T. Khoury. Isolation of smaller nanocrystal au molecules: Robust quantum effects in optical spectra[J]. J. Phys. Chem. B, 1997, 101(40): 7885-7891.
    [33] Y. D. Jin, X. F. Kang, Y. H. Song, et al. Controlled nucleation and growth of surface-confined gold nanoparticles on a (3-aminopropyl)trimethoxysilane-modified class slide: A strategy for SPR substrates[J]. Anal. Chem. 2001, 73(13): 2843-2849.
    [34] S. S. Abd El Rehim, H. H. Hassan, M. A. M.; Ibrahim, M. A. Amin. Electrochemical behaviour of a silver electrode in NaOH solutions[J]. Monatshefte Fur Chemic, 1998, 129(11): 1103-1117.
    [35] J. N. Jovicevic, V. D. Jovic, A. R. Despic. The influence of adsorbing substances on the lead UPD onto (111) oriented silver single crystal surface-Ⅰ[J]. Electrochim. Acta, 1984, 29(12): 1625-1638.
    [36] G. Valette, A. Hamelin. Structure et proprietes de la couche double electrochimique al'interphase argent/solutions aqueuses de fluorure de sodium[J]. J. Eletroanal. Chem., 1973, 45: 301-309.
    [37] M. Magnussen. Ordered anion adlayers on metal electrode surfaces[J]. Chem. Rev., 2002, 102(3): 679-726.
    [38] R. A. Bailey, S. L. Kozak, T. W. Michelsen, W. N. Hiills. Infrared spectra of complexes of the thiocyanate and related ions[J]. Coord. Chem. Rev., 1971, 6: 407-445.
    [39] M. J. Weaver, F. Barz, J. G. Gordon Ⅱ, M. J. Philpott. Surface-enhanced Raman spectroscopy of electrochemically characterized inferaces; poterntial dependence of Raman specra for thiocyanate at silver electrodes[J]. Surf. Sci., 125: 409-428.
    [40] J. K. Foley, S. Ports. Fourier transform infrared spectroelectrochemical studies of anodic processes in thiocyanate solutions[J]. Langmuir, 1985, 1(6): 697-701.
    [41] A. Hatta, Y. Sasaki, W. J. Suetaka. Polarization modulation infrared spectroscopic measurements of thiocyanate and cyanide at the silver electrode/aqueous electrolyte interface by means of Kretschmann's ATR prism configuration[J]. J. Electroanal. Chem., 1986, 215: 93-102.
    [41] D. S. Corrigan, P. Gao, L. H. Leung, M. J. Weaver. Comparisions between surface infrared and surface-enhanced Raman spectroscopies: bandfrequencies, bandwidths, and selection rules for pseudohalide and related adsorbates at gold and silver electrodes[J]. Langmuir, 1986, 2(6): 744-752.
    [42] D. Larkin, K. L. Guyer, J. T. Hupp, M. J. Weaver. Determination of specific adsorption of some simple anions at a polycrystalline silver-aqueous interface using defferential capacitance and kinetic probe technique[J]. J. Electroanal. Chem., 1982, 138: 401-423.
    [43] H. Miyake, M. Osawa. Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution[J]. Chem. Lett., 2004, 33(3): 278-279.
    [44] Y. Suzuki, M. Osawa, A. Hatta, W. Suetaka. Mechanism of absorption enhancement in in rared ATR spectra observed in the Kretschmann condition[J]. Appl. Surf Sci., 1988, 33-34: 875-881.
    [45] M. Osawa, K. Ataka, K. Yoshii, T. Yotsuyanagi. Surface-enhanced infrared ATR spectroscop for in situ studies of electrode/electrolyte interfaces[J]. J. Electron Spectrosc. Relat. Phenom., 1993, 64-65: 371-379.
    [46] A. Miki, S. Ye, M. Osawa. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions[J]. Chem. Commun., 2002, 14: 1500-1501
    [47] A. Miki, S. Ye, T. Senzaki, M. Osawa. Surface-enhanced infrared study of catalytic electrooxidation of formaldehyde, methyl formate, and dimethoxymethane on platinum electrodes in acidic solution[J]. J. Electroanal. Chem., 2004, 563(1): 23-31.
    [48] B. Beden, and C. Lamy, in R. J. Gale, (Eds.), Spectroelectrocbemistry-Theory and Practice, Chapter 5. New York: Plenum Press, 1988.
    [49] M. Fleischmann, P. J. Hendra, A. J. Mcquilla. Raman-spectra of pyridine adsorbed at a silver electrode[J]. Chem. Phys. Lett., 1974, 26(2): 163-166.
    [50] D. L. Jeanmaire, R. P. Van Duyne. Surface Raman spectroelectrochemistry: 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode[J]. J. Electroanal. Chem., 1977, 84(1): 1-20.
    [51] Pettinger, B. In Adsorption of Molecules at Metal Electrodes; Lipkowski. J., Ross, P. N., Eds.; VCH: New York, 1992; pp 285.
    [52] Pemberton, J. E. In Electrochemical Interfaces Modern Techniques for In-situ Interface Characterization of Molecules at Metal Electrodes; Abruna, H. D., Eds.; VCH: New York, 1991; pp 193.
    [53] L. A. Dick, A. D. McFarland, C. L. Haynes, R. P. Van Duyne. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy(SERS): hnprovements in surface nanostructure stability and suppression of irreversible loss[J]. J. Phys. Chem. B, 2002, 106(4): 853-860.
    [54] M. Fleischmann, J. Robinson, R. Waser. An electrochemical study of the adsorption of pyridine and chloride ions on smooth and roughened silver surfaces[J]. J. Electroanal. Chem., 1981, 117: 257-266.
    [55] T. Wandlowski. Phase transitions in Uracil adlayers on Ag, Au and Hg electrodes-substrate effects[J]. J. Electroanal. Chem., 1995, 395(1-2): 83-89.
    [56] G. Valette. Double layer on silver single-crystal electrodes in contact with electrolytes having anions which present a slight specific adsorption Part Ⅰ: The (110) face[J]. J. Electroanal. Chem. 1981, 122(1-2): 285-297.
    [57] K. Arihara, F. Kitamura, T. Ohsaka, K. Tokuda. Characterization of the adsorption state of carbonate ions at the Au(111) electrode surface using in situ IRAS[J]. J. Electroanal. Chem., 2001, 510(1-2): 128-135.
    [58] T. Iwasita, A. Rodes, E. J. Pastor. Vibrational spectroscopy of carbonate adsorbed on Pt(111) and Pt(110) single-crystal electrodes[J]. J. Electroanal. Chem., 1995, 383(1-2): 181-189.
    [59] L. Corrsin. B. J. Fax, R. C. Lord. The Vibrational Spectra of Pyridine and Pyridine-d5[J]. J. Chem. Phys., 1953, 21(7): 1170-1176.
    [60] Surface Enhanced Raman Scattering, R. K. Chang and T. E. Furutak (Eds.), Plenum, New York (1982).
    [61] 李巧霞,严彦刚,徐群杰.镉电极上的衰减全反射表面增强红外光谱[J],高等学校化学学报,2006,27(12):2414-2416.
    [62] W. B. Cai, L. J. Wan, H. Noda, Y. Hibino, K. Ataka and M. Osawa. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy [J]. Langmuir, 1998, 14(24): 6992-6998.
    [63] J. Lipkowski, L. Stolberg. In Adsorption of Molecules at Metal Electrodes; J. Lipkowski, P. N. Ross, Eds.; VCH: New York, 1992; pp 171.
    [64] N. H. Li, V. Zamlynny, J. Lipkowski, F. Henglein, B. Pettinger. In situ IR reflectance absorption spectroscopy studies of pyridine adsorption at the Au(110) electrode surface [J]. J. Electroanal. Chem., 2002, 524-525: 43-53.
    [65] Y. G. Yan, Q. J. Xu, W. B. Cai. Study of electroadsorption of aromatic molecules on Pt electrodes with surface enhanced IR absorption spectroscopy [J]. Acta Chim. Sinica., 2006, 64(6): 458-462.
    [66] C. Zuo, P. W. Jagodzinski. Surface-enhanced Raman scattering of pyridine using different metals: Differences and explanation based on the selective formation of alpha-pyridyl on metal surfaces. [J]. J. Phys. Chem. B, 2005, 109(5): 1788-1793.
    [67] S. J. Huo, X. K. Xue, Y. G. Yan, et al. Extending in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy to Ni electrodes. [J]. J. Phys. Chem. B, 2006, 110(9): 4162-4169.
    [68] D. Y. Wu, S. Duan, B. Ren, Z. Q. Tian. Density functional theory study of surface-enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces. [J]. J. Raman Spectrosc., 2005, 36(6-7): 533-540.
    [69] F. Hahn, C. A. Melendres. Anodic oxidation of methane at noble metal electrodes: an 'in situ' surface enhanced infrared spectroelectrochemical study [J]. Electrochim. Acta, 2001, 46(23): 3525-3534.
    [70] 姚建林,新型纳米级粗糙基底的表面增强拉曼光谱研究[D],厦门:厦门大学,2001。
    [1] B. Liao, Y. Q. Lei, G. L. Lu, et al. The electrochemical properties of La_xMg_(3-x)Ni_9 (x=1.0-2.0) hydrogen storage alloys [J]. J. Alloys Comp., 2003, 356:746-749.
    [2] P. Lu, T. Teranishi, K. Asakura, et al. Polymer-protected Ni/Pd bimetallic nano-clusters: Preparation, characterization and catalysis for hydrogenation of nitrobenzene [J] J. Phys. Chem. B, 1999, 103(44): 9673-9682.
    [3] O. Garcia-Moreno, M. Alvarez-Vega, F. Garcia-Alvarado, et al. Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of LiMPO_4 (M=Fe and Ni) [J]. Chem. Mater., 2001, 13(5): 1570-1576.
    [4] T. Yajima, H. Uchida, M. Watanabe. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy [J]. J. Phys. Chem. B, 2004, 108(8): 2654-2659.
    [5] M. Futamata, L. Q. Luo, C. Nishihara. ATR-SEIR study of anions and water adsorbed on platinum electrode [J]. Surf. Sci., 2005, 590 (2-3): 196-211.
    [6] L. Q. Luo, M. Futamata. Competitive adsorption of water and CO on Pd modified Pt electrode from CH_3OH solution [J]. Elctrochem. Commun., 2006, 8 (2): 231-237.
    [7] M. H. Shao, R. R. Adzic. Spectroscopic identification of the reaction intermediates in oxygen reduction on gold in alkaline solutions [J]. J. Phys. Chem. B, 2005, 109 (35): 16563-16566.
    [8] M. H. Shao, R. R. Adzic. Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study [J]. Electrochim. Acta, 2005, 50 (12): 2415-2422.
    [9] H. Shiroishi, Y. Ayato, K. Kunimatsu, T. Okada. Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy) [J]. J. Electroanal. Chem., 2005, 581 (1): 132-138.
    [10] S. Pronkin, T. Wandlowski. ATR-SEIRAS-an approach to probe the reactivity of Pd-modified quasi-single crystal gold film electrodes [J]. Surf. Sci., 2004, 573 (1): 109-127.
    [11] K. Ataka, T. Yotsuyanagi and M. Osawa. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy [J]. J. Phys. Chem., 1996, 100(25): 10664-10672.
    [12] J. M. Delgado, J. M. Orts, A. Rodes. ATR-SEIRAS study of the adsorption of acetate anions at chemically deposited silver thin film electrodes [J]. Langmuir, 2005, 21(19): 8809-8816.
    [13] M. Osawa. In Handbook of Vibrational Spectroscopy; Chalmers J. M., Griffiths, P. R., Eds.; John Wiley & Sons: Chichester, U.K., 2002; Vol.1, pp785-799.
    [14] O. Krauth, G. Fahsold, A. Pucci. Asymmetic line shape and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001) [J]. J. Chem. Phys., 1999, 110(6): 3113-3117.
    [15] Y. G. Yan, Q. X. Li, S. J. Huo, et al. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces [J]. J. Phys. Chem. B, 2005, 109(16): 7900-7906.
    [16] 严彦刚,李巧霞,霍胜娟.铂和钌纳米电极的全湿法制备及表面增强红外效应[J],化学学报,2005,63(6):545—549。
    [17] L. W. H. Leung, M. J. Weaver. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: Carbon monoxide adsorption and electrooxidation on platinum and palladium-coated gold electrodes [J]. J. Am. Chem. Soc., 1987, 109(17): 5113-5119.
    [18] S. Zou, M. J. Weaver. Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: Chemical bonding versus electrostatic field effects [J]. J. Phys. Chem., 1996, 100(10): 4237-4242.
    [19] S. Zou, M. J. Weaver, X. Q. Li, et al. New strategies for surface-enhanced Raman scattering at transition-metal interfaces: Thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon [J]. J. Phys. Chem. B, 1999, 103(21): 4218-4222.
    [20] A. Lachenwitzer, O. M. Magnussen. Electrochemical quartz crystal microbalance study on the kinetics of nickel monolayer and multilayer electrodeposition on (111)-oriented gold films [J]. J. Phys. Chem. B, 2000, 104(31): 7424-7430.
    [21] A. Saraby-Reintjes, M. Fleischmann. Kinetics of electrodeposition of Ni from Watts baths [J]. Electrochim. Acta, 1984, 29(4): 557-566.
    [22] H. Miyake, S. Ye, M. Osawa. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry [J]. Electrochem. Commun., 2002, 4(12): 973-977.
    [23] H. C. Wang, S. G. Sun, J. W. Yan, et al. In situ STM studies of electrochemical growth of nanostructured Ni films and their anomalous IR properties [J]. J. Phys. Chem. B, 2005, 109(10): 4309-4316.
    [24] 王汉春,周志有,汤薇等.纳米Ni薄膜的电化学制备及其异常红外效应研究[J] 科学通报,2002,49(1):57-60.
    [25] I. G. Casella, M. R. Guascito, M. G. Sannazzaro. Voltammetric and XPS investigations of nickel hydroxide electrochemically dispersed on gold surface electrodes [J]. J. Electroanal. Chem., 1999, 462 (2): 202-210.
    [26] A. Cuesta, C. Gutierrez. Study by Fourier transform infrared spectroscopy of the adsorption of carbon monoxide on a nickel electrode at pH 3-14 [J]. Langmuir, 1998, 14(12): 3397-3404.
    [27] A. Cuesta and C. Gutierrez. Electroadsorption and electrooxidation of CO on anodic Ni oxide in acidic CO-free solution [J]. J. Phys. Chem. B, 1997, 101(45): 9287-9291.
    [28] J. Kubota, E. Yoda, N. Ishizawa, et al. Site-hopping of adsorbed CO in c(4×2)-CO/Ni(111) by laser-induced temperature jump: time-resolved sum-frequency generation observation [J]. J. Phys. Chem. B, 2003, 107(38): 10329-10332.
    [29] J. C. Campuzano, R. G. Greenler. The adsorption sites of CO on Ni(111) as determined by infrared reflection-absorption spectroscopy [J]. Surf. Sci., 1979, 83: 301-312.
    [30] L. Surnev, Z. Xu, J. T. Yates, Jr. Site interconversion in chemisorbed CO on Ni(111): IRAS and work function studies [J]. Surf. Sci., 1988, 201 (1-2): 14-26.
    [31] A. Grossmann, W. Erley, H. Ibach. CO on Ni(100): Observation of a high-frequency IR band at 2200 cm~(-1) [J]. Surf. Sci., 1996, 366 (2): L742-L742.
    [32] G. Martra, S. Coluccia, M. Che, et al. Ni and CO used as probes of the amorphous silica surface: IR and theoretical studies of dicarbonyl Ni complexes Ⅱ [J]. 2003, J. Phys. Chem. B, 107(25): 6096-6104.
    [33] Y. Hori, O. Koga, A. Aramata, M. Enyo. Infrared spectroscopic observation of adsorbed CO intermediately formed in the electrochemical reduction of CO_2 at a nickel electrode [J]. Bull. Chem. Soc. Jpn., 1992, 65(11): 3008-3010.
    [34] Y. Nishikawa, K. Fujiwara, K. Ataka and M. Osawa. Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface-analysis of semiconductors, glass, and polymers [J]. Anal. Chem., 1993, 65(5): 556-562.
    [35] C. Pecharroman, A. Cuesta, C. Gutierrez. Comments on the paper by M.-S. Zheng and S.-G. Sun entitled 'In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions'[J. Electroanal. Chem. 500 (2001) 223] [J]. J. Electroanal. Chem., 2002, 529(2): 145-154.
    [36] S. G. Sun, W. B. Cai, L. J. Wan and M. Osawa. Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy [J]. J. Phys. Chem., 1999, 103(13): 2460-2466.
    [37] M. A. Tadayyoni, M. J. Weaver. Adsorption and electrooxidation of carbon monoxide at the gold-aqueous interface as studied by surface-enhanced Raman spectroscopy [J]. Langmuir, 1986, 2(2): 179-183.
    [38] A. E. Bjerke, P. R. Griffiths, W. Theiss. Surface-enhanced infrared absorption of CO on platinized platinum [J]. Anal. Chem., 1999, 71: 1967-1974.
    [39] H. Miyake, M. Osawa. Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution [J]. Chem. Lett., 2004, 33(3): 278-279.
    [40] S. J. Huo, X. K. Xue, Q. X. Li, et al. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy [J]. J. Phys. Chem. B, 2006, 110 (51): 25721-25728.
    [41] S. Park, A. Wieckowski., M. J. Weaver. Electrochemical infrared characterization of CO domains on ruthenium-decorated platinum nanoparticles [J]. J. Am. Chem. Soc., 2003, 125(8): 2282-2290.
    [42] K. Yoshimi, M. B. Song, M. Ito. Carbon monoxide oxidation on a Pt(111) electrode studied by in-situ IRAS and STM: Coadsorption of CO with water on Pt(111) [J]. Surf. Sci., 1996, 368: 389-395.
    [43] M. Ito, M. Nakamura. Hydration processes of electrolyte anions and cations on Pt(111), Ir(111), Ru(001) and Au(111) surfaces: Coadsorption of water molecules with electrolyte ions [J]. Faraday Discuss., 2002, 121, 71-84.
    [44] H. Shiroishi, Y. Ayato, K. Kunimatsu, T. Okada. Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy) [J]. J. Electroanal. Chem., 2005, 581(1): 132-138.
    [45] H. Kim, I. Rabelo de Moraes, G. Tremiliosi-Filho, R. Haasch, A. Wieckowski. Chemical state of ruthenium submonolayers on a Pt(111) electrode[J]. Surf. Sci., 2001, 474(1-3): L203-L212.
    [46] W. B. Cai, L. J. Wan, H. Noda, et al. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy[J]. Langmuir, 1998, 14(24): 6992-6998.
    [47] J. Lipkowski, L. Stolberg, In Adsorption of Molecules at Metal Electrodes; J. Lipkowski, P. N. Ross, Eds.; VCH: New York, 1992; p171.
    [48] N. Li, V. Zamlynny, J. Lipkowski, et al. In situ IR reflectance absorption spectroscopy studies of pyridine adsorption at the Au(110) electrode surface[J]. J. Electroanal. Chem., 2002, 524-525(3): 43-53.
    [49] S. Haq, D. A. King. Configurational transitions of benzene and pyridine adsorbed on Pt{111} and Cu{110} surfaces: An infrared study[J]. J. Phys. Chem., 1996, 100(42): 16957-16965.
    [50] L. J. Wan, C. Wang, C. Bai, M. Osawa. Adlayer structures of benzene and pyridine molecules on Cu(100) in solution by EC-STM[J]. J. Phys. Chem., 105(35): 8399-8402.
    [51] N. J. Dinardo, Ph. Avouris, J. E. Demuth. Chemisorbed pyridine on Ni(001): A high resolution electron energy loss study of vibrational and electronic excitations[J]. J. Chem. Phys., 1984, 81(4): 2169-2180.
    [52] M. R. Cohen, R. P. Merrill. Adsorbption of pyridine on Ni(111)-A high-resolution electron-energy loss spectroscopy, Angular-resolved UV pbotoemission, and X-ray photoelectron-spectroscopy study[J]. Langmuir, 1990, 6(7): 1282-1288.
    [53] Q. J. Huang, X. F. Lin, Z. L. Yang, et al. An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy[J]. J. Electroanal. Chem., 2004, 563(1): 121-131.
    [54] B. Ren, Q. J. Huang, W. B. Cai, B. W. Mao, F. M. Liu, Z. Q. Tian. Surface Raman spectra of pyridine and hydrogen on bare platinum and nickel electrodes[J]. J. Electroanal. Chem., 1996, 415(1-2): 175-178.
    [55] C. Zuo, P. W. Jagodzinski. Surface-enhanced Raman scattering of pyridine using different metals: Differences and explanation based on the selective formation of alpha-pyridyl on metal surfaces[J]. J. Phys. Chem. B, 2005, 109(5): 1788-1793.
    [56] A. Tadjeddine, A. Le Rille, O. Pluchery, et al. Sum and difference frequency generation at the electrochemical interface[J]. Phys. Stat. Sol. (a), 1999, 175(1): 89-107.
    [57] L. Corrsin, B. J. Fax, R. C. Lord. The Vibrational Spectra of Pyridine and Pyridine-d5[J]. J. Chem. Phys., 1953, 21(7): 1170-1176.
    [58] M. P. Andersson, P. Uvdal. Transformation of pyridine to alpha-pyridyl on W(110) as probed by vibrational spectroscopy: Experiments and calculations[J]. J. Phys. Chem. B, 2001, 105(39): 9458-9462.
    [59] A. G. Brolo, D. E. Irish. The adsorption and orientation of pyrazine on silver electrodes: A surface enhanced Raman scattering study [J]. J. Electroanal. Chem., 1996, 414(2): 183-196.
    [60] M. Moskovits, D. P. DiLella, K. J. Maynard. Effects of Laser Illumination during Controlled-Rate Oxidation-Reduction Cycles on SERS of Chloride at Roughened Ag Electrodes[J]. Langmuir, 1988, 4(1): 58-62.
    [61] K. Ataka, T. Yotsuyanagi, M. Osawa. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy[J]. J. Phys. Chem., 1996, 100(25): 10664-10672.
    [62] M. Osawa, K. Ataka, K. Yoshii, et al. Surface-enhanced infrared spectroscopy: The origin of tbe absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles [J]. Appl. Spectrosc., 1993, 47(9): 1497-1502.
    [1] M. Watanabe, Y. Zhu and H. Uchida, Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy [J]. J. Phys. Chem., 2000, 104(8): 1762-1768.
    [2] O. Savadogo, K. Lee, K. Oishi, et al., New palladium alloys catalyst for the oxygen reduction reaction in an acid medium [J]. Electrochem. Commun., 2004, 6 (2): 105-109.
    [3] C. A. Melendres, in Electrochemical and Optical Techniques for the Study and Monitoring of Metallic Corrosion. M. G. S. Ferreira, C. A. Melendres (Eds.) Kluwer. Dordrecht, 1991, p 355.
    [4] P. G. Cao, J. L. Yao, B. Ren, et al. Surface-enhanced Raman scattering from bare Fe electrode surfaces [J]. Chem. Phys. Lett., 2000, 316(1-2):1-5.
    [5] R. A. Gu, P. G. Cao, J. L. Yao, et al. Surface Raman spectroscopic studies on the adsorption of pyridine at bare iron electrodes [J]. J. Electroanal. Chem., 2001,505(1-2): 95-99.
    [6] P. G. Cao, R. A. Gu, Z. Q. Tian. Electrochemical and surface-enhanced Raman spectroscopy studies on inhibition of iron corrosion by benzotriazole [J]. Langmuir, 2002, 18(20): 7609-7615.
    [7] J. L. Yao, B. Ren, Z. F. Huang, et al. Extending surface Raman spectroscopy to transition metals for practical applications Ⅳ. A study on corrosion inhibition of benzotriazole on bare Fe electrodes[J]. Electrochim. Acta, 2003, 48(9): 1263-1271.
    [8] M. Osawa, In Handbook of Vibrational Spectroscopy; Chalmers J. M., Griffiths, P. R., Eds.; John Wiley & Sons: Chichester, U.K., 2002; Vol. 1, pp785-799.
    [9] Y. G. Yah, Q. X. Li, S. J. Huo, et al. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces[J]. J. Phys. Chem. B, 2005, 109(16): 7900-7906.
    [10] 严彦刚,李巧霞,霍胜娟.铂和钌纳米电极的全湿法制备及表面增强红外效应[J],化学学报,2005,63(6):545-549。
    [11] H. Miyake, S. Ye, M. Osawa. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry[J]. Electrochem. Commun.,, 2002, 4(12): 973-977.
    [12] A. Lachenwitzer, O. M. Magnussen. Electrochemical quartz crystal microbaiance study on the kinetics of nickel monolayer and multilayer electrodeposition on (111)-oriented gold films[J]. J. Phys. Chem. B, 2000, 104(31): 7424-7430.
    [13] T. Fujii, D. Alders, F. C. Voogt. In situ RHEED and XPS studies of epitaxial thin α-Fe_2O_3 (0001) films on sapphire[J]. Surf. Sci., 1996, 366: 579-586.
    [14] T. Fujii, F. M. F. de Groot, and G. A. Sawatzky. In situ XPS analysis of various iron oxide films grown by NO_2-assisted molecular-beam epitaxy[J]. Physic. Rev., 1999, 59(4): 3195-3202.
    [15] A. Cuesta and C. Gutierrez. Study by Fourier transform infrared spectroscopy of the electroadsorption of CO on the ferrous metals. 1. Iron[J]. J. Phys. Chem., 1996, 100(30): 12600-12608.
    [16] O. Krauth, G. Fahsold, A. Pucci. IR-spectoscopy of CO on iron ultrathin films[J]. J. Mol. Struct., 1999, 482-483: 237-240.
    [17] O. Krauth, G. Fahsold, A. Pucci. Asymmetic line shape and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001)[J]. J. Chem. Phys., 1999, 110(6): 3113-3117.
    [18] O. Krauth, G. Fahsold, N. Magg, et al. Anomalous infrared transmission of adsorbates on ultrathin metal films: Fano effect near the percolation threshold[J]. J. Chem. Phys., 2000, 113(15): 6330-6333.
    [19] T. Tanabe, R. Buckmaster, T. Ishibashi, et al. Infrared refection absorption spectroscopic study for CO adsorption on molecular beam epitaxially grown Fe films on Cu(111)[J]. Surf. Sci., 2001, 472: 1-8.
    [20] T. Wadayama, K. Kubo, T. Yamashita, et al. Infrared reflection absorption study of carbon monoxide adsorbed on submonolayer Fe-covered Cu(100), (110), and (111) bimetallic surfaces[J]. J. Phys. Chem. B, 2003, 107(16): 3768-3773.
    [21] T. Tanabe, Y. Suzuki, T. Wadayama, A. Hatta. Carbon monoxide adsorption on ultra-thin Fe film deposited on Cu(100)[J]. Surf. Sci., 1999, 427/428: 414-418.
    [22] H. Y. H. Chan, M. J. Weaver. A vibrational structural analysis of benzotriazole adsorption and phase film formation on copper using surface-enhanced Raman spectroscopy[J]. Langmuir, 1999, 15(9): 3348-3355.
    [23] M. E. Biggin and A. A. Gewirth. Infrared studies of benzotriazole on copper electrode surfaces role of chloride in promoting reversibility[J]. J. Electrochem. Soc., 2001, 148(5): C339-C347.
    [24] M. R. Vogt, R. J. Nichols, O. M. Magnussen, and R. J. Behm. Benzotriazole Adsorption and Inhibition of Cu(100) Corrosion in HCI: A Combined in Situ STM and in Situ FTIR Spectroscopy Study [J]. J. Phys. Chem. B, 1998, 102(30): 5859-5865
    [25] I. Popova, J. T. Yates. Adsorption and Thermal Behavior of Benzotriazole Chemisorbed on α-Al_2O_3 [J]. Langmuir, 1997, 13(23): 6169-6175.
    [26] J. Rubim, I. G. R. Gutz, O. Sala, W. J. Orville-Thomas. Surface enhanced Raman spectra of benzotriazole adsorbed on a copper electrode [J]. J. Mol. Struct., 1983, 100: 571-583.
    [27] Z. Xu, S. Lau, P. W. Bohn. The role of benzotriazole in corrosion inhibition: formation of an oriented monolayer on Cu_2O [J]. 2000, 359(1): 88-94.
    [28] M. M. Musiani, G. Mengoli, M. Fleischmann, R. W. Lowry. An electrochemical and SERS investigation of the influence of pH on the effectiveness of some corrosion inhibitor of copper [J]. J. Electroanal. Chem., 1987, 217: 187-202.
    [29] H. Miyake, E. Hosono, M. Osawa, T. Okada. Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes [J]. Chem. Phys. Lett., 2006.428: 451-456.
    [30] L. Corrsin, B. J. Fax, R. C. Lord. The Vibrational Spectra of Pyridine and Pyridine-d5 [J]. J. Chem. Phys., 1953, 21(7): 1170-1176.
    [31] Surface Enhanced Raman Scattering; R. K. Chang, T. E. Furtak, Eds.; Plenum: New York, 1982.
    [32] W. B. Cai, L. J. Wan, H. Noda, Y. Hibino, K. Ataka and M. Osawa. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy [J]. Langmuir, 1998, 14(24): 6992-6998.
    [33] S. J. Huo, X. K. Xue, Q. X. Li, et al. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy [J]. J. Phys. Chem. B, 2006, 110 (51): 25721-25728.
    [34] 李巧霞,严彦刚,徐群杰.镉电极上的衰减全反射表面增强红外光谱[J],高等学校化学学报,2006,27(12):2414-2416.
    [35] C. Zuo, P. W. Jagodzinski. Surface-enhanced Raman scattering of pyridine using different metals: Differences and explanation based on the selective formation of alpha-pyridyl on metal surfaces [J]. J. Phys. Chem. B, 2005, 109(5): 1788-1793.
    [36] 严彦刚,徐群杰,蔡文斌.铂电极上的吸附芳香分子的表面增强红外光谱[J].化学学报,2006,64(6):458-462.
    [37] S. J. Huo, X. K. Xue, Y. G. Yan, et al. Extending in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy to Ni electrodes [J]. J. Phys. Chem. B, 2006, 110(9): 4162-4169.
    [38] J. Lipkowski, L.Stolberg, D. F. Yang. Molecular adsorption at metal electrodes [J]. Electrochim. Acta, 1994, 39(8-9): 1045-1056.
    [1] C. T. Cohen, T. Chu, G. W. Coates. Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: Combining high activity and selectivity [J]. J. Am. Chem.Soc., 2005, 127(31): 10869-10878.
    [2] Y. Q. Chu, Z. W. Fu, Q. Z. Qin. Cobalt ferrite thin films as anode material for lithium ion batteries [J]. Electrochim. Acta, 2004, 49(27): 4915-492.
    [3] A. Bai, C. C. Hu Cyclic voltammetric deposition of nanostructured iron-group alloys in high-aspect ratios without using templates [J]. Electrochem. Commun., 2003, 5(8): 619-624.
    [4] Y. S. Kim, Y. H. Kim. Application of ferro-cobalt magnetic fluid for oil sealing [J]. J. Magn.Magn. Mater., 2003, 267(1): 105-110.
    [5] C. Petit, M. P. Pileni. Physical properties of self-assembled nanosized cobalt particles [J]. Appl. Surf. Sci., 2000, 162: 519-528.
    [6] A. E. Berkowitz, J. R. Mitchell, M. J. Carey, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys [J]. Phys. Rev. Lett., 1992, 68(25): 3745-3748.
    [7] J. Q. Xiao, J. S. Jiang, C. L. Chien. Giant magnetoresistance in nonmultilayer magnetic systems [J]. Phys. Rev. Lett., 1992, 68 (25): 3749-3752.
    [8] M. Watanabe, Y. M. Zhu, H. Uchida. Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy [J]. J. Phys. Chem. B, 2000, 104(8):1762-1768.
    [9] O. Savadogo, K. Lee, K. Oishi, et al. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium [J]. Electrochem.Commun., 2004, 6(2): 105-109.
    [10] N. Sheppard, N. T. Nguyen, Advances in Infrared and Raman Spectroscopy; R. J. H. Clark, R.E. Hester, Eds.; Heyden: London, 1978; Vol. 5, Chapter 2.
    [11] R. Gopalakrishnan, B. Viswanathan. Temperature-programmed deposition and infrared studies on the activation of carbon monoxide on cobalt surfaces. [J]. J. Colloid Interface Sci., 1984, 102:370-372.
    [12] C. N. R. Rao, P. Vishnu Kamath, K. Prabhakaran, M. S. Hedge. Adorption of carbon monoxide on the surfaces of polycrystalline transition metals and alloys: electron energy loss and ultraviolet photoelectron spectral studies [J]. Can. J. Chem., 1985, 63:1780-1787.
    [13] A. Cuesta and C. Gutierrez. Study by Fourier Transform Infrared Spectroscopy of the Adsorption of Carbon Monoxide on a Cobalt Electrode at pH 3-14 [J]. Langmuir 1998, 14(12):3390-3396.
    [14] Q. S. Chen, S. G. Sun, J. W. Yan, et al. Electrochemical preparation and structural characterization of Co thin films and their anomalous IR properties [J]. Langmuir, 2006, 22(25):10575-10583.
    [15] A. Lachenwitzer and O. M. Magnussen. Electrochemical quartz crystal microbalance study on the kinetics of nickel monolayer and multilayer electrodeposition on (111)-oriented gold films [J]. J. Phys. Chem. B, 2000, 104(31): 7424-7430.
    [16] 陈青松,李君涛,周志有,颜佳伟,孙世刚.纳米结构钴薄膜电极的制备及其异常红外性能研究[J].高等学校化学学报,2006,27(8):1500-1504。
    [17] C. Xu, B. Dillmann, H. Kuhlenbeck, H.J. Freund. Unusual state of adsorbed CO: CO(3~(1/2)×3~(1/2))R30°/Cr_2O_3(111) [J]. Phys. Rev. Lett., 1991, 67:3551-3554.
    [18] S. C. Chang, M. J. Weaver. In situ infrared spectroscopy at single-crystal metal electrodes: an emerging link between electrochemical and ultrahigh-vacuum surface science [J]. J. Phys. Chem., 1991, 95(14): 5391-5400.
    [19] C. Pecharroman, A. Cuesta, C. Gutierrez. Connnents on the paper by M.-S. Zheng and S.-G. Sun entilled In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid sohitions'[J. Electroanal. Chem. 500 (2001) 223 [J]], J. Electroanal. Chem., 2002, 529(2): 145-154.
    [20] S, C. Chang, M. J. Weaver, In-situ infrared spectroscopy of CO adsorbed at ordered Pt(110)-aqueous interfaces [J]. Surf. Sci., 1990, 230: 222-236.
    [21] S. G. Sun, W. B. Cai, L. J. Wan and M. Osawa. Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surf:ace-enhanced IR spectroscopy [J]. J. Phys. Chem., 1999, 103(13): 2460-2466.
    1 美国金属学会主编.金属手册.机械工业出版社,1994,第9版,第2卷。
    2 熊健主编.国外热处理新技术.冶金工业出版社,1990,516。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700