基于新型甜菜碱类芳香多羧酸配体的配位聚合物:合成、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以多羧酸类配体构筑的配位聚合物以其丰富多样的结构,美丽多变的拓扑结构及其在包括光化学、吸附、催化、和磁性等领域广泛而诱人的潜在的应用价值而成为近年来化学和材料工作人员研究热点之一。本论文致力于利用三个新型甜菜碱类芳香多羧酸配体和含氮辅助配体与过渡或稀土金属离子来构筑具有迷人结构的配位聚合物。采用水热、溶剂热等合成方法,共合成了27个结构新颖的配位聚合物。另外通过元素分析,R和X-射线单晶衍射对化合物的结构进行了表征,并对配位聚合物的热稳定性、相纯度和荧光性质以及部分配合物的非线性光学性能进行了研究。
     本论文主要包括以下两个部分:
     一、利用刚性的H2L1(3-(4-羟基吡啶基)-1,2-邻苯二甲酸)及柔性H2L2(5-(4-羟基吡啶基-1-甲基)-1,3-间苯二甲酸)与Zn(Ⅱ)、Cd(Ⅱ)在不同含氮辅助配体的协同作用下,制备了十个具有多样性螺旋片段的配位聚合物。其中得到了一个含有三重共轴螺旋体系的手性配位聚合物{[Cd(L1)(p-bix)]·1.75H20}n(1).配合物1是目前合成的重数最多的螺旋配合物,而且三重共轴螺旋体系是通过逐级诱导组装形成的,这为等级组装配位聚合物提供了很好的范例。配合物[Cd(L1)(CH30H)(H20)]n(2)的两种螺旋链是由L12-及L12-上的邻苯二甲酸基团分别与金属离子Cd(II)配位形成的;配合物{[Cd(L1)(1,4-bbi)].(H20)}n(3)中的超分子螺旋链是由配体L12-与游离水通过氢键形成的;配合物{[Cd(L1)(m-bix)(H20)]·(H2O)2}n(4)则形成了一个迷人的夹心型螺旋带,而且它们通过螺旋水链连接成三维超分子网络,这是目前报道的为数不多的结构类型;配合物[Zn(L1)(4,4'-bpy)0.5]n(5)中存在一种meso-螺旋;而配合物[Zn(L1)(bpp)]n(6)中螺旋链则是由含氮辅助配体和金属Zn(Ⅱ)通过配位键连接而成的。配合物{[Cd(L2)(p-bix)(H20)]·H20}n(7)是第一例由一维螺旋管构筑的1D→2D的插指形结构;配合物{[Zn(L2)(H2O)]·H2O}n(8)是由手性面通过ABAB堆积形成的内消旋的三维超分子结构;配合物{[Zn(L2)(p-bix)]·3.5H2O}n(9)是少见报道的由二维螺旋面构筑的2D→3D的插指形结构;配合物{[Zn(L2)(4,4'-bpy)0.5]·2H2O}n(10)是含有螺旋特征的层柱状三重穿插网络。
     二、基于刚性的H2L1(3-(4-羟基吡啶基)-1,2-邻苯二甲酸)、柔性的H2L2(5-(4-羟基吡啶基-1-甲基)-1,3-间苯二甲酸)与镧系离子在草酸配体的协同作用下构筑了十七个含有双核金属单元的配位聚合物{[Ln(L1)(OX)0.5(H2O)2]·3H2O}n (11-12)、[Ln(L1)(OX)0.5(H2O)3]n(13-21)和{[Ln2(L2)(OX)2(H2O)3]·6H2O}n(22-27)。结构分析表明11-21它们可分为两大类,但是根据配合物中双核金属单元不同,它们又可分为四组。随着金属离子半径的减小,金属离子的配位数逐渐减少,Ln-O键平均键长逐渐变短。总的来讲,配合物11-21结构的差异是镧系收缩造成的。另外,我们还研究了刚性的H2L1对Eu、Tb、Dy配合物的敏化发光性能。结构分析22-27是异质同晶的,它们都属于单斜晶系P21空间群。对它们的Ln-O键键长及单胞参数分析印证了镧系收缩效应。此外对它们进行了荧光及非线性光学性能的研究。与此同时我们根据当前在掺杂稀土有机配合物中发现了从一种镧系离子到另一种镧系离子间的能量传递可以导致发光变化的现象,制备了一系列Eu-Tb掺杂的配合物。通过粉末衍射分析,表明它们的结构与22-27是类似的。Eu-Tb
In recent years, the coordination polymers based on multi-carboxylate acid, as one of the most intense studied areas for chemists, physicists, and materials scientists, have been extensively explored and realized for their aesthetics of crystalline architectures and their potential functions in luminescence, non-linear optics, adsorption, magnetism, and catalysis. In this paper, with the aim of construct of novel coordination polymers with intriguing structural motifs and good properties, three novel multi-carboxylate betaines (H2L1、H2L2、H2L3) and N-donor ancillary coligands were selected to prepare27complexes in the cooperation of metal ions. These complexes were characterized with X-ray single crystal diffraction, IR, elemental analysis. Furthermore, their thermal stabilities, phase purity, photoluminescence, as well as non-linear optics of some compounds were studied.
     1. Ten Zn(Ⅱ)/Cd(Ⅱ) coordination polymers with helical su8bunits was assembled from the mixed liagnds of H2L1(H2L2) and N-donor ancillary coligands. Complex1with homochiral triple concentric helical system has been obtained. Based on our understanding of the coordination with multi-concentric helical system, complex1with triple concentric helical system is the first example. Compound2displays a layered structure containing two kinds of helical chains. Compound3features a3D supramolecular framework embodying a type of supramolecular helical chain. Compound4exhibits a metal-organic ribbon structure with two kinds of helical chains. Compound5features a3D architecture in which a1D lemniscate shape pseudo meso-helix chain is observed. Compound6exhibits a2D achiral layer in which the1D (Zn-bpp)n helical chains are alternately arranged in a right-and left-handed sequence. Compound7displays a1D→2D interdigitated architecture constructed from unique1D independent helical tubes. Compound8is a layered structure with two helical chains. Compound9is also a layered coordination polymer with two types of helical chains and features interesting2D→3D interdigitated architecture. Compound10exhibits a3D3-fold interpenetrating framework with pillared helical-layers.
     2. Seventeen Ln(Ⅲ) coordination polymers with dinuclear SBUs based on H2L1(H2L2) and oxalic acid were hydrothermally synthesized. The single-crystal X-ray analyses of the complexes (11-21) reveal that they all have a2D layer structure with different dinuclear SBUs and crystallize in the same triclinic space group P-1. Two kinds of these complexes can be classified by their composition, meanwhile, four groups can be divided by different dinuclear SBUs in them. The average band length of Ln-O in each group and the coordination numbers of the Ln(Ⅲ) ions are decreased by the increase of atomic number. In general, the different structural features of11-21may be related to the ionic size of different lanthanide ions, the so-called "lanthanide contraction". In addition, the luminescent properties of Eu、Tb、Dy compounds have also been investigated in detail. The single-crystal X-ray analyses of the complexes (22-27) reveal that they all crystallize in the same monoclinic space group P21. The result of the analysis with the everage Ln-O band length and cell parameters confirmed the effect of "lanthanide contraction". As is known, energy transfers from one lanthanide to another lanthanide ion have been observed to enhance the luminescence intensity in heterolanthanide coordination polymers. We successfully obtained the functional luminescent MOF materials by doping isostructural Eu3+into Tb3+compounds to tune the emission colors by changing the doped Eu3+concentration. Therefore, the photoluminescence color of the Eu3+doped MOF canbe tuned from green-yellow to yellow, orange, and red-orange, and the corresponding CIE chromaticity coordinates change from (0.368,0.518) to (0.550,0.341) by changing the doping concentration of the Eu3+ions.
引文
[1]Becher J., Schaumburg K. Ed. Molecular Engineering for Advanced Materials [M],1995.
    [2]Kahll O. Ed. A Supramolecular Function [M], Weinheim:VCH,1996.
    [3]Interrante, L.V., Smith, M. J. H. Chemistry of advanced Materials [M], An Overview, Wiley: VCH, New York,1998.
    [4]游效曾,分子材料—光电功能化合物[M],上海科学技术出版社,2001.
    [5]黄春辉,李富友,黄岩宜,光电功能超薄膜[M],北京人学出版社,2001.
    [6]徐志固编.现在配位化学[M],北京:化学工业出版社,1987.
    [7]孟庆金,戴安邦编,配位化学的创始与现代化[M],北京:高等教育出版社,1998.
    [8]孙为银编著,配位化学,北京:化学工业出版社[M],2004.
    [9]王庆伦,廖代正,化学进展[M],2003,15:161-169
    [10]游效曾,孟庆金,韩万书主编,配位化学进展[M],北京:高等教育出版社,2000.
    [11]Bruser H. J., Schwarzenbach D., Petter W., et al. The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O[J], Inorg. Chem.,1977,16:2704-2710.
    [12]Wells A. F. Three Dimensional Nets and Polyhedra[M], New York,1977.
    [13]Hosking B. F., Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J], J. Am. Chem. Soc.,1989,111:5962-5964.
    [14]Zhou H.-C., Jeffrey R. L., Yaghi O M. Introduction to Metal -Organic Frameworks[J], Chem. Rev.,2012,111:673-674.
    [15]Leong W. L, Vittal J. J. One-Dimensional Coordination Polymers:Complexity and Diversity in Structures, Properties. and Applications[J], Chem. Rev.,2011,111:688-764.
    [16]Luan X.-J., Wang Y.-Y., Li D.-S., Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions[J], Angew Chem. Int. Ed.,2005,44:3864-3867.
    [17]Qin C., Wang X.-L., Yuan L., et al., Chiral Self-Threading Frameworks Based on Polyoxometalate Building Blocks Comprising Unprecedented Tri-Flexure Helix[J], Cryst. Growth Des.,2008,8:2093-2095.
    [18]Fan J., Zhu H.-F., Okamura T., et al. Novel One-Dimensional Tubelike and Two-Dimensional Polycatenated Metal-Organic Frameworks [J]. Inorg. Chem.,2003,42: 158-162.
    [19]Wu H., Yang J., Su Z.-M., An Exceptional 54-Fold Interpenetrated Coordination Polymer with 103-srs Network Topology [J], J. Am. Chem. Soc.,2011,133:11406-11409.
    [20]Li J.-R., Sculley J., Zhou H.-C. Metal Organic Frameworks for Separations[J], Chem. Rev., 2012,112:869-932.
    [21]Yoon M., Srirambalaji R., Kim K. Homochiral Metal Organic Frameworks for Asymmetric Heterogeneous Catalysis[J], Chem. Rev.,2012,112:1196-1231.
    [22]Zhang W., Xiong R.-G. Ferroelectric Metal Organic Frameworks[J], Chem. Rev.,2012,112: 1163-1195.
    [23]Wang C., Zhang T., Lin W. B. Rational Synthesis of Noncentrosymmetric MetalOrganic Frameworks for Second-Order Nonlinear Optics[J], Chem. Rev.,2012,112:1084-1104.
    [24]Cui Y. J., Yue Y. F., Qian G. D., et al. Luminescent Function al MetalOrganic Frameworks [J], Chem. Rev.,2012,112:1126-116.
    [25]Ma Y., Cheng A.-L., Zhang J.-Y., et al. One-, Two-, and Three-Dimensional Coordination Polymers of Stilbenedicarboxylate with Different Metal Ions[J], Cryst. Growth Des.,2009,9: 867-873.
    [26]Yang J., Li B., Ma J.-F., et al., An unusual ten-connected self-penetrating metal-organic framework based on tetranuclear cobalt clusters[J], ChemComm.,2010,46:8383-8385.
    [27]Yi X.-Y., Fang H.-C., Gu Z.-G., et al. Metal Organic Frameworks with Achiral/Monochiral Nano-Channels[J], Cryst. Growth Des.,2011,11:2824-2828.
    [28]Cui P., Ma Y.-G., Li H.-H., et al. Multipoint Interactions Enhanced CO2 Uptake:A Zeolite-like Zinc-Tetrazole Framework with 24-Nuclear Zinc Cages[J], J. Am. Chem. Soc., 2012,134:18892-18895.
    [29]Millward A. R., Yaghi O. M. Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature[J], J. Am. Chem. Soc.,2005,127: 17998-17999.
    [30]Ma L. F., Li C. P., Wang L.Y., et al. CoⅡ and ZnⅡ coordination Frameworks with Benzene-1,2,3-tricarboxylate Tecton and Flexible Dipyridyl Co-Ligand:A New Type of Entangled Architecture and a Unique 4-Connected Topological Network[J], Cryst. Growth Des.,2011,11:3309-3312.
    [31]Wang R. H., Zhou Y. F., Sun Y. Q., et al. Syntheses and Crystal Structures of Copper(II) Coordination Polymers Comprising Discrete Helical Chains[J], Cryst. Growth Des.,2005,5: 1251-256.
    [32]Lin X., Telepeni I., Blake, A. J., et al. High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials:The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites[J], J. Am. Chem. Soc.,2009,131:2159-2171.
    [33]Lin Q.-P., Wu T., Zheng S.-T., et al. A chiral tetragonal magnesium-carboxylate framework with nanotubularChannels[J], Chem.Comm,2011,47:11852-11854.
    [34]Tian H., Wang, K., Jia Q.-X., et al. Selective Incorporation of Auxiliary Organic Ligands in Metal Organic Frameworks Based on Twisted Ⅱ-Shaped Building Blocks [J], Cryst. Growth Des.,2011,11:5167-5170.
    [35]Zhu H.-F., Fan J., Okamura T., et al. Metal-Organic Architectures of Silver(Ⅰ), Cadmium(Ⅱ), and Copper(II) with a Flexible Tricarboxylate Ligand[J], Inorg. Chem.,2006,45:3941-3948.
    [36]Wang S.-N., Xing H., Li Y.-Z., et al. Unprecedented interweaving of single-helical and unequal double-helical chains into chiral metal-organic open frameworks with multiwalled tubular structures[J], Chem. Commun.,2007,2293-2295.
    [37]张瑞凤,柔性多羧酸配合物的合成、结构和性质研究[D],[博士学位论文].南开大学,2008.
    [38]Yang J., Song S.-Y., Ma J.-F., et al. Syntheses, Structures, Photoluminescence, and Gas Adsorption of Rare Earth Organic Frameworks Based on a Flexible Tricarboxylate[J], Cryst. Growth Des.,2011,11:5469-5474.
    [39]Liu J., Tan Y.-X., Wang F., et al. Homochiral assembly of polycatenated bilayers with mixing achiral ligands[J], CrystEngComm.,2012,14:789-791.
    [40]Wang X.-L., Qin C., Wang E. B., et al. Interlocked and Interdigitated Architectures from Self-Assembly of Long Flexible Ligands and Cadmium Salts[J], Angew. Chem. Int. Ed.,2004, 43:5036-5040.
    [41]Zang S. Q., Su Y., Li Y. Z., et al. Assemblies of a New Flexible Multicarboxylate Ligand and d10 Metal Centers toward the Construction of Homochiral Helical Coordination Polymers: Structures, Luminescence, and NLO-Active Properties [J], Inorg. Chem.,2006,45:174-180.
    [42]Zang S. Q., Su Y., Li Y. Z., et al. One Dense and Two Open Chiral Metal-Organic Frameworks:Crystal Structures and Physical Properties[J], Inorg. Chem.,2006,45: 2972-2978.
    [43]Gao X.-M., Li D.-S., Wang J.-J., et al. A Novel 1D Armed-polyrotaxane Chain Constructed from a V-shaped Tetracarboxylate Ligand[J], CrystEngComm,2008,10:479-482.
    [44]Su S.-Q., Chen W., Qin C., et al. Lanthanide Anionic Metal-Organic Frameworks Containing Semirigid Tetracarboxylate Ligands:Structure, Photoluminescence,and Magnetism[J], Cryst. Growth Des.,2012,12:1808-1815.
    [45]Guo Z. G., Cao R., Wang X., et al. A Multifunctional 3D Ferroelectric and NLO-Active Porous Metal-Organic Framework[J], J. Am. Chem. Soc.,2009,131:6894-6895.
    [46]Liu T.-F., Lu J., Guo Z. G., et al. New Metal-Organic Framework with Uninodal 4-Connected Topology Displayin g Interpenetration, Self-Catenation, and Second-Order Nonlinear Optical Response[J], Cryst. Growth Des.,2010,10:1489-1491.
    [47]Liu T.-F., Lu J., Lin X., et al. Construction of a trigonal bipyramidal cage-based metal-organic framework with hydrophilic pore surfacevia flexible tetrapodal ligands[J], Chem. Commun,2010,46:8439-8441.
    [48]Liu T.-F., Lii J., Tian C.-B., et al. Porous Anionic, Cationic, and Neutral Metal-Carboxylate Frameworks Constructed from Flexible Tetrapodal Ligands:Syntheses, Structures, Ion-Exchanges, and Magnetic Properties[J], Inorg. Chem.,2011,50:2264-2271.
    [49]Thallapally P. K., Tian J., Kishan M. R., et al. Flexible (Breathing) Interpenetrated Metal-Organic Frameworks for CO2 Separation Applications[J], J. Am. Chem. Soc.,2008,130: 16842-16843.
    [50]Thallapally P. K., Fernandez C. A., Motkuri R. K., et al. Micro and mesoporous metal-organic frameworks for catalysis applications[J], Dalton Trans.,2010,39:1692-1694.
    [51]Liang L.-L., Ren S.-B., Wang J., et al. A 3-dimensional coordination polymer with a fluorite structure constructed from a semi-rigid tetrahedral ligand[J], CrystEngComm,2010,12: 2669-2671.
    [52]Liang L.-L., Zhang J., Ren S.-B., et al. Rational synthesis of a microporous metal-organic framework with PtS topology using a semi-rigid tetrahedral linker[J], CrystEngComm,2010, 12:2008-2010.
    [53]Zhao X.-L., Sun D., Yuan S., et al. Comparison of the Effect of Functional Groups on Gas-Uptake Capacities by Fixing the Volumes of Cages A and B and Modifying the Inner Wall of Cage C in rht-Type MOFs[J], Inorg. Chem.,2012,51:10350-10355.
    [54]Dega-Szafran Z., Dutkiewicz G., Kosturkiewicz Z. Structures of two co-crystals of pyridine betaine withL(+)-tartaric acid[J], Journal of Molecular Structure,2010,976:129-13.
    [55]Barczyjski P., Komasa A., Katrusiak A., et al. Molecular structure, hydrogen bonding, basicity and spectroscopic properties of 3-hydroxypyridine betaine hydrochloride monohydrate[J], Journal of Molecular Structure,2007,832:63-72.
    [56]Szafran M., Koput J., Calculation of the vibrational spectra of pyridine betaine'[J], Journal of Molecular Structure,1996,381:157-167.
    [57]Han L.-J., Zhang S.-J., Wang, Y.-B., et al. A Strategy for Synthesis of Ionic Metal-Organic Frameworks[J], Inorg. Chem.,2009,48:786-788.
    [58]Fei Z.-F., Zhao D.-B., Geldbach T. J., et al. A Synthetic Zwitterionic Water Channel: Characterization in the Solid State by X-ray Crystallography and NMR Spectroscopy[J], Angew. Chem. Int. Ed.,2005,44:5720-5725.
    [59]Fei Z.-F., Geldbach T. J., Zhao D.-B., et al. A Nearly Planar Water Sheet Sandwiched between Strontium-Imidazolium Carboxylate Coordination Polymers[J], Inorg. Chem.2005, 44:5200-5202.
    [60]Wei P.-R., Wu D.-D., Mak T. C. W. Synthesis and molecular structures of (N-carboxymethyl)dimethylammonioacetate and its hydrochloride:Me2N(CH2CO2H)CH2CO2 and Me2N(CH2CO2H)CH2CO2HC1[J], Journal of Molecular Structure,1995,372:181-186.
    [61]Wu D.-D., Mak T. C. W. Molecular structures and hydrogen bonding in the crystalline hydrates of two flexible double betaines with different quaternary ammonio groups in the adipic acid skeleton[J], Journal of Molecular Structure,1995,372:187-193.
    [62]Zhang L.-P., Mak T. C. W. Crystal and molecular structures of 1:2 crystalline salts of two isomeric double betaines with hydrobromic acid and nitric acid[J], Journal of Molecular Structure,2004,693:1-10.
    [63](a)李敏,基于甜菜碱的氢键及配位氢键超分子构造[D],[硕士学位论文].天津大学,2008;(b)吉伟卓,基于甜菜碱的超分子设计与研究[D],[硕士学位论文].天津大学,2005.
    [64]Kong G.-Q., Wu C.-D., Four Novel Coordination Polymer s Based on a Flexible Zwitterionic Ligand and Their Framework Dependent Luminescent Properties[J], Cryst. Growth Des.,2010, 10:4590-4595.
    [65]Jiang M.-X., Zhan C.-H., Feng Y.-L., et al. A Series of Rutile Networks Construc ted by Dinuclear Transition Metal Units and 5-Carboxyl-l-carboxymethyl-3-oxidopyridimium[J], Cryst. Growth Des.,2010,10:92-98.
    [66]马瑜,基于内盐型羧酸配体的配位聚合物合成、结构与磁性[D],[博士学位论文].华东师范大学,2011.
    [67]Wu A-Q., Li Y., Zheng F.-K., et al. Different Molecular Frameworks of Zinc(Ⅱ) and Cadmium(Ⅱ) Coordination Polymers Constructed by Flexible Double Betaine Ligands[J], Cryst. Growth Des.,2006,6:444-450.
    [68]Li Y., Li G.-Q., Zou W.-Q., et al. Two Cu(Ⅱ) double betaine coordination polymers with different metal-organic frameworks[J], Journal of Molecular Structure,2007,837:231-236.
    [69]Ma L.-F., Wang L.-Y., Hu J.-L., et al. Syntheses, Structures, and Photoluminescence of a Series of d10 Coordination Polymers with R-Isophthalate (R=-OH,-CH3, and -C(CH3)3)[J], Cryst. Growth Des.,2009,9:5334-5342.
    [70]Yan X., Cai Z., Yi C., et al. Anion-Induced Structures and Luminescent Properties of Chiral Lanthanide-Organic Frameworks Assembled by an Achiral Tripodal Ligand[J], Inorg. Chem., 2011,50:2346-2353.
    [71](a) de Lill D. T., de Bettencourt-Dias A., Cahill, C. L., et al. Exploring Lanthanide Luminescence in Metal-Organic Frameworks:Synthesis, Structure, and Guest-Sensitized Luminescence of a Mixed Europium/Terbium-Adipate Framework and a Terbium-Adipate Framework[J], Inorg. Chem.,2007,46,3960-3965; (b) Soares-Santos P. C. R., Cunha-Silva L. Paz F. A. A., et al. Photoluminescent 3D Lanthanide-Organic Frameworks with 2,5-Pyridinedicarboxylic and 1,4-Phenylenediacetic Acids[J], Cryst. Growth Des.,2008,8: 2505-2516.
    [72]Cui Y. J., Xu H., Yue Y. F., et al. A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer[J], J. Am. Chem. Soc.,2012,134:3979-3982.
    [73]de Lill D. T., Gunning N. S., Cahill C. L. Toward Templated Metal-Organic Frameworks: Synthesis, Structures, Thermal Properties, and Luminescence of Three Novel Lanthanide-Adipate Frameworks [J], Inorg. Chem.,2005,44:258-266.
    [74]宋益善,4f及d10元素羧酸配合物的合成、结构及其发光性质[D],[博士学位论文].同济大学,2006.
    [75]Guo H., Zhu Y., Qiu S., et al. Coordination modulation induced synthesis of nanoscale Eu(1-x)Tb(x)-metal-organic frameworks for luminescent thin films [J], Adv. Mater.,2010,22: 4190-4192.
    [76]Shen Y.-R., The principles of nonlinear optics[M]. John Wily&Sons, Inc,1984.
    [77]Prasad P. N., Williams D. J., Introduction to Nonlinear Optical Effecs in Molecules and Polymer [M].1st edition. New York:John Wily&Sons,1991.
    [78]Green M. L. H., Marder S. R., Thompson M. E., et al. Synthesis and structure of
    (cis)-[1-ferrocenyl-2-(4-nitrophenyl)ethylene], an organotransition metal compound with a large
    second-order optical nonlinearity[J], Nature,1987,330:360-362.
    [79]Dalton L. R., Harper A. W., Ghosn R., Synthesis and processing of improved organic, Second-order nonlinear optical materials for applications in photonics[J], Chem. Mater.,1995, 7:1060-1081.
    [80]Tessore F., Locatelli D., Righetto S., et al. An investigation on the role of the nature of sulfonate ancillary ligands on the strength and concentration dependence of the second-order NLO responses in CHCl3 of Zn(II) complexes with 4,4'-trans-NC5H4CH=CHC6H4NMe2and 4,4'-trans, trans-NC5H4(CH=CH)2C6H4NMe2[J], Inorg. Chem.,2005,44:2437-2442.
    [81]Evans O. R., Lin W., Rational design of nonlinear optical materials based on 2D coordination networks[J], Chem. Mater.,2001,13:3009-3017.
    [82]Lin W., Wang Z., Ma L., A novel octunoncentrosymmetric metal-organic NLO material based on a chiral 2D coordination network[J], J. Am. Chem. Soc.,1999,121:11249-11250.
    [83]Evans O. R., Xiong R.-G., Wang Z., et al. Crystal engineering of noncentrosymmetric diamondoid metalorganic coordination networks[J], Angew. Chem., Int. Ed. Engl.,1999,38: 536-538.
    [84]Evans O. R., Lin W., Crystal engineering of nonlinear optical materials based on interpenetrated diamondoid coordination networks[J], Chem. Mater.,2001,13:2705-2712.
    [85]Lin W., Ma L., Evans O. R. NLO-active Zn(II) and cadmium(II) coordination networks with 8-fold diamondoid structures[J], Chem. Commun.,2000,2263-2264.
    [86]Xiong R.-G., Zuo J.-L., You X.-Z., et al. Synthesis and crystal structure of a chiral two-dimensional metal-organic coordination polymer:(S-(-)-lactate)(isonicotinato)zinc(II)[J], New J. Chem.,1999,23:1051-1052.
    [87]Xie Y.-R., Xiong R.-G., Xue X., et al. Two chiral coordination polymers:preparation and X-ray structures of mono(4-sulfo-L-phenylalanine)(diaqua) Zinc(II) and Copper(II) complexes[J], Inorg. Chem.,2002,41:3323-3326.
    [88]Qu Z.-R., Zhao H., Wang Y.-P., et al. Synthesis of novel chiral and acentric coordination polymers by the reaction of zinc or cadmium salts with racemic 3-Pyridyl-3-aminopropionic acid[J], Chem. Eur.J.,2004,10:53-60.
    [89]Wang Y.-T., Fan H.-H., Wang H.-Z., et al. Homochiral helical wavelike (4,4) networks constructed by divalent metal ions and S-carboxymethyl-L-cysteine[J], J. Molecular Structure, 2005,740:61-67.
    [90]Vaidhyanathan R., Natarajan S., Rao C. N. R., A chiral mixed carboxylate, [Nd4(H2O)2(OOC(CH2)3COO)4(C2O4)2], exhibiting NLO properties[J], J. Solid State Chemistry,2004,177:1444-1448.
    [1](a) Rowsell J. L. C., Yaghi O.M., Angew. Chem. Int. Ed.,2005,44:4670-4679; (b) Vittal J. J., Supramolecular structural transformations involving coordination polymers in the solid state[J], Coord. Chem. Rev.,2007,251:1781-1795; (c) Banerjee R., Phan A., Wang B., et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture[J], Science,2008,319:939-943; (d) Kawamichi T., Haneda T., Kawano M., et al. X-ray observation of a transient hemiaminal trapped in a porous network[J], Nature,2009,461, 633-635; (e) Lan A. J., Li K. H., Wu H. H., et al. A Luminescent Microporous Metal-Organic Framework for the Fast and Reversible Detection of High Explosives[J], Angew. Chem., Int. Ed., 2009,48:2334-2338; (f) Wang F., Liu Z. S., Yang H., et al. Hybrid Zeolitic Imidazolate Frameworks with Catalytically Active TO4 Building Blocks[J], Angew. Chem., Int. Ed.,2011,50: 450-453; (g) Biradha K., Su C.-Y., Vittal J. J., Recent Developments in Crystal Engineering[J], Cryst. Growth Des.,2011,11:875-886.
    [2](a) Eddaoudi M., Moler D. B., Li H., et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J], Acc. Chem. Res.,2001,34:319-330; (b) Kitagawa S., Kitaura R.,Noro S., Functional Porous Coordination Polymers[J], Angew. Chem., Int. Ed.,2004,43:2334-2375; (c) Zeng Y.-F., Hu X., Liu F.-C., et al. Azido-mediated systems showing different magnetic behaviors [J], Chem. Soc. Rev.,2009,38:469-480; (d) Zang S. Q., Su Y, Li Y. Z., et al. Four 2D metal-organic networks incorporating Cd-cluster SUBs:hydrothermal synthesis, structures and photoluminescent properties [J], CrystEngComm,2009,11:122-129.
    [3](a) Min K. S., Suh M. P., Silver(I)-Polynitrile Network Solids for Anion Exchange: Anion-Induced Transformation of Supramolecular Structure in the Crystalline State[J], J. Am. Chem. Soc.,2000,122:6834-6840; (b) Kondo S., Kitagawa M., Seki K., "Amphiphilic" Cleavage of y-Stannyl Ketones with ATPH/RLi:Application to Enone Fragmentation by the Conjugate Addition-Cleavage Sequence[J], Angew. Chem., Int. Ed.,2000,39:414-436; (c) Wang Z.-Q., Kravtsov V. C, Zaworotko M. J., Ternary Nets formed by Self-Assembly of Triangles, Squares, and Tetrahedra[J], Angew. Chem., Int. Ed.,2005,44:2872-2877; (d) Zhang J.-P., Zhu A.-X., Lin R.-B., et al. Pore Surface Tailored SOD-Type Metal-Organic Zeolites[J], Adv. Mater.,2011,23:1268-1271; (e) Wang S.-N., Yun R.-R., Peng Y.-Q., et al. A Series of Four-Connected Entangled Metal-Organic Frameworks Assembled from Pamoic Acid and Pyridine-Containing Ligands:Interpenetrating, Self-Penetrating, and Supramolecular Isomerism[J], Cryst. Growth Des.,2012,12:79-92; (f) Yang J.-X., Zhang X., Cheng J.-K, et al. pH Influence on the Structural Variations of 4,4'-Oxydiphthalate Coordination Polymers[J], Cryst. Growth Des.,2012,12:333-345.
    [4](a) Foster P. M., Kim D. S., Cheetham A. K., Two coordination polymers based on a new nickel fluoride cluster[J], Solid State Sci.,2005,7:594-602; (b) Chen B., Wang L., Xiao Y, et al. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions[J], Angew. Chem., Int. Ed.,2009,48:500-503; (c) Lin J.-B., Zhang J.-P, Chen X.-M., Nonclassical Active Site for Enhanced Gas Sorption in Porous Coordination Polymer[J], J. Am. Chem. Soc.,2010,132:6654-6656; (d) Zhao D., Timmons D. J., Yuan D.,; Tuning the Topology and Functionality of Metal-Organic Frameworks by Ligand Design[J], Acc. Chem. Res.,2011,44:123-133; (e) Miller J. S., Gatteschi D., Molecule-based magnets[J], Chem. Soc. Rev.,2011,40:3065-3066.
    [5](a) Murray L. J., Dinca M., Long J. R., Hydrogen storage in metal-organic frameworks [J], Chem. Soc. Rev.,2009,38:1294-1314; (b) Kurmoo M., Luminescent metal-organic frameworks[J], Chem. Soc. Rev.,2009,38:1353-1379; (c) Ma L., Wu C.-D., Wanderley M. M., et al. Single-Crystal to Single-Crystal Cross-Linking of an Interpenetrating Chiral Metal-Organic Framework and Implications in Asymmetric Catalysis[J], Angew. Chem., Int. Ed., 2010,49:8244-8248; (d) Chen S.-S., Chen M., Takamizawa S., et al. Porous cobalt(Ⅱ)-imidazolate supramolecular isomeric frameworks with selective gas sorption property[J], Chem. Commun.,2011,47,4902-4904.
    [6](a) Su C.-Y., Goforth A. M., Smith M. D., et al. Exceptionally Stable, Hollow Tubular Metal-Organic Architectures:Synthesis, Characterization, and Solid-State Transformation Study[J], J. Am. Chem. Soc.,2004,126:3576-3586; (b) Ramaswamy A., Froeyen M., Herdewijn P., et al. Helical Structure of Xylose-DNA[J], J. Am. Chem. Soc.; 2010,132: 587-595; (c) Seidel C., Ahlers R., Ruschewitz U., Coordination Polymers with Tetrafluoroterephthalate as Bridging Ligand[J], Cryst. Growth Des.,2011,11:5053-5063; (d) Samai S., Biradha K., Coordination Polymers of Flexible Bis(benzimidazole) Ligand:Halogen Bridging and Metal...Arene Interactions[J], Cryst. Growth Des.,2011,11:5723-5732; (e) Seidel C., Lorbeer C., Cybinska J., et al. Lanthanide Coordination Polymers with Tetrafluoroterephthalate as a Bridging Ligand:Thermal and Optical Properties[J], Inorg. Chem., 2012,51:4679-4688.
    [7](a) Anokhina E. V., Jacobson A. J., [Ni2O(L-Asp)(H2O)2]·4H2O:A Homochiral 1D Helical Chain Hybrid Compound with Extended Ni-O-Ni Bonding[J], J. Am. Chem. Soc.,2004,126: 3044-3045; (b) Guo H. D., Guo X. M., Wang X., et al. Interweaving of single-helical and equal double-helical chains with the same helical axis in a 3D metal-organic framework[J], CrystEngComm,2009,11,1509-1511; (c) Cai Y.-P., Zhou X.-X., Zhou Z.-Y, et al. Single-Crystal-to-Single-Crystal Transformation in a One-Dimensional Ag-Eu Helical System[J], Inorg. Chem.,2009,48:6341-6343.
    [8](a) Kodama K., Kobayashi Y., Saigo K., Role of the Relative Molecular Length of the Components in Ternary Inclusion Crystals in the Chiral Recognition and Assembly of Supramolecular Helical Architectures [J], Cryst. Growth Des.,2007,7:935-939; (b) Xiao D.-R., Wang E.-B., An H. Y, et al. Syntheses and Structures of Three Unprecedented Metal-Ciprofloxacin Complexes with Helical Character[J], Cryst. Growth Des.,2007,7: 506-512; (c) Wang Z.-W., Ji C.-C., Li J., et al. Synthesis, X-ray Structures, and Fluorescent Properties of Coordination Networks Constructed from 2-(2-Pyridinyl-benzimidazolyl) Acetic Anion[J], Cryst. Growth Des.,2009,9:475-482.
    [9](a) Hijikata Y, Horike S., Tanaka D., et al. Differences of crystal structure and dynamics between a soft porous nanocrystal and a bulk crystal[J], Chem. Commun.,2011,47:7632-7634; (b) Mihalcea I., Henry N., Clavier N., et al. Occurence of an Octanuclear Motif of Uranyl Isophthalate with Cation-Cation Interactions through Edge-Sharing Connection Mode[J], Inorg. Chem.,2011,50:6243-6249; (c) Lama P., Sanudo E. C., Bharadwaj P. K., Coordination polymers of Mn2+ and Dy3+ ions built with a bent tricarboxylate:Metamagnetic and weak anti-ferromagnetic behavior[J], Dalton Trans.,2012,41:2979-2985; (d) Luebke R., Eubank J. F., Cairns A. J., Belmabkhout, Y., The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship[J], Chem. Commun.,2012,48:1455-1457.
    [10]Yang Q.-Y., Li K., Luo J., et al. A simple topological identification method for highly (3,12)-connected 3D MOFs showing anion exchange and luminescent propertie[J], Chem. Commun.,2011,47:4234-4236.
    [11]Siemeling, U., Scheppilmann, I., Neumann, B., et al. Spontaneous chiral resolution of a coordination polymer with distorted helical structure consisting of achiral building blocks[J], Chem. Commun.,2003,2236-2237,
    [12]Xiong, R.-G, Xue, X., Zhao, H., et al. Novel, Acentric Metal-Organic Coordination Polymers from Hydrothermal Reactions Involving In Situ Ligand Synthesis[J], Angew. Chem., Int. Ed., 2002,41:3800-3803.
    [13]SMART and SAINT. Area Detector Control and Integration Software; Siemens Analytical X-Ray Systems[M], Inc., Madison, WI,1996.
    [14]Sheldrick G M., Acta Crystallogr., Sect. A:Found. Crystallogr.,1990,46,467; G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures[M], University of Gottingen, Germany,1997.
    [15]Sheldrick G M., SHELXL-97, Program for Crystal Structures Refinement[M]; University of Gottingen, Germany,1997.
    [16]Qi Y, Luo F., Batten S. R., et al. Syntheses and Crystal Structures of a Series of Novel Helical Coordination Polymers Constructed from Flexible Bis(imidazole) Ligands and Metal Salts[J], Cryst. Growth Des.,2008,8:2806-2813;
    [17](a) Ikeda M., Tanaka Y, Hasegawa T., Furusho Y, et al. Construction of Double-Stranded Metallosupramolecular Polymers with a Controlled Helicity by Combination of Salt Bridges and Metal Coordination[J], J. Am. Chem. Soc.,2006,128:6806-6807; (b) Zhang J., Bu X., Absolute helicity induction in three-dimensional homochiral frameworks [J], Chem. Commun., 2009,206-209.
    [18]Kamikawa K., Fukumoto K., Yoshihara K.,et al. Induction of one-handed helical oligo(p-benzamide)s by domino effect based on planar-axial-helical chirality relay[J], Chem. Commun.,2009,1201-1203.
    [19](a) Inai Y, Tagawa K., Takasu A., et al. Induction of One-Handed Helical Screw Sense in Achiral Peptide through the Domino Effect Based on Interacting Its N-Terminal Amino Group with Chiral Carboxylic Acid[J], J. Am. Chem. Soc,2000,122:11731-11732; (b) Inai Y, Ishida Y, Tagawa K.,et al. Noncovalent Domino Effect on Helical Screw Sense of Chiral Peptides Possessing C-Terminal Chiral Residue[J], J. Am. Chem. Soc.,2002,124:2466-2473; (c) Inai Y., Ousaka N., Okabe T., Mechanism for the Noncovalent Chiral Domino Effect:New Paradigm for the Chiral Role of the N-Terminal Segment in a 310-Helix [J], J. Am. Chem. Soc.,2003,125: 8151-8162; (d) Li H.-Y., Jiang L., Xiang H., et al. Construction of Two 3D Homochiral Frameworks with 1D Chiral Pores via Chiral Recognition[J], Inorg. Chem.,2011,50: 3177-3179.
    [20](a) Maggard P. A., Stern C. L., Poeppelmeier K. R., Understanding the Role of Helical Chains in the Formation of Noncentrosymmetric Solids[J], J. Am. Chem. Soc.,2001,123:7742-7743; (b) Zhang J., Chen S., Wu T., et al. Homochiral Crystallization of Microporous Framework Materials from Achiral Precursors by Chiral Catalysis[J], J. Am. Chem. Soc.,2008,130: 12882-12883; (c) Sun M.-L., Zhang J., Lin Q.-P., et al. Multifunctional Homochiral Lanthanide Camphorates with Mixed Achiral Terephthalate Ligands[J], Inorg. Chem.,2010,49: 9257-9264.
    [21]Zang S.-Q., Su Y., Li Y.-Z., et al. Interweaving of Triple-Helical and Extended Metal-O-Metal Single-Helical Chains with the Same Helix Axis in a 3D Metal-Organic Framework[J], Inorg. Chem.,2006,45:3855-3857.
    [22]Janiak C., A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands[J], J. Chem. Soc. Dalton Trans.,2000,3885-3896.
    [23]Micaelo N. M., Baptista A. M., Soares C. M., Parametrization of 1-Butyl-3-methylimidazolium Hexafluorophosphate/Nitrate Ionic Liquid for the GROMOS Force Field[J], J. Phys. Chem. B,2006,110,14444-14451.
    [24]Valeur B., Molecular Fluorescence:Principles and Application[M], Wiley-VCH, Weinheim, 2002;
    [25]Kurtz S. K., Perry T. T., A Powder Technique for the Evaluation of Nonlinear Optical Materials[J], J. Appl. Phys.,1968,39:3798-3813.
    [26](a) Zhang L.-Y, Zhang J.-P., Liu Y.-Y., et al. Syntheses, Structures, and Photoluminescence of Three Coordination Polymers of Cadmium Dicarboxylates[J], Cryst. Growth Des.,2006,6: 1684-1689; (b) Zou J.-P., Peng Q.; Wen Z., et al. Two Novel Metal-Organic Frameworks (MOFs) with (3,6)-Connected Net Topologies:Syntheses, Crystal Structures, Third-Order Nonlinear Optical and Luminescent Properties[J], Cryst. Growth Des.,2010,10:2613-2619; (c) Niu D., Yang J., Guo J., et al. Syntheses, Structures, and Photoluminescent Properties of 12 New Metal-Organic Frameworks Constructed by a Flexible Dicarboxylate and Various N-Donor Ligands[J], Cryst. Growth Des.,2012,12:2397-2410.
    [27](a) Zheng S.-L., Yang J.-H., Yu X.-L., et al. Syntheses, structures, photoluminescence and theoretical studies of d10 metal complexes of 2,2'-dihydroxy-[1,1']binaphthalenyl-3,3'-dicarboxylate[J], Inorg. Chem.,2004,43:830-838; (b) Su Z., Fan J., Chen M., et al. Syntheses, Characterization, and Properties of Three-Dimensional Pillared Frameworks with Entanglement[J], Cryst. Growth Des.,2011,11:1159-1169.
    [28]Chang Z., Zhang A.-S., Hu T.-L., et al.. ZnⅡ Coordination Poylmers Based on 2,3,6,7-Anthracenetetracarboxylic Acid:Synthesis, Structures, and Luminescence Properties[J], Cryst. Growth Des.,2009,9:4840-4846.
    [29](a) Wang S.-N., Xing H., Li Y.-Z., et al.2D and 3D Cadmium(Ⅱ) Coordination Polymers from a Flexible Tripodal Ligand of 1,3,5-Tris(carboxymethoxy)benzene and Bidentate Pyridyl-Containing Ligands with Three-, Eight- and Ten-Connected Topologies[J], Eur. J. Inorg. Chem.,2006,3041-3053; (b) Yao X.-Q., Cao D.-P., Hu J.-S., et al. Chiral and Porous Coordination Polymers Based on an N-Centered Triangular Rigid Ligand[J], Cryst. Growth Des.,2011,11:231-239.
    [30](a) Fang S.-M., Zhang Q., Hu M., et al. Regulation and Properties of Diversiform Cd(Ⅱ) Supramolecular Complexes with a Bulky Naphthalene-Based Dicarboxyl Tecton and Different N-Donor Co-Ligands[J], Cryst. Growth Des.,2010,10:4773-4785; (b) Kan W.-Q., Liu Y.-Y, Yang J., et al. Syntheses, structures and photoluminescent properties of a series of metal-organic frameworks based on a flexible tetracarboxylic acid and different bis(imidazole) ligands[J], CrystEngComm 2011,13:4256-4269; (c) Bai H.-Y, Yang J., Liu B., et al. Syntheses, structures, and photoluminescence of five silver(Ⅰ) coordination polymers based on tetrakis(imidazol-l-ylmethyl)methane[J], CrystEngComm,2011,13:5877-5884.
    [31](a) Fu Z.-Y., Wu X.-T., Dai J.-C., et al. The Structure and Fluorescence Properties of Two Novel Mixed-Ligand Supramolecular Frameworks with Different Structural Motifs[J], Eur. J. Inorg. Chem.,2002,2730-2735; (b) Wang X.-L., Qin C., Wang E.-B., et al Syntheses, Structures, and Photoluminescence of a Novel Class of d10 Metal Complexes Constructed from Pyridine-3,4-dicarboxylic Acid with Different Coordination Architectures[J], Inorg. Chem., 2004,43:1850-1856; (c) Liu W.-L., Ye L.-H., Liu X.-F., et al. Hydrothermal syntheses, structures and luminescent properties of d10 metal-organic frameworks based on rigid 3,3',5,5'-azobenzenetetracarboxylic acid[J], CrystEngComm,2008,10:1395-1403.
    [1](a) Sabbatini N., Guardigli M., Lehn J. M. Luminescent lanthanide complexes as photochemical supramolecular devices[J], Coord. Chem. Rev.,1993,123:201-228; (b) Li H.-L., Eddaoudi M., O'Keefffe M., et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J], Nature,1999,402:276-279; (c) Kido J., Okamoto Y., Organo Lanthanide Metal Complexes for Electroluminescent Materials[J], Chem. Rev., 2002,102:2357-2368; (d) Tsukube H., Shinoda S., Lanthanide Complexes in Molecular Recognition and Chirality Sensing of Biological Substrates[J], Chem. Rev.,2002,102: 2389-2404; (e) Sun Y.-Q., Zhang J., Chen Y.-M., et al. Porous Lanthanide-Organic Open Frameworks with Helical Tubes Constructed from Interweaving Triple-Helical and Double-Helical Chains[J], Angew. Chem., Int. Ed.,2005,44:5814-5817; (f) Huang Y.-G, Wu B.-L., Yuan D.-Q., et al. New Lanthanide Hybrid as Clustered Infinite Nanotunnel with 3D Ln-O-Ln Framework and (3,4)-Connected Net[J], Inorg. Chem.,2007,46:1171-1176; (g) Henry N., Costenoble S., Lagrenee M., et al. Lanthanide-based 0D and 2D molecular assemblies with the pyridazine-3,6-dicarboxylate linker[J], CrystEngComm,2011,13: 251-258; (h) Liu Y, Pan M., Yang Q.-Y., et al. Dual-Emission from a Single-Phase Eu-Ag Metal-Organic Framework:An Alternative Way to Get White-Light Phosphor[J], Chem. Mater.,2012,24:1954-1960; (i) Chen M.-S., Su Z., Chen M., et al. Three-dimensional lanthanide-silver heterometallic coordination polymers:syntheses, structures and properties[J], CrystEngComm,2010,12:3267-3276.
    [2](a) Parkar D., Luminescent lanthanide sensors for pH, pO2 and selected anions[J], Coord. Chem. Rev.,2000,205:109-130; (b) Bochkarev M. N., Synthesis, Arrangement, and Reactivity of Arene-Lanthanide Compounds[J], Chem. Rev.,2002,102:2089-2118; (c) Bu X.-H., Weng W., Du M., et al. Novel Lanthanide(Ⅲ) Coordination Polymers with 1,4-Bis(phenyl-sulfinyl)butane Forming Unique Lamellar Square Array:Syntheses, Crystal Structures, and Properties[J], Inorg. Chem.,2002,41:1007-1010; (d) Liu W.-S., Jiao T.-Q., Li Y.-Z., et al. Lanthanide Coordination Polymers and Their Ag+-Modulated Fluorescence[J], J. Am. Chem. Soc.,2004,126:2280-2281; (e) Bunzli J. C. G,. Piguet C., Taking advantage of luminescent lanthanide ions[J], Chem. Soc. Rev.,2005,34:1048-1077; (f) Zheng X.-L., Liu Y., Pan M., et al. Bright Blue-Emitting Ce3+ Complexes with Encapsulating Polybenzimidazole Tripodal Ligands as Potential Electroluminescent Devices[J], Angew. Chem.,2007,119: 7543-7547; (g) Zhang X.-J., Xing Y.-H., Han J,. et al. A Series of Novel Ln-Succinate-Oxalate Coordination Polymers:Synthesis, Structure, Thermal Stability, and Fluorescent Properties[J], Cryst. Growth Des.,2008,8:3680-3688; (h) Yan C., Li K., Wei S.-C., et al. Lanthanide homometallic and d-f heterometallic MOFs from the same tripodal ligand:structural comparison, one photon (OP) vs. two photon (TP) luminescence and selective guest adsorption behavior[J], J. Mater. Chem.,2012,22:9846-9852.
    [3](a) Dybtsev D. N., Chun H., Yoon S. H., et al. Microporous Manganese Formate:A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties[J], J. Am. Chem. Soc.,2004,126:32-33; (b) Zeng M.-H., Zhang W.-X., Sun X.-Z., et al. Spin Canting and Metamagnetism in a 3D Homometallic Molecular Material Constructed by Interpenetration of Two Kinds of Cobalt(II)-Coordination-Polymer Sheets[J], Angew. Chem. Int. Ed.,2005,44:3079-3082; (c) Furukawa H., Ko N., Go Y. B., et al. Ultrahigh Porosity in Metal-Organic Frameworks[J], Science,2010,329:424-428; (d) Carlos L. D., Ferreira R. A. S., Bermudez V. Z., et al. Progress on lanthanide-based organic-inorganic hybrid phosphors[J], Chem. Soc. Rev.,2011,40:536-549; (e) Duan H.-B., Ren X.-M., Shen L. J., et al. A low-dimensional molecular spin system with two steps of magnetic transitions and liquid crystal property[J], Dalton Trans.,2011,40:3622-3630; (f) Luo Y., Calvez G, Freslon S., et al. Lanthanide Aminoisophthalate Coordination Polymers:A Promising System for Tunable Luminescent Properties[J], Eur. J. Inorg. Chem.,2011,25:3705-3716; (h) Mihalcea I., Volkringer C., Henry N., et al. Series of Mixed Uranyl-Lanthanide (Ce, Nd) Organic Coordination Polymers with Aromatic Polycarboxylates Linkers[J], Inorg. Chem.,2012,51: 9610-9618.
    [4](a) Song X.-Q., Liu W.-S., Dou W., et al. Tuning the self-assembly and luminescence properties of lanthanide coordination polymers by ligand design[J], Dalton Trans.,2008,27: 3582-3591; (b) Allendorf M. D., Bauer C. A., Bhakta R K, et al. Luminescent metal-organic frameworks[J], Chem. Soc. Rev.,2009,38:1330-1352; (c) Wang Q., Tang K. Z., Liu W.-S., et al. Synthesis, Crystal Structures, and Luminescent Properties of Noninterpenetrating (6,3) Type Network Lanthanide Metal-Organic Frameworks Assembled by a New Semirigid Bridging Ligand[J], Eur. J. Inorg. Chem.,2010,33:5318-5325; (d) Wang Y.-W., Zhang Y.-L., Dou W., et al. Synthesis, radii dependent self-assembly crystal structures and luminescent properties of rare earth (III) complexes with a tripodal salicylic derivative[J], Dalton Trans.,2010,39: 9013-9021; (e) Jiang H.-L., Tatsu Y., Lu Z.-H., et al. Non-, Micro-, and Mesoporous Metal-Organic Framework Isomers:Reversible Transformation, Fluorescence Sensing, and Large Molecule Separation[J], J. Am. Chem. Soc.,2010,132:5586-5587; (f) Rocha J., Carlos L. D., Paz F. A., et al. Luminescent multifunctional lanthanides-based metal-organic frameworks[J], Chem. Soc. Rev.,2011,40:926-940; (g) Chen M., Chen M.-S,. Okamura T. et al. A series of silver(I)-lanthanide(III) heterometallic coordination polymers:syntheses, structures and photoluminescent properties[J], CrystEngComm,2011,13:3801-3810; (h) Calvez G, Daiguebonne C., Guillou O., Unprecedented Lanthanide-Containing Coordination Polymers Constructed from Hexanuclear Molecular Building Blocks: {[Ln6O(OH)8](NO3)2(bdc)(Hbdc)2·2NO3H2bdc}∞[J], Inorg. Chem.,2011,50:2851-2858。
    [5]江祖成,蔡汝秀,张华山.稀土元素分析化学(第二版)[M],北京:科学出版社,2000,222-253.
    [6](a) Li X.-F., Liu T.-F., Lin Q.-P., et al. Rare Earth Metal Oxalatophosphonates:Syntheses, Structure Diversity, and Photoluminescence Properties[J], Cryst. Growth Des.,2010,10: 608-617; (b) Nonat A. M., Allain C., Faulkner S., et al. Mixed d-f3 Coordination Complexes Possessing Improved Near-Infrared (NIR) Lanthanide Luminescent Properties in Aqueous Solution[J], Inorg. Chem.,2010,49:8449-8456.
    [7](a) Yang L.-F., Gong Z.-L., Nie D.-B., et al. Promoting near-infrared emission of neodymium complexes by tuning the singlet and triplet energy levels of β-diketonates[J], New J. Chem., 2006,30; 791-796; (b) Feng X., Wang L.-Y., Wang J.-G, et al. A unique example of a 3D framework based on the binuclear dysprosium(III) azobenzene-3,5,4'-tricarboxylate with 3,6-connected topology showing ferromagnetic properties[J], CrystEngComm,2010,12: 3476-3482; (c) Feng X., Wang J.-G, Liu B., et al. From Two-Dimensional Double Decker Architecture to Three-Dimensional pcu Framework with One-Dimensional Tube:Syntheses, Structures, Luminescence, and Magnetic Studies[J], Cryst. Growth Des.,2012,12:927-938.
    [8](a) Wan Y., Zhang L., Jin L., et al. High-Dimensional Architectures from the Self-Assembly of Lanthanide Ions with Benzenedicarboxylates and 1,10-Phenanthroline[J], Inorg. Chem.2003, 42:4985-4994; (b) Zhang Z.-H., Song Y., Okamura T., et al. Syntheses, Structures, Near-Infrared and Visible Luminescence, and Magnetic Properties of Lanthanide-Organic Frameworks with an Imidazole-Containing Flexible Ligand[J], Inorg. Chem.2006,45: 2896-2902; (c) Guo X., Zhu G, Sun F., et al. Synthesis, Structure, and Luminescent Properties of Microporous Lanthanide Metal-Organic Frameworks with Inorganic Rod-Shaped Building Units[J], Inorg. Chem.,2006,45:2581-2587; (d) Li J.-R., Tao Y, Yu Q., et al. A pcu-type metal-organic framework with spindle [Zn7(OH)8]6+ cluster as secondary building units[J], Chem. Commun.,2007,1527-1529; (e) Liu C.-M., Xiong M., Zhang D.-Q., et al. Two-and three-dimensional lanthanide-organic frameworks constructed using 1-hydro-6-oxopyridine-3-carboxylate and oxalate ligands[J], Dalton Trans.,2009,29: 5666-5672.
    [9]Rodrigues M. O., Dutra J. D. L., Nunes L. A. O., et al.Tb3+→Eu3+ Energy Transfer in Mixed-Lanthanide-Organic Frameworks[J], J. Phys. Chem. C.,2012,116:19951-19957.
    [10](a) Konar S., Mukherjee P. S., Zangrando E., et al. A Three-Dimensional Homometallic Molecular Ferrimagnet[J], Angew. Chem., Int. Ed.,2002,41:1561-1563; (b) Dalai S., Mukherjee P. S., Rogez G, et al. Synthesis, Crystal Structures, and Magnetic Properties of Two New 1D Copper(H) Coordination Polymers Containing Fumarate (-2) and Chelating N,N'-Donor as Ligands[J], Eur. J. Inorg.Chem.,2002,3292-3297; (c) Watanabe M., Nankawa T., Yamada T., et al. Photoluminescent Dinuclear Lanthanide Complexes with Tris(2-pyridyl)carbinol Acting as a New Tetradentate Bridging Ligand[J], Inorg. Chem.,2003, 42:6977-6979; (d) Michaelides A., Skoulika S., Siskos M. G, Assembly of a photoreactive coordination polymer containing rectangular grids[J], Chem. Commun.,2004,2418-2419; (e) Konar S., Zangrando E, Drew M. G B., et al. Synthesis, structural analysis, and magnetic behaviour of three fumarate bridged coordination polymers:five-fold interpenetrated diamond-like net of NiⅡ, sheets of Nin and CoⅡ[J], Dalton. Trans.,2004,260-266.
    [11](a) Bettencourt-Dias A. de, Viswanathan S., Nitro-functionalization and luminescence quantum yield of Eu(Ⅲ) and Tb(Ⅲ) benzoic acid complexes[J], Dalton Trans.,2006, 4093-4103; (b) Ye J.-W., Wang J., Zhang J. Y, et al. Construction of 2-D lanthanide coordination frameworks:syntheses, structures and luminescent property[J], CrystEngComm., 2007,9:515-523.
    [12](a) Zheng X.-J., Wang Z.-M., Gao S., et al. Hydrothermal Syntheses, Structures, and Properties of Three 3-D Lanthanide Coordination Polymers that Form 1-D Channels[J], Eur. J. Inorg. Chem.,2004,2968-2973; (b) Liu M.-S., Yu Q.-Y., Cai Y.-P., et al. One-, Two-, and Three-Dimensional Lanthanide Complexes Constructed from Pyridine-2,6-dicarboxylic Acid and Oxalic Acid Ligands[J], Cryst. Growth Des.,2008,8:4083-4091.
    [13](a) Chen Z., Zhao B., Zhang Y, et al. Construction and Characterization of Several New Lanthanide-Organic Frameworks:From 2D Lattice to 2D Double-Layer and to Porous 3D Net with Interweaving Triple-Stranded Helixes[J], Cryst. Growth Des.,2008,8:2291-2298; (b) Dai F.-N., Cui P.-P., Ye F., et al. An Open Neodymium-Organic Framework with the NbO Structure Type Based on Binuclear SBU Involved In Situ Generated Formate[J], Cryst. Growth Des.,2010,10:1474-1477.
    [14](a) Zhao B., Cheng P., Dai Y., et al. A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly[J], Angew. Chem., Int. Ed.,2003,42:934-936; (b) Zhang Z.-H., Okamura T., Hasegawa Y., et al. Syntheses, Structures, and Luminescent and Magnetic Properties of Novel Three-Dimensional Lanthanide Complexes with 1,3,5-Benzenetriacetate[J], Inorg. Chem.,2005,44:6219-6227.
    [15](a) Zhu X.-D., Lu J., Li X.-J., et al. Syntheses, Structures, Near-Infrared, and Visible Luminescence of Lanthanide-Organic Frameworks with Flexible Macrocyclic Polyamine Ligands[J], Cryst. Growth Des.,2008,8:1897-1901; (b) He H.-Y., Yuan D.-Q., Ma H.-Q., et al. Control over Interpenetration in Lanthanide-Organic Frameworks:Synthetic Strategy and Gas-Adsorption Properties[J], Inorg. Chem.,2010,49:7605-7607.
    [16]Huang W., Wu D.-Y., Zhou P., et al. Luminescent and Magnetic Properties of Lanthanide-Thiophene-2,5-dicarboxylate Hybrid Materials[J], Cryst. Growth Des.,2009,9: 1361-1369.
    [17](a) Rao C. N. R., Natarajan S., Vaidhyanathan R., Metal Carboxylates with Open Architectures[J], Angew. Chem., Int. Ed.,2004,43:1466-1496; (b) Wang X.-J., Cen Z.-M., Ni Q.-L., et al. Synthesis Structures, and Properties of Functional 2-D Lanthanide Coordination Polymers [Ln2(dpa)2(H2O)2]n(dpa=2,2'-(2-methylbenzimidazolium-1,3-diyl)diacetate, C2O42-=oxalate, Ln=Nd, Eu, Gd, Tb)[J], Cryst. Growth Des.,2010,10:2960-2968.
    [18](a) Zhao Y, Jiao C.-Q., Sun Z.-G., et al. Novel Lanthanide(III) Oxalatophosphonates with New Topology:Syntheses, Crystal Structures, Reversible Dehydration/Hydration, and Luminescence Properties[J], Cryst. Growth Des.,2012,12:3191-3199; (b) Sonnauer A., Nalther C., Holppe H. A., et al. Systematic Investigation of Lanthanide Phosphonatoethanesulfonate Framework Structures by High-Throughput Methods, Ln(O3P-C2H4-SO3)(H2O) (Ln=La-Dy)[J]; Inorg. Chem.,2007,46:9968-9974.
    [19]Censo D. D., Fantacci S., Angelis F. D., et al. Synthesis, Characterization, and DFT/TD-DFT Calculations of Highly Phosphorescent Blue Light-Emitting Anionic Iridium Complexes[J], Inorg. Chem.,2008,47:980-989.
    [20]Zhou T.-H., Yi F.-Y., Li P.-X., et al. Synthesis, Crystal Structures, and Luminescent Properties of Two Series' of New Lanthanide (Ⅲ) Amino-Carboxylate-Phosphonates[J], Inorg. Chem., 2010,49:905-915.
    [21]Lu W.-G., Su C.-Y, Lu T.-B., et al. Two Stable 3D Metal-Organic Frameworks Constructed by Nanoscale Cages via Sharing the Single-Layer Walls[J], J. Am. Chem. Soc.,2006,128: 34-35.
    [22]Xu J., Cheng J.-W., Su W.-P., et al. Effect of Lanthanide Contraction on Crystal Structures of Three-Dimensional Lanthanide Based Metal-Organic Frameworks with Thiophene-2,5-Dicarboxylate and Oxalate[J], Cryst. Growth Des.,2011,11:2294-2301.
    [23]Kurtz S. K., Perry T. T., A Powder Technique for the Evaluation of Nonlinear Optical Materials[J], J. Appl. Phys.,1968,39:3798-3813.
    [24](a) Di W.-H., Wang X.-J., Zhu P.-F., et al. Energy transfer and heat-treatment effect of photoluminescence in Eu3+-doped TbPO4 nanowires[J], J. Solid State Chem.,2007,180: 467-473; (b) Cui Y. J., Xu H., Yue Y. F., et al. A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer[J], J. Am. Chem. Soc.,2012,134:3979-3982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700