芳香多羧酸配位聚合物的合成、结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对大量文献的调研汇总,本论文阐述了配位聚合物的结构特点及主要的生长方式,并较为详细的叙述了特定的配位聚合物凭借其特有的结构而引起的特殊性能,初步介绍了配位聚合物结构与功能之间的关系,以及它们在非线性光学、发光、气体吸收、催化及离子交换等功能材料研究领域取得的进展。考虑到本论文主要研究工作的方向,对多羧酸配位聚合物进行了重点介绍,明确了多羧酸配位聚合物中所具有的特定功能与其微观晶体结构之间的必然联系。
     本论文主要按照“选择有机配体—组装配位聚合物—修饰有机配体(根据前面组装的配位聚合物结构与功能的需要)—组装新的配位聚合物……”的策略开展研究,先后合成了一系列具有特定结构特征的芳香多羧酸(多配位)有机配体,然后通过水热法和溶剂热法与各种金属盐组装出多种新颖的金属一有机配位聚合物,具体做了以下一些工作:
     1.出于对配位聚合物光学性能及气体吸附性能的研究需要,我们先后合成了八个芳香多羧酸(多配位)有机配体,并通过它们与多种金属离子中心在不同的溶剂、温度、生长时间等条件下的组装得到了8个各具特色的金属—有机超分子配位聚合物。
     2.通过溶剂热法合成了二维同结构的两种配位聚合物[M(Hadab)(H_2O)](M=Cd,1;Mn,2),(H_3adab=N-(3-羧基苯基)亚氨基二乙酸)。其结构特征被单晶X-ray衍射数据解析出。借由氢键作用力,配位聚合物1和2的二维网络层进一步组装成三维柱一层结构。凭借优秀的荧光发射性能及物理性能,配位聚合物1可能成为潜在的荧光材料;配位聚合物2也具有不错的荧光性能,由于Mn自身的电子跃迁特点,相关荧光性能的报道非常少见。
     3.根据配位聚合物1和2的配位局限性(与芳香环直接相连的羧基未参与配位),我们合成了有机配体二:N-(羧基甲基)间氨基苯甲酸、有机配体三:N,N’-二-(4-羧基苯基)对氨基苯甲酸、有机配体四:N,N’-二-(4-羧基苯基)间氨基苯甲酸及有机配体五:N,N’-二-(2-羧基苯基)邻氨基苯甲酸,遗憾的,均未得到预期的单晶。但在研究过程中有机配体三、四均与Cd(ClO_4)_2·6H_2O在碱性溶剂体系生成易塌陷单晶,分析原因,我们可能得到了大孔道的结构。
     4.未预期的合成了具有T型三连接结构的有机配体六:3,3-二(羧甲基)咪唑[1,2-α]吡啶-2-酮(H_2L),并通过单晶的分析确认了它的结构。通过该配体与不同金属离子中心在不同晶体生长环境中的组装先后得到配位聚合物5:[CdL(H_2O)_2]_n,配位聚合物7:[ZnL(H_2O)]_n和配位聚合物8:[CdL(H_2O)]。其中配位聚合物5具有罕有的不同步长(4.78和5.16(?))的一维梯型链结构;尽管组装配位聚合物8与配位聚合物5的金属盐与有机配体完全相同,但不同的溶剂环境带来的溶剂效应使配位聚合物8得到了更为罕见的4.8~2拓扑结构。配位聚合物5,7和8都具有优秀的荧光性能,是潜在的荧光材料。
     5.由有机配体七:咪唑[1,2-α]吡啶-2-酮在溶剂热条件下原位缩合成二聚产物后与金属Zn离子中心的组装,我们得到配位聚合物9,通过对配位聚合物9的结构及性能的分析,我们发现它也是一个潜在的荧光材料;此外它的结构中可能含有未成对的电子,结构的进一步确认工作仍在继续。
     6.为得到稳定的大孔道结构我们合成了有机配体八。令人遗憾的,由于结构中不饱和键太多,水热或溶剂热晶体生长法受到限制(往往需要较高的温度),用改进的界面法可以得到较稳定的黄色固体物质,但可测单晶的培养仍需在摸索中。
According to a survey of lots of literatures, this thesis reviews the structural characterization and main growth mode of coordination polymers, and goes into particulars on the special performance of some coordination polymers based on their unusual structures. This thesis also presents the relationship between the characterization structure and functions of coordination polymers elementally, and their development in functional materials of non-linear optics, luminescence, gaseous absorption, heterogeneous catalysis and ion exchange. In view of the main research direction of this thesis, the polycarboxylate coordination polymers are especially discussed, and the certain relationship between their given functions and their microcosmic crystal structures are illustrated.
     The strategy of the research is "to choose organic ligands→to construct the corresponding coordination polymers→to decorate the organic ligands (according to the need of specific architecture and functions)→to synthesize a new compound...". A series of organic ligands with special structures are synthesized, following with the diverse mental-organic frameworks are constructed under hydrothermal conditions. The detailed research work was as follow:
     1. Eight kinds of polycarboxylate ligands were prepared according to the need of research on the luminescence and gaseous absorption properties of coordination polymers. The reaction of them with various mental salts under different conditions, such as solvents, temperature and crystal growth time, gives rise to eight diverse mental-organic frameworks.
     2. Two new isostructural coordination polymer [Cd(Hadab)(H_2O)] (1) and [Mn(Hadab)(H_2O)] (2) (H_3adab = 3-aminodiacetic benzoic acid) have been synthesized under hydrothermal conditions and characterized by X-ray single crystal analyses. Compounds 1 and 2 represent 2D network, whose 3D pillar-layered networks are constructed by hydrogen bonding interactions. Compound 1 may be excellent candidates of blue light-emitting materials, by right of intense room temperature photoluminescence in the solid state, highly thermally stable and insoluble in common polar and nonpolar solvents; compound 2 displays strong fluorescent emissions too, the correlative reports are very rare due to specific electrons transfer capability of Mn.
     3. Four new organic ligands are prepared based on the limitation of the coordination of compounds 1 and 2( the carboxyl connected directly with the aromatic cycle does not take part in the coordination), such as organic ligand two: 3-(carboxylmethyl amino)benzoic acid, organic ligand three: N, N'-di-(4-carboxylphenyl) -4-aminobenzoic acid, organic ligand four: N, N'-di-(4-carboxylphenyl)-2-aminobenzoic acid and organic ligand Five: N, W-di-(2-carboxylphenyl)-2-aminobenzoic acid. However, the expected single crystal does not obtained. But when organic ligand three and organic ligand four react with Cd(ClO_4)_2·6H_2O in alkaline solvent system, crystals easy to collapse are obtained, which may due to a large pore space framework.
     4. A novel imidazo[1,2-a]pyridin-2-one ligand, 3,3-bis(carboxymethyl) imidazo[1,2-a] pyridin-2-one (H_2L), was inexpectantely synthesized and acts as a three-connecting T-shaped building block, affirmed by X-ray single crystal analyses. Hydrothermal treatment of the H_2L ligand with Cd(ClO_4)_2·6H_2O or Zn(ClO_4)_2·6H_2O gives three new coordination polymers, [CdL(H_2O)_2]n (5) , [ZnL(H_2O)]n (7)and [CdL(H_2O)] n(8). Compound 5 consists of a rare 1D ladder-like chain, which is composed of two kinds of alternating rhombic rings with step lengths of 4.78 and 5.16 A, respectively. Though it is absolutely identical that the material to construct compound 5 and compound 8, the latter represents a much more rare 2D network with the 4*8~2 topology, it owe to solvent effect that comes from different solvent . Compound 5, 7 and 8 are also exhibits strong photoluminescence, they may be excellent candidates for potential photoactive materials.
     5. A new mental-organic coordination polymer 9 is hydrothermally synthesized through the reaction of the in situ dimer of organic ligand seven (imidazo[1,2-α]pyridin-2-one) with Zn ion. According to the analysis the structure and function of the coordination polymer 9, we find that it is also a potential fluorescent material. Besides, it may have unpaired electron in its configuration, and further research is in progress.
     6. In order to obtain steady large pore space framework. we synthesized organic ligand eight. Disappointedly, only yellow solid can be obtained through improved interphase diffuse method. Hydrothermal conditions are unfeasible on account of too many unsaturated bonds in the organic ligand. The growth conditions of single crystal is under exploration.
引文
1. (a) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319; (b) O. R. Evans, W. Lin, Acc. Chem. Res. 2002, 35, 511; (c) P. J. Hagrman, D. Hagrman, J. Zubieta, Angew. Chem. 1999, 111, 2798; Angew. Chem. Int. Ed. 1999, 38, 2638; (d) A. N. Khlobystov, A. J. Blake, N. R. Champness, D. A. Lemenovskii, A. G. Majouga, N. V. Zyk, M. SchrTder, Coord. Chem.Rev 2001, 222, 155; (e) K. Kim, Chem. Soc. Rev. 2002, 31, 96; (f) S. Kitagawa, S. Kawata, Coord. Chem. Rev. 2002, 224, 11; (g) B. Mouiton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629; (h) M. J. Zaworotko, Chem. Commun. 2001, 1; (i) C. Janiak, J. Chem. Soc. Dalton Trans. 2003, 2781; (j) O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705; (k) S. L. James, Chem. Soc. Rev. 2003, 32, 276; (1) B. Chen, N. W. Ockwig , A. R. Millward, D. S. Contreras, O. M. Yaghi. Angew. Chem. Int. Ed. 2005, 44, 4745; (m) A. L. Grzesiak, F. J. Uribe.N. W. Ockwig, O. M. Yaghi, .A. J. Matzger. Angew. Chem. Int. Ed. 2006, 45, 2553; (n) W. Kaneko, S. Kitagawa, M. Ohba. J. Am. Chem. Soc. 2007,129, 248.
    2. J.C.Bailar, Jr. Preparative Inorganic Reactions, ed. W. L. Jolly, Interscience, New York, 1964, vol. 1, pp. 1-25.
    3. B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1990,112, 1546.
    4. M. Fujita, Y. J. Kwon, S.Washizu, K. Ogura, J. Am. Chem. Soc. 1994,116, 1151.
    5. (a)O. M. Yaghi, G. Li, H. Li, Nature 1995, 375, 703. (b)D. Venkataraman, G. B. Gardner, S. Lee, J. S. Moore, J. Am. Chem. Soc. 1995, 117, 11600.
    6. M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Angew. Chem. 1997, 109, 1844; Angew. Chem. Int. Ed. Engl. 1997, 36, 1725.
    7. (a)D. Y. Siberio-Perez, A. G. Wong-Foy, O. M. Yaghi. Chem.Mater. 2007, 19, 3681; (b) T. Uemura, D. Hiramatsu, Y. Kubota, M. Takata, S. Kitagawa. Angew. Chem. Int. Ed. Engl. 2007, 46, 4987. (c) B. F. Abrahams, M. G. Haywood, R. Robson. Polyhedron. 2007,26, 300.
    8. (a) R. I. Walton, Chem. Soc. Rev. 2002, 31, 230; (b)A. Stein, S. W. Kellerand, T. E. Mallouk, Science, 1993,259, 1558.
    9. (a) D. -Q. Chu, J.-Q. Xu, L.-M. Duan, T.-G. Wang,A.-Q. Tang, L. Ye, Eur. J. Inorg. Chem. 2001, 1135; (b) J. Y. Lu, M. A. Lawandy, J. Li, T. Yuen, C. L. Lin, Inorg. Chem. 1999, 38, 2695.
    10. S.R. Batten, K. S. Murray, Aust. J Chem., 2001, 54, 605.
    11. (a) D. Tanaka, S. Masaoka, S. Horike,S. Furukawa, M. Mizuno, K. Endo, S. Kitagawa, Angew. Chem. Int. Ed. 2006, 45, 4628; (b) K. Uemura, K. Saito, S. Kitagawa, H. Kita. J. Am. Chem. Soc. 2006, 128, 16122; (c) J.-P. Zhang, S. Horike, S. Kitagawa. Angew. Chem. Int. Ed. 2007, 46, 889.
    12. C. Janiak, T. G. Scharmann, W. Günther, F. Girgsdies, H. HemLing, W. Hinrichs, D. Lentz, Chem. Eur. J. 1995, 1, 637.
    13. (a) V. Baron, B. Gillon, A. Cousson, C. Mathoniere, O. Kahn, A.Grand, L. Ohrstrom, B. Delley, M. Bonnet, J.-X. Boucherle, J. Am. Chem. Soc. 1997, 119, 3500; (b) D. M. Ciurtin, M. D. Smith and H.-C. zur Loye, Chem. Commun. 2002, 74; (c) R. Horikoshi, T. Mochida, H. Moriyama, Inorg. Chem. 2002, 41, 3017; (d) S. Noro, S. Kitagawa, M. Yamashita, T. Wada, Chem. Commun. 2002, 222; (e) L. Carlucci, G. Ciani, F. Porta, D. M. Proserpio, L. Santagostini, Angew. Chem.Int. Ed. 2002, 41, 1907; (f) P. Agarwal, N. A. Piro, K. Meyer, P. Müller, C. C. Cummins. Angew. Chem. Int. Ed. Engl. 2007, 46, 3111; (g) S. Kitagawa, S. Noro, T. Nakamura. Chem. Commun. 2006, 701; (h) K.-T. Youm, M. G. Kim, J. Ko,.M.-J. Jun. Angew. Chem. Int. Ed. Engl. 2006, 45, 4003.
    14. C. Janiak, Dalton Trans. 2003, 2781.
    15. S. Noro, M. Kondo, T. lshii, S. Kitagawa, H. Matsuzaka, J. Chem. Soc. Dalton Trans. 1999, 1569.
    16. L. Carlucci, G. Ciani, D. M. Proserpio, A. Sironi, Angew. Chem. 1995, 107, 20370.
    17. K. Uemura, S. Kitagawa, M. Kondo, K. Fukui, R. Kitaura, H.-C. Chang, T. Mizutani, Chem. Eur. J. 2002, 8, 3587.
    18. M.-L. Tong, X.-M. Chen, B.-H. Ye, S. W. Ng, Inorg. Chem. 1998, 37, 5278.
    19. M. Kondo, M. Shimamura, S. Noro, S. Minakoshi, A. Asami, K.Seki, S. Kitagawa, Chem. Mater. 2000, 12, 1288.
    20. H. Okawa, M. Ohba, Bull. Chem. Soc. Jpn. 2002, 75, 1191.
    21. (a) P. G. Lacroix, Eur. J. Inorg. Chem. 2001, 339; (b) H. Zhang, X. Wang, K. Zhang, B. K. Teo, J. Solid State Chem. 2000, 152, 191. (c) E. Cariati, M. Pizzotti, D.Roberto, F.Tessore, R. Ugo. Coordination Chem. Rev.2006,250, 1210.
    22. O.R. Evans and W. B. Lin, Acc. Chem. Res. 2002, 35, 511.
    23. (a) D. Braga, F. Grepioni, A. G. Orpen, Crystal Engineering: From Molecules and Crystals to Materials, Dordrecht, Kluwer Academic Publishers, 1999; (b) S. Kitagawa, Kitaura, S. Noro, Angew. Chem. Int, Ed. 2004, 43, 2334; (c) C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem. Int. Ed. 2004, 43, 1466;
    24. (a)C.-H. Huang, F.-Y. Li, Y. -Y. Huang, Ultrathin Film for optics and Electronics, Beijing University Press, 2001. (c) T. Agou, J. Kobayashi, T. Kawashima. Inorg. Chem. 2006, 45 9137. (d) K. Ogawa, Y. Kobuke. J.Photochemistry and Photobiology. C-Photochemistry Rev. 2006, 7,1.
    25. (a)J.-C. Dai, X.-T. Wu, Z.-Y. Fu, C.-P. Cui, S.-M. Hu, W.-X. Du, L.-M. Wu, H.-H. Zhang, R.-Q. Sun, Inorg. Chem. 2002, 41, 1391; (b)H.-K. Fun, S. S. S. Raj, R.-G. Xiong, J.-L. Zuo, Z. Yu and X.-Z. You, J. Chem. Soc. Dalton Trans. 1999, 1915.
    26. J.-M. Shi, W. Xu, Q.-Y. Liu, F.-L. Liu, Z.-L. Huang, H. Lei, W.-T. Yu, Q. Fang, Chem. Commun., 2002, 756.
    27. Y. Gong, W. Tang, W.-B. Hou, Z.-Y. Zha, C.-W. Hu. Inorganic Chemistry. 2006,45,4987.
    28. J.S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon and K. Kim, Nature, 2000, 404, 982.
    29. R.-G. Xiong, X.-Z.You, B.F.Abrahams, Z.-L. Xue, C.-M. Che, Angew. Chem. Int. Ed. 2001, 40, 4422.
    30. (a)Y. Cui, O. R. Evans, H. L. Ngo, P. S.White, W.-B. Lin, Angew. Chem.,Int. Ed. 2002, 41, 1159; (b)Y. Cui, S.J. Lee, W.-B. Lin, J. Am. Chem. Soc. 2003, 125, 6014; (c)B.Kesanli, Y.Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, W.-B. Lin, Angew. Chem. Int. Ed. 2005, 44, 72. (d) B. Kesanli, W.-B. Lin, Coord Chem. Rev. 2003, 246, 305.
    31. (a) R.-H. Wang, L.-J. Xu, J. X.Ji, Q. Shi, Y.-Li, Z.-Y. Zhou, M.-C. Hong, A. S. C. Chan, Eur. J. Inorg. Chem. 2005, 751; (b) R. -H. Wang, L.-J. Xu, X.-S. Li, Y.-M. Li, Q. Shi, Z.-Y. Zhou, M.-C. Hong, A. S. C. Chan, Eur. J. Inorg. Chem. 2004,1595.
    32. P. Grosshans, A. Jouaiti, V. Bulach, J. -M. Planeix, M.W. Hosseini, J. F. Nicoud, Chem. Commun. 2003, 1336.
    33. K. Biradha, C. Seward and M. J. Zaworotko, Angew. Chem., Int. Ed. Engl. 1999, 38, 492.
    34. (a) C. J. Kepert, T. J. Prior, M. J. Rosseinsky, J. Am. Chem. Soc. 2000, 122, 5158; (b) C. J. Kepert and M. J. Rosseinsky, Chem. Commun. 1998, 31.
    35. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Science, 2003, 300, 1127.
    36. P. M. Forster, J. Eckert, J. -S. Chang, S.-E. Park, G. Fyrey, A. K. Cheetham, J. Am. Chem. Soc. 2003,125, 1309.
    37. (a) J. L. C. Rowseil, A. R. Millward, K. S Park, and O. M. Yaghi. J. Am. Chem. Soc. 2004, 126, 5666; (b) J. L. C. Rowsell, O. M. Yaghi, Microporous and Mesoporous Materials 2004, 73, 3. (c) J. L. C. Rowsell, O. M. Yaghi. J. Am. Chem. Soc 2005, 127, 14904; (d) A. R. Millward, O. M. Yaghi. J. Am. Chem. Soc 2005, 127, 15998; (e) A. C. Sudik, A. P. Cote, A. G. Wong-Foy, M. O'Keeffe, and O. M. Yaghi. Angew. Chem. Int. Ed. 2006, 45, 2528; (f) H. Furukawa, J. Kim, K. E. Plass, and O. M. Yaghi. J. Am. Chem. Soc 2006, 128, 8398; (g) J. L. C. Rowsell, O. M. Yaghi. J. Am. Chem. Soc. 2006, 128, 1304. (h) H. Furukawa, M. A. Millerb , O. M. Yaghi. J. Mater. Chem. 2007,17, 3197.
    38. L. Pan, D. H. Olson, L. R. Ciemnolonski, R. Heddy, J. Li, Angew. Chem. Int. Ed. 2006, 45, 616.
    39. (a) B. H. Hamilton, K. A. Kelly, T. A. Wagler, M. P. Espe, C. J. Ziegler, Inorg. Chem. 2002, 41, 4984; (b) K. S. Min, M. P. Suh, J. Am. Chem. Soc. 2000, 122, 6834; (c) O. -S. Jung, Y. J. Kim, Y.-A. Lee, H. K. Chae, H. G. Jang, J. Hong, Inorg. Chem. 2001, 40, 2105; (d) O. -S. Jung, Y. J. Kim, Y.-A. Lee, K. H. Yoo, Chem. Lett. 2002, 500; (e) L. Pan, E. B.Woodlock, X.Wang, K.-C. Lam, A. L. Rheingold, Chem.Commun. 2001, 1762; (f) S. R. Halper, L. Do, J. R. Stork, S. M. Cohen. J. Am. Chem. Soc. 2006,128, 15255.
    40. O. M. Yaghi, H. Li, T. L. Groy, Inorg. Chem. 1997, 36, 4292.
    41. O. -S. Jung, Y. J. Kim, K. M. Kim and Y. -A. Lee, J. Am. Chem. Soc. 2002,124, 7906.
    42. (a) M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, J. Am. Chem. Soc. 1994,116, 1151; (b) S. Naito, T. Tanibe, E. Saito, T. Miyao, W. Mori, Chem. Lett. 2001, 1178; (c) J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature, 2000, 404, 982; (d) T. Sawaki, T. Dewa and Y. Aoyama, J. Am. Chem. Soc. 1998, 120, 8539; (e) O. R. Evans, H. L. Ngo, W. Lin, J. Am. Chem. Soc. 2001, 123, 10395; (f) L. Pan, H. Liu, X. Lei, X. Huang, D. H. Olson, N. J. Turro, J. Li, Angew. Chem. Int. Ed. 2003, 42, 542; (g) J. M. Tanski, P. T. Wolczanski, Inorg. Chem. 2001, 40, 2026; (h) B. Gomez-Lor, E. GutiYrrez-Puebla, M. Iglesias, M. A. Monge, C. Ruiz-Valero., N. Snejko, Inorg. Chem. 2002, 41, 2429; (i) B. Xing, M. -F. Choi, B. Xu, Chem. Eur. J. 2002, 8, 5028; (j). W. B. Lin. MRS Bulletin. 2007, 32, 544; (k) C. D. Wu, Inorganic Chemistry Communications 2006, 9 1223.
    43. T. Uemura, R. Kitaura, Y. Ohta, M. Nagaoka, S. Kitagawa, Angew. Chem. Int. Ed. 2006, 45, 4112
    44 a) D. F. Sun, R. Cao, Y. Q. Sun, W. H. Bi, D.Q.Yuan, Q. Shi, X. Li, Chem. Commun.2003,1528. b) T. J. Prior, D. Bradshaw, S. J. Teat, M. J. Rosseinsky, Chem.Commun. 2003, 500. c) S. A. Bourne, J. J. Lu, A. Mondal, B. Moulton, M. J.Zaworotko, Angew. Chem., Int. Ed 2001,40, 2111. d) J. J. Lu, A. Mondal, B.Moulton, M. J. Zaworotko, Angew. Chem., Int. Ed. 2001,40, 2113. e) X. M. Zhang,X. M. Chen, Eur. J. Inorg. Chem. 2003,413.
    45 (a) H. Li, M. Eddaoudi, M. O'Keeffe, O. M.Yaghi, Nature 1999,402,276; (b) B.Chen, M. Eddaoudi, S. T. Hyde, M. O'Keeffe, O. M.Yaghi, Science 2001,291,1021. (c) J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B. Moler, M.O'Keeffe, O. M. Yaghi,J Am. Chem. Soc. 2001,123, 8239. (d) N. L. Rosi, M.Eddaoudi, J. Kim, M. O'Keeffe, O. M. Yaghi, Angew. Chem., Int. Ed. 2002, 41, 284.(e) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, D. V. Wachter, M. O'Keeffe, O. M.Yaghi, Science 2002,295, 469. (f) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J.Kim, M. O'Keeffe, O. M. Yaghi, Science 2003, 300, 11; (g) H. M. El-Kaderi, J. R. Hunt, Jose L. M.-Cortes, A. P. C6te,R. E. Taylor, M. O'Keeffe, O. M. Yaghi. Science 2007, 316,269.
    46 (a) S. S.Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Sciencel999, 283, 1148. (b) S. M. F. Lo, S. S.Y. Chui, L. Y. Shek, Z. Y. Lin. X. X. Zhang, G.H. Wen, I. D. Williams, J. Am. Chem. Soc. 2000,122, 6293.
    47 (a) K. Barthelet, J. Marrot, D. Riou, G. Ferey,Angew. Chem., Int. Ed. 2002, 41, 281.(b) F. Millange, C. Serre, G. Ferey, Chem. Commun. 2002, 822.
    48 (a) X. M. Chen, G. F. Liu, Chem. Eur. J. 2002,8,4811. (b) X. M. Zhang, M. L.Tong,M. L.Gong, X. M. Chen, Eur. J. Inorg. Chem. 2003, 138.
    49 (a) R. Cao, D. F. Sun, Y. C. Liang, M. C. Hong, K. Tatsumi, Q. Shi, Inorg. Chem. 2002, 41, 2087. (b) J. H. Luo, M. C. Hong, R. H. Wang, R. Cao, L. Han, D. Q. Yuan,Z. Z.Lin, Y. F. Zhou, Inorg. Chem. 2003, 42, 4486.
    50 Min, K. ,Suh, MyunghyunP .Eur.J. Inorg,Chem, 2001, 2, 449.
    51 Y.-H. Zhao, Z.-M. Su, Inorganic Chemistry Communications, 2007,10,410.
    52 N. Guillou, C. Livage, G.Ferey. Eur. J. Inorg. Chem, 2006, 4963.
    53 G.P. Yong, S. Qiao, X. Yu, Z. Y .Wang. Eur. J. Inorg. Chem, 2006, 4483.
    54 B. M. Chen, S. T. Eddaoudi, O. M. Yaghi. Inter. Met. Org. 2001, 291, 1021
    55 Nathaniel, L. R., Juergen, E., Mohamed, E., D. T. Vodak, L., J. K.,Michael,O .K., O. M. Yaghi., Microporous Met. Org. Fram Science, 2003,300,1127.
    56 A. G. Wong-Foy, A. J. Matzger, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128, 3494.
    57 C. D. Wu, C. Z. Lu, W. B. Yang, S. F. Lu, H. H. Zhuang, J. S. Huang, Eur. J. Inorg. Chem., 2002, 797.
    58 李延国,焉衰蔚,陈闽子,曲阜师范大学报,1998,24(1),85.
    59 A. Nakamura, N. Ueyama, K. Yamaguchi (Eds.), Organometallic Conjugation, Kodansha Springer, Tokyo, 2002, 179.
    60 (a) S. Takamizawa, T. Hiroki, E. Nakata, K. Mochizuki, W.Mori, Chem. Lett. 2002, 1208; (b) S. Takamizawa, E. Nakata, H. Yokoyama, K. Mochizuki, W. Mori, Angew. Chem. Int. Ed. 42 2003, 4331.
    61 (a) K. Seki, S. Takamizawa, W. Mori, Chem. Lett. 2001, 122; (b) S. Takamizawa, W. Mori, M. Furihata, S. Takeda, K. Yamaguchi, Inorg. Chim. Acta 283 1998 268; (c) S. Takamizawa, M. Furihata, S. Takeda, K. Yamaguchi,W. Mori, Macromolecules 2000, 33, 6222; (d) S. Takamizawa, K. Yamaguchi, W. Mori, Inorg. Chim. Commun. 1998, 1, 177.
    1. (a) E. B. Altamirano, D. C. Lazarte, J.M. Gonza'-lez-Pe'rez, M. J. S. Moreno, R. M. Sa'nchez, J. D.M. Ramos, B. Covelo, R. Carballo, A. Castin~ eiras, J. N.Gutie'rrez, Inorg. Chim. Acta. 2002,339,160; (b) T. Tomita, E. Kyuno, R. Tsuchia, Bull. Chem. Soc. Jpn. 1969, 42, 947.
    2.有机合成事典,范能廷,北京理工大学出版社,1992,295。
    3. V. Dormael, Bull. Soc. Chim. Belg. 1949,58,167.
    4. E. Lourdusamy, S. R. Kant, S. Arumugam, G. Suryavanshi, S. Swaminathan, Tetrahedron Lett. 2006, 47, 4793.
    5. G.M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Solution, University of G(?)ttingen: G(?)ttingen, Germany, 1997.
    6. G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of G(?)ttingen: G(?)ttingen, Germany, 1997.
    1. (a) M. Eddaoudi, D. B. Moler, H. L. Li, B.L. Chen, T. M. Reineke, M. O'Keeffe, O. M. Yaghi. Acc. Chem. Res., 2001, 34, 319; (b) S. R. Batten, R. Robson. Angew. Chem. Int. Ed, 1998,37,1461; (c) P. J. Hagrman, D. Hagrman, J. Zubieta. Angew. Chem. Int. Ed, 1999, 38, 2639; (d) M. O'Keeffe, M.Eddaoudi, H. L. Li, T. M. Reineke, O. M. Yaghi. J. Solid State Chem., 2000, 152, 3; (e) R. Robson. J. Chem. Soc. Dalton Trans., 2000, 21, 3735; (f) B. Moulton, M. J. Zaworotko. Chem. Rev., 2001,101, 1629.
    2. (a) J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim. Nature, 2000, 404, 982; (b) O. Kahn, C. J. Martinez. Science, 1998, 279, 44; (c) O. R. Evans, R. G. Xiong, Z. Y. Wang, G. K. Wong, W. B. Lin. Angew. Chem. Int. Ed, 1999, 38, 536; (d) W. B. Lin, O. R. Evans, R. G. Xiong, Z. Y. Wang. J. Am. Chem. Soc, 1998, 120, 13272; (e) A. Grirrane, A. Pastor, A. Galindo, A. Ienco, C. Mealli, P. Rosa. Chem. Commun., 2003 ,4, 512.
    3. D. Q. Chu, J. Q. Xu, L. M. Duan, T. G. Wang, A. Q. Tang, L. Ye. Eur. J. Inorg. Chem., 2001, 5, 1135.
    4. (a) G. P.Yong, Z. Y. Wang, Y. Cui. Eur. J. Inorg. Chem., 2004, (21), 4317; (b) R. Cao, D. F. Sun, Y. C. Liang, M. C. Hong, K. Tatsumi, Q. Shi. Inorg. Chem., 2002, 41, 2087; (c) M. J. Zaworotko. Angew. Chem., Int. Ed, 1998, 37, 1211; (d) F. Chang, Z. M. Wang, H. L. Sun, G. H. Wen, X. X. Zhang. Dalton Trans., 2005, 18, 2976.
    5. M. Kato, Y. Muto. Coord. Chem. Rev, 1988, 92, 45.
    6. (a) J. J. Lu, A. Mondal, B. Moulton, M. J. Zaworotko. Angew. Chem. Int. Ed, 2001, 40, 2113; (b) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi. Science, 2003, 300, 1127; (c) S. M.-F. Lo, S. S.-Y. Chui, L. Y. Shek, Z.Y. Lin, X. X. Zhang, G. H. Wen, I. D. Williams. J. Am. Chem. Soc, 2000,122, 6293; (d) X. M. Chen, G. F. Liu. Chem. Eur. J., 2002, 8, 4811; (e)Y. Q. Xu, D.Q.Yuan, B. L. Wu, L. Han, M.Y. Wu, F. L.Jiang, M. C. Hong. Cryst. Growth Des., 2006, 6, 1168.
    7. (a) G. P. Yong, S. Qiao, Y. Xie, Z. Y. Wang. Eur. J. Inorg. Chem., 2006 , (22), 4483; (b) G. P. Yong, S. Qiao, Z. Y. Wang, Y. Cui, Inorg. Chim. Acta, 2005, 555, 3905; (c) G. P. Yong, Z. Y. Wang, J. T. Chen.J. Mol. Struct, 2004, 707,223.
    8. (a) G. M. Sheldrick. SHELXS-97, Program for X-ray Crystal Structure Solution, University of Gottingen, Gottingen, Germany, 1997; (b) G. M. Sheldrick. SHELXL-97, Program for X-ray Crystal Structure Refinement, University of Gottingen, Gottingen, Germany 1997.
    
    9. X. L. Wang, C. Qin, E. B. Wang, Y. G. Li, N. Hao, C. W. Hu, L. Xu. Inorg. Chem., 2004, 43, 1850.
    
    10. (a) J. Tao, J. X. Shi, M. L. Tong, X. X. Zhang, X. M. Chen. Inorg.Chem., 2001,40, 6328; (b) J. C. Dai, X. T. Wu, Z. Y. Fu, C. P. Cui, S. M. Hu, W. X. Du, L. M. Wu, H. H. Zhang, R.Q. Sun. Inorg. Chem., 2002, 41, 1391; (c) L. Y. Zhang, G. F. Liu, S. L. Zheng, B. H. Ye, X. M. Zhang, X. M. Chen. Eur. J. Inorg. Chem., 2003 ,(16), 2965.
    
    11. Y. Gong, W. Tang, W. B. Hou, Z. Y. Zha, C. W. Hu. Inorg. Chem., 2006, 45, 4987.
    
    12. J. Tao, M. L. Tong, J. X. Shi, X. M. Chen, S. W. Ng, Chem. Commun., 2000, (20), 2043.
    
    13. C. Janiak, Dalton Trans. 2003, 2781 .
    1. a) S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37,1460; b) A. J. Blake, N. R. Champness, P. Hubberstey,W. S. Li, M. A. Withersby, M. Schroder, Coord. Chem. Rev.1999, 183, 117; c) B. Moulton, M. J. Zaworotko, Chem.Rev. 2001,101, 1629.
    2. a) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke,M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319;b) O. R. Evans, W. B. Lin, Acc. Chem. Res. 2002, 55, 511;c) S. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334; d) D. Maspoch, D. Ruiz-Molina, J. Veciana,J. Mater. Chem. 2004,14, 2713.
    3. a) N. G. Pschirer, D. M. Ciurtin, M. D. Smith, U. H. F. Bunz,H. C. zur Loye, Angew. Chem. Int. Ed. 2002, 41, 583; b)G. S. Papaefstathiou, Z. Zhong, L. Geng, L. R. MacGillivray,J. Am. Chem. Soc. 2004, 126, 9158; c) J. S. Seo, D.Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature2000, 404, 982; d) Z. Ni, A. Yassar, T. Antoun, O. M.Yaghi, J. Am. Chem. Soc. 2005, 127, 12752; e) S. N.Wang, H. Xing, Y. Z. Li, J. F. Bai, Y. Pan, M. Scheer, X. Z.You, Eur. J. Inorg. Chem. 2006, 3041.
    4. a) P. Ayyappan, O. R. Evans, W. B. Lin, Inorg. Chem. 2001, 40,4627; b) M. L. Tong, S. Hu, J. Wang, S. Kitagawa, S. W.Ng, Cryst. Growth Des. 2005, 5, 837; c) Y. Xu, L. Han,Z. Z. Lin, C. P. Liu, D. Q. Yuan, Y. F. Zhou, M. C. Hong, Eur../. Inorg. Chem. 2004, 4457; d) B. Zhao, P. Cheng, Y. Dai,C. Cheng, D. Z. Liao, S. P. Yan, Z. H. Jiang, G. L. Wang, Angew.Chem. Int. Ed. 2003, 42, 934.
    5. L. Pan, N. Ching, X. Y. Huang, J. Li, Chem. Eur. J. 2001, 7,4431.
    6. a) Y. L. Liu, V. Kravtsov, R. D. Walsh, P. Poddar, H. Srikanth,M. Eddaoudi, Chem. Commun. 2004, 2806; b) M. T. Caudle,J. W. Kampf, M. L. Kirk, P. G. Rasmussen, V. L. Pecoraro,J. Am. Chem. Soc. 1997, 119, 9297; c) E. Shimizu, M.Kondo, Y. Fuwa, R. P. Sarker, M. Miyazawa, M. Ueno, T.Naito, K. Maeda, F. Uchida, Inorg. Chem. Commun. 2004, 7,1191; d) P. Angaridis, J. W. Kampf, V. L. Pecoraro, Inorg.Chem. 2005, 44, 3626; e) P. Mahata, S. Natarajan, Eur.J. Inorg. Chem. 2005, 2156; f) J. Y. Lu, Z. H. Ge, Inorg.Chim, Acta 2005, 358, 828; g) Z. F. Fei, D. B. Zhao, T. J.Geldbach, R. Scopelliti, P. J. Dyson, S. Antonijevic, G. Bodenhausen,Angew. Chem. Int. Ed. 2005, 44, 5720; h) W. G.Lu, L. Jiang, X. L. Feng, T. B. Lu, Cryst. Growth Des. 2006, 6, 564.
    7. a) X. H. Bu, W. Chen, S. L. Lu, R. H. Zhang, D. Z. Liao,W. M. Bu, M. Shionoya, F. Brisse, J. Ribas, Angew. Chem. Int.Ed. 2001, 40, 3201; b) D. N. Dybtsev, H. Chun, K. Kim,Angew. Chem. Int. Ed. 2004, 43, 5033.
    8. a) K. Biradha, M. Fujita, Chem. Commun. 2002, 1866;b) A. J. Barton, A. R. J. Genge, W. Levason, G. Reid, J. Chem.Soc., Dalton Trans. 2000, 2163; c) M. Fujita, Y. J. Kwon,O. Sasaki, K. Yamaguchi, K. Ogura, J. Am. Chem. Soc. 1995,117, 7287; d) L. Carlucci, G. Ciani, D. Proserpio, Coord.Chem. Rev. 2003, 246, 247; e) M. Fujita, O. Sasaki, K. Y.Watanabe, K. Ogura, K. Yamaguchi, New J. Chem. 1998,22, 189.
    9. P. Gamez, P. de Hoog, M. Lutz, A. L. Spek, J. Reedijk, Inorg.Chim. Acta. 2003, 351, 319.
    10. a) P. Gamez, P. de Hoog, O. Roubeau, M. Lutz, W. L. Driessen,A. L. Spek, J. Reedijk, Chem. Commun. 2002, 1488; b)M. S. Wang, G. C. Guo, M. L. Fu, L. Xu, L. Z. Cai, J. S. Huang,Dalton Tram. 2005, 2899.
    11. a) P. Ayyappan, O. R. Evans, B. M. Foxman, K. A. Wheeler, T. H. Warren, W. B. Lin, Inorg. Chem. 2001, 40, 5954; b)B. W. Sun, Z. M. Wang, S. Gao, Inorg. Chem. Commun. 2001. 4, 79.
    12. M. S. Wang, G. C. Guo, L. Z. Cai, W. T. Chen, B. Liu, A. Q.Wu, J. S. Huang, Dalton Trans. 2004, 2230.
    13. A. F. Wells, Three-dimensional Nets and Polyhedra, Wiley, NewYork, 1977.
    14. a)Y.L. Lu, J. Y. Wu, M. C. Chan, S. M. Huang, C. S. Lin, T.W. Chiu, Y.H. Liu, Y. S. Wen, C. H. Ueng, T. M. Chin, C. H. Hung, K.L. Lu. Inorg. Chem., 2006 45, 2430. b) J. Fan, M. H. Shu, T.-a. Okamura, Y. Z. Li, W. Y. Sun, W. X.Tang, N. Ueyama. New J. Chem., 2003,27, 1307.
    15. B. Alcaide, J. Plumet, M. A. Sierra. J. Org. Chem. 1990,55,3143.
    16. Y. Zou, W. L. Liu, S. Gao, J. L. Xie, Q. J. Meng, Chem. Commun.2003, 2946.
    17. a) S. T. Wang, Y. Hou, E. B. Wang, Y. G. Li, L. Xu, J. Peng,S. X. Liu, C. W. Hu, New J. Chem. 2003, 27, 1144; b)X. D. Chen, M. Du, T. C. W. Mak, Chem. Commun. 2005, 4417.
    18. a) M. P. Clares, J. Aguilar, R. Aucejo, C. Lodeiro, M. T. Albelda,F. Pina, J. C. Lima, A. J. Parola, J. Pina, S. de Melo, C.Soriano, E. Garcia-Espafia, Inorg. Chem. 2004, 43, 6114;b) F. Bolletta, I. Costa, L. Fabbrizzi, M. Licchelli, M. MontaIti,P. Pallavicini, L. Prodi, N. Zaccheroni, J. Chem. Soc, DaltonTrans. 1999, 1381; c) S. A. Zabin, C. R. Jejurkar, J. Polym. Mater. 1997,14, 239.
    19. a) S. L. Zheng, J. H. Yang, X. L. Yu, X. M. Chen, W. T. Wong,Inorg. Chem. 2004, 43, 830; b) L. Y. Zhang, J. P. Zhang,Y. Y. Lin, X. M. Chen, Cryst. Growth Des. 2006, 6, 1684.
    20. a) L. Y. Zhang, G. F. Liu, S. L. Zheng, B. H. Ye, X. M. Zhang,X. M. Chen, Eur. J. Inorg. Chem. 2003, 2965; b) Q. R.Fang, G. S. Zhu, M. Xue, J. Y. Sun, F. X. Sun, S. L. Qiu, Inorg.Chem. 2006, 45, 3582.
    
    21. J. C. Dai, X. T. Wu, Z. Y. Fu, S. M. Hu, W. X. Du, C. P. Cui,L. M. Wu, H. H. Zhang, R. Q. Sun, Chem. Commun. 2002, 12.
    
    22. Y. Gong, W. Tang, W. B. Hou, Z. Y. Zha, C. W. Hu. Inorg. Chem., 2006, 45, 4987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700