渣油加氢体系胶体性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渣油热反应过程中,体系胶体稳定性下降会导致沥青质聚沉,进而生焦。渣油加氢反应过程中伴随着热反应的发生,沥青质在催化剂上聚沉、结焦会造成催化剂迅速失活,影响装置的长周期运转。因此,本文比较系统地研究了不同渣油在不同反应条件下的加氢转化和胶体稳定性。
     采用质量分数电导率法考察了分别搀兑催化裂化油浆和减四线抽出油对渣油体系胶体稳定性的影响,发现搀兑催化裂化油浆或减四线抽出油均使渣油体系的稳定性下降。研究表明,馏分油组分与渣油组分极性的差距决定了体系胶体稳定性的变化。
     不同渣油加氢转化性能的研究表明,渣油的加氢转化性能与沥青质的性质和反应条件密切相关,其中沥青质的分子单元结构大小和硫含量对渣油加氢转化性能具有重要影响。分子尺寸小、硫含量高的沥青质易于转化,相应的渣油转化率较高;反应条件影响渣油的转化和液相产物的胶体稳定性。在加氢过程中,伴随着热反应的发生,液相产物胶体稳定性下降,使沥青质易于析出、生焦。在氢初压为8MPa,剂油比1:10,反应时间为2h的条件下,反应温度升高,渣油转化率增大,液相产物胶体稳定性下降,焦炭产率明显增加;反应温度为420℃时,液相产物的胶体稳定性被完全破坏,沥青质分相析出,生焦量显著增加。提高反应氢初压,一定程度上抑制了渣油转化,但液相产物的胶体稳定性有所改善,生焦率降低。延长反应时间,渣油转化率提高,但液相产物的胶体稳定性变差,生焦量增加。对不同渣油加氢反应的液相产物胶体稳定性的研究表明,组分组成、组分性质和平均结构均影响液相产物的胶体稳定性;饱和分与沥青质含量增加,芳香分与胶质含量减少,液相产物的胶体稳定性变差;胶质与沥青质的极性差距加大,不利于液相产物的稳定;沥青质与胶质的芳香结构差距加大,液相产物的胶体稳定性变差。
     沥青质中的杂原子含量及类型严重影响催化剂失活和沥青质的反应性能,对沥青质加氢反应前后杂原子含量及类型进行了研究。加氢过程中,C-S键能小于C-C键能,因此沥青质中的硫S易于脱除,随着反应的进行沥青质中硫含量减少。氮主要位于芳香环内,难于脱除,随反应的进行沥青质中氮含量增加。采用X射线光电子能谱(XPS)和X射线吸收近边谱(XANES)对沥青质中杂原子类型进行分析,发现渣油沥青质中的氮主要以吡咯类氮形式存在,含少量吡啶类氮;氧主要以C-O单键形式存在;硫主要以噻吩硫形式存在,含有少量亚砜。硫、氮官能团的特点决定了其脱除的难易程度。加氢反应后沥青质中吡啶类氮(碱性氮)相对含量增多,羧基氧相对数量显著增加,噻吩硫、亚砜相对数量减少。加氢后沥青质中亚砜含量的减少与沥青质极性变小相一致。
     渣油中沥青质的胶粒形态影响其流变性质和扩散传质效率,尤其是沥青质的加氢反应行为。利用小角X射线散射技术(SAXS)对渣油及其加氢反应样品中沥青质的胶粒尺寸进行了测定。研究发现,渣油中沥青质的胶粒尺寸在6-9nm,沥青质的胶粒尺寸与其含量无关;渣油搀兑馏分油及热反应生焦诱导期内样品的研究表明,组分性质的不配伍性以及可溶质溶剂化作用的减弱使沥青质发生絮凝,胶粒尺寸变大;加氢过程中,沥青质分子发生加氢裂化和缩合生焦反应,沥青质的胶粒尺寸变小。
     采用安东帕Physical MCR101型流变仪研究渣油的流变性。在压力为6MPa、温度160℃-280℃的实验条件下发现,渣油属于牛顿型流体;粘度与温度呈指数关系,升高温度,不同渣油间粘度差距减小;压力对粘度的影响较小。
The decline in the colloidal stability of residue would cause asphaltene to aggregate and ultimately transform into coke during thermal reaction. Asphaltene deposited on the catalyst and transformed int coke, making catalyst deactived rapidly, during hydroprocessing of heavy oils. So asphaltenes would limit the efficiency of conversion and run time of unit greatly. Therefore, the hydroprocessing performance of residue and the relationship between the colloidal stability variation and coking characteristics were investigated in this thesis.
     Effect of FCC slurry oil and HVGO on the colloidal stability of residue was studied by mass fraction conductivity method. It was shown that the addition of two fractions exhibited negative effect on the colloidal stability of residue. The disparity in polarity between heavy fraction and residue was the main reason for altering the colloidal stability of residue.
     Through the investigation on the hydroprocessing performance of different residue, it could be seen that asphaltenes with small size and high sulfur content were easy to convert, and the conversion of corresponding residue was high. The product distribution and colloidal stability were invarious with reaction condition. As the reaction temperature increased, the conversion of residue increased or the colloidal stability of system decreased, and the coke yield increased. At reaction temperature of 420℃, the colloidal stability of residue system was destroyed totally, the sludge formation was found and the coke yield increased remarkablely. As the initial hydrogen pressure increased, the conversion of residue reduced and the colloidal stabililty increased, and the coke yield decreased. As reaction time increase, the conversion of residue increased and the colloidal stability decreased, and the coke yield increased. The change of the colloidal stability was deterimined by the company action of SARA composition and the properties of them.
     The reaction performance of asphaltenes was influenced by heteroatom content and types of them. The sulfur-carbon bond was weaker than the carbon-carbon bond, so the sulfur-carbon bond was easy to rupture, and the sulfur content in asphaltene decreased as hydroprocessing processed. Nitrogen was mainly present in the aromatic rings located inside the asphaltene molecule, and was difficult to remove. So the nitrogen in asphaltene increased. X-ray photoelectron spectroscopy(XPS) and X-ray absorption near-edge structure spectrum(XANES) were carried out to investigate the type of heteroatom in asphaltene. After hydroprocessing, basic nitrogen relative content increased, carbonoxylate oxygen relative content increased, and thiophene sulfur and sulfoxide relative content decreased. The decreased contene of sulfoxide was consistent with the downtrend of polarity of asphaltene.
     The rheology and diffused efficiency of residue were influenced by morphology of colloidal particle of asphaltene. The colloidal particle size of asphaltene was characterized by small angle X-ray scattering technology(SAXS). The size of colloidal particle in residue was between 6-9nm. When the SARA compostion was uncomfatible and the solvated power of maltene decreased, asphalene aggregated together and the size increased. After hydroprocessing, the size of asphaltenes particles decreased.
     At high temperature and pressure, the residue, mixed system and the liquid product after hydroprocessing were shown to be Newton rheology. The viscosity and temperature character fitted to exponential law. Pressure had little impact on the viscosity.
引文
[1]陆善祥, M.R.Gray.重油和沥青的结构基团分析方法[J].石油学报(石油加工). 1996, 12(1): 95-102.
    [2] V. Calemma, P. Iwanski, M. Nali, et al. Structure characterization of asphaltenes of different origins[J]. Energy & Fuels, 1995, 9(2): 225-230.
    [3] C.Y.Ralston, S.M.Kirtley, O.C.Mullins. Small population of one to three fused-aromatic ring moieties in asphaltenes[J]. Energy & Fuels, 1996, 10(3): 623-630.
    [4]王子军,梁文杰,阙国和,等.减压渣油组分中芳环数分布的同步荧光光谱研究[J].石油学报(石油加工), 1999, 15(4): 67-71.
    [5] Henning Groenzin, Oliver C. Mullins. Molecular size and structure of asphaltenes from various sources[J]. Energy & Fuels, 2000, 14(3): 677-684.
    [6] S. Badre, Cristiane Carla Goncalves, Koyo Norinaga, et al. Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, Crude oils and bitumen[J]. Fuel, 2006, 85(1): 1-11
    [7] V. Calemma, R. Rause, P. D. Antona, et al. Characterization of asphaltenes molecular structure[J]. Energy & Fuels, 1998, 12(2): 422-428.
    [8]王子军,梁文杰,阙国和,等.钌离子氧化法研究胜利减压渣油组分的化学结构[J].石油学报(石油加工), 1997, 13(4): 1-9.
    [9] Yan Su, Levent Artok, Satoru Murata, et al. Structural analysis of the asphaltene fraction of an arabian mixture by ruthenium-ion-catalyzed oxidation reaction[J]. Energy & Fuels, 1998, 12(6): 1265-1271.
    [10]张占纲,郭绍辉,赵锁奇,等.大港减压渣油超临界萃取残渣极性组分的化学结构[J].石油学报(石油加工), 2007, 23(4): 82-88.
    [11]朱军,郭绍辉,李术元.钌离子催化氧化研究石油沥青质芳香环系结构特征[J].燃料化学学报, 2002, 30(5): 433-437.
    [12] L. Artok, Y. Su, Y. Hirose, et al. Structure and reactivity of petroleum derived asphaltene[J]. Energy & Fuels, 1999, 13(2): 287-296.
    [13] Sudipa Mitra-Kirtley, Oliver C. Mullins, Jan Van Elp, et al. Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy[J]. Journal of the American Chemical Society, 1993, 115(1): 252-258.
    [14] T. F. Yen. Colloidal chemistry of asphalts[J]. Energy Sources, 1974, 1(27): 447.
    [15] S. R. Kelmen, G. N. George, M. L. Gorbaty. Direct determination and quantification ofsulphur forms in heavy petroleum and coals: 1. The X-ray photoelectron spectroscopy approach[J]. Fuel, 1990, 69(8): 939-944.
    [16] K. D. Rose, M. A. Francisco. Characterization of acidic heteroatoms in heavy petroleum fractions by phase-transfer methylation and NMR spectroscopy[J]. Energy & Fuels, 1987, 1(3): 233-239.
    [17] E. Rogel, O. Leon, G. Torres, J. Espidel. Aggregation of asphaltenes in organic solvents using surface tension measurements[J]. Fuel, 2000, 79(11): 1389-1394.
    [18] Eric. Y. Sheu. Aggregation and kinetics of asphaltenes in organic solvents[J]. Fuel, 1992, 71(3): 299-302.
    [19] Simon I. Andersen, James G. Speight. Observation on the critical micelle concentration of asphaltenes[J]. Fuel, 1993, 72(9): 1343-1344.
    [20] Rahoma S. Mohamed, Ant?nio C. S. Ramos. Aggregation behavior of two asphaltenic fractions in aromatic solvents[J]. Energy & Fuels, 1999, 13(2): 323-327.
    [21] Antonio Carlos da Silva Ramos, Lilian Haraguchi. Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils[J]. Journal of Peteroleum Science and Engineering, 2001, 32(2-4): 201-216.
    [22] O. H. Kyeongseok, Teny A. Ring and Milind D. Deo. Asphaltene aggregation in organic solvents[J]. Journal of Colloid and Interface Science, 2004, 271(1): 212-219.
    [23] S. I. Andersen, K. S. Birdi. Aggregation of asphaltenes as determined by calorimetry[J]. J. Colloid and Surface Science, 1991, 142(2): 497-502.
    [24] S. Acevedo, M. A. Ranaudo, J. C. Pereira et al. Thermo-optical studies of asphaltene solutions: evidence for solvent-solute aggregate formation[J]. Fuel, 1999, 78(9): 997-1003.
    [25] Igor N.Evdokimov, Nikolay Yu, Eliseev et al. Initial stages of asphaltene aggregation in dilute crude oil solutions: studies of viscosity and NMR relaxation[J]. Fuel, 2003, 82(7): 817-823.
    [26] Igor N. Evdokimov, Nikolay Yu Eliseev et al. Asphaltene dispersions in dilute oil solutions[J]. Fuel, 2006, 85 (10): 1465-1472.
    [27] Slamet Priyanto, G. Ali Mansoori, Aryadi Suwono. Measurement of property relationships of nano-structure micelles and coacervates of asphaltene in a pure solvent[J]. Chem. Eng. Sci, 2001, 56(24): 6933-6939.
    [28] P. Matthew Spiecker, Keith L.Gawrys, Petr K.Kilpatrick. Aggregation and solubility behavior of asphaltenes and their subfractions[J]. Journal of Collidal and Interface Science, 2003, 1(1): 173-193.
    [29] I. K. Yudin, G. L. Nikolaenko, E. E. Gorodeskii, et al. Crossover kinetics of asphaltene aggregation in hydrocarbon solutions[J]. Physica A: Statistical Mechanics and its Applications, 1998, 251(1-2): 235-244.
    [30] M. A. Anisimov, I. K. Yudin, V. Nikitin, et al. Asphaltene aggregation in hydrocarbon solutions studied by photon correlation spectroscopy[J]. J. Phys. Chem, 1995, 99(23): 9576-9580.
    [31] Ryuzo Tanaka, Eisaku Sato, Jerry E. Hunt et al. Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering[J]. Energy & Fuels, 2004, 18(4): 1118-1125.
    [32] Rahoma S. Mohamed, Antonio C. S. Ramos, Watson Loh. Aggregation behavior of two asphaltenic fractions in aromatic solvents[J]. Energy & Fuels, 1999, 13(2): 323-327.
    [33]周华,水恒福.煤的缔合结构研究[J].燃料化学学报, 2005, 33(1): 43-46.
    [34] S. I.Andersen, S. D. Chreistensen. The critical micelle concentration of asphaltenes as measured by calorimetry[J]. Energy & Fuels, 2000, 14(1): 38-42.
    [35] Christian Stachowiak, Jean-Romain Viguie, Jean-Pierre E. Grolier. Effect of n-alkanes on asphaltene structuring in petroleum oils[J]. Langmuir, 2005, 21(): 4824-4829.
    [36] R. Mahmoud, P. Gierycz, R.Solimando. Calorimetric probing of n-alkane petroleum asphaltene interactions[J]. Energy & Fuels, 2005, 19(6): 2474-2479.
    [37]胡玉峰,杨兰英.原油正构烷烃沥青质聚沉机理研究及沉淀量测定[J].石油勘探与开发2000, 27(5): 109-111.
    [38]梁文杰.重质油化学[M].山东东营:中国石油大学出版社, 2000, 166.
    [39] E. Y. Sheu, M. M. Detar, D. A. Storm. Dielectric properties of asphaltene solutions[J]. Fuel, 1994, 73(1): 45-50.
    [40] Fabricio Arteaga-Larios, Eric Y.Shen, Elias Perez. Asphaltene flocculation, precipitation, and liesegang ring[J]. Energy & Fuels, 2004, 18(5): 1324-1328.
    [41] Hilda Parra-Barraza, Daniel Hernandez-Montiel, Jaime Lizardi. The zeta potential and surface properties of asphaltenes obtained with different crude oil/n-heptane proportions[J]. Fuel, 2003, 82(8): 869-874.
    [42] T. Abraham, D. Christendat, K, Karan. Asphaltene-silica interactions in aqueous solutions: derect force measurements combined with electrokinetic studies[J]. Ind. Eng. Chem. Res, 2002, 41(9): 2170-2177.
    [43] A. Jada, M. Salou. Effects of the asphaltene and resin contents of the bitumens on the water-bitumen interface properties[J]. J. Petrol Sci EngIng, 2002, 33(1-3): 185-193.
    [44] Hilda Parra-Barraza, Daniel Hernandez-Montiel, Jaime Lizardi et al. The zeta potential and surface properties of asphaltenes obtained with different crude oil/n-heptane proportions[J]. Fuel, 2003, 82(8): 869-874.
    [45] Spencer E. Taylor. The electrodeposition of asphaltenes and implications for asphaltene structure and stability in crude and residual oils[J]. Fuel, 1998, 77(8): 821-828.
    [46] H. Paul Maruska, Bhaskara M. L. Rao. The role of polar species in the aggregation of asphaltenes[J]. Fuel Science and Technology International, 1987, 5(2):119-168
    [47] Aarre Kellomaki. Molar polarizations and dipole moments of bitumens[J]. Fuel, 1991, 70(9): 1103-1104.
    [48] Thomas J.Kaminski, H.Scott Fogler, Nick Wolf. Classification of asphaltene via fraction and the effect of heteroatom content on dissolution kinetics[J]. Energy & Fuels, 2000, 14: 25-30.
    [49] Piyarat Wattana, H.Scott Fogler, Andrew Yen, et al. Characterization of polarity-based asphaltene subfractions[J]. Energy & Fuels, 2005, 19(1): 101-110.
    [50] P. Juyal, D.Merino-Garcia, S. I. Andersen. Effect on molecular interactions of chemical alteration of petroleum asphaltene[J]. Energy &Fuels, 2005, 19(4): 1272-1281.
    [51] Keith L. Gawrys, George A. Blankenship, Peter K. Kilpatrick. On the distribution of chemical properties and aggregation of solubility fractions in asphaltenes[J]. Energy & Fuels, 2006, 20(2): 705-714.
    [52] J. G. Speight, S. E. Moschopedis. Some observation of the molecular“nature”of petroleum asphaltenes[J]. Petroleum. Chem. ACS, 1979, 24(4): 910-923.
    [53]李生华.减压渣油的胶状结构及其热反应体系的相分离行为[D].石油大学(北京)博士学位论文, 1991.
    [54]刘东,王宗贤,阙国和.渣油中沥青质胶粒缔合状况初探[J].燃料化学学报, 2002, 30(3): 281-284.
    [55] Y. Bouhadda, D. Bormann, E. Sheu, et al. Characterization of algerian hassi-messaoud asphaltene structure using raman spectrometry and X-ray diffraction[J]. Fuel, 2007, 86(12-13): 1855-1864.
    [56] Harvey W. Yarranton, Hussein Alboudwarej, Rajesh Jakher. Investigation of asphaltene association with vapor pressure osmometry and interfacial tension measurements [J]. Ind. Eng. Chem. Res, 2000, 39(8): 2916-2924.
    [57] I. A.Wiehe and K.S.Liang. Asphaltene, resins and other petroleum macromolecules[J]. Fluid Phase Equilibria, 1996, 117(1-2): 201-210.
    [58]王宗贤,张宏玉,郭爱军,等.渣油中沥青质的缔合状况与热生焦趋势研究[J].石油学报(石油加工), 2000, 16(4): 60-64.
    [59]张龙力,杨国华,马魁菊,等.中东常压渣油热反应过程中沥青质的缔合性变化规律[J].燃料化学学报, 2004, 32(2): 171-174.
    [60] F. Trejo, J. Ancheyta, T. J. Morgan, et al. Characterization of asphaltenes from hydrotreated products by SEC, LCMS, MALDI, NMR and XRD[J]. Energy & Fuels, 2007, 221(4): 2121-2128.
    [61] Peng Luo, Yongan Gu. Effects of asphaltene content on the heavy oil viscosity at different temperature[J]. Fuel, 2007, 86(7-8): 1069-1078.
    [62]杨朝合,徐春明,杜峰,等.重质油宏观尺寸表征的初步研究[J].石油学报, 1998, 14(3): 6-9.
    [63]王治卿,王宗贤,郭爱军.渣油中沥青质分子颗粒尺寸及其胶粒模型研究[J].燃料化学学报, 2004, 32(4): 429-434.
    [64]丁福臣,王宇航,靳广洲,等.石油沥青质胶态粒子宏观结构尺寸的研究[J].石油化工高等学校学报, 2001, 14(2): 31-34.
    [65]丁福臣,魏洁,王宇航,等.石油沥青质胶体分散特性的研究[J].石油化工高等学校学报. 2001, 14(3): 7-9.
    [66] Wakabayashi. Hydrodynamic shape and size of Khafji asphaltene in benzene[J]. Journal of Colloid and Interface Science, 2001, 234(2): 261-268.
    [67] Verina J. Wargadalam, Koyo Norinaga, Masashi Iino. Size and shape of a coal asphaltene studied by viscosity and diffusion coefficient measurements[J]. Fuel, 2003, 81(11-12): 1043-1047.
    [68] Verina J.Wargadalam, Koyo Norinaga, Masashi Iino. Hydrodynamic properties of coal extracts in pyridine[J]. Energy & Fuels, 2001, 15(5): 1123-1128.
    [69] Rodrigo E.Guerra, Kosta Ladavac, A.Ballard Andrews et al. Diffusivity of coal and petroleum asphaltene monomers by fluorescene correlation spectroscopy[J]. Fuel, 2007, 86(12-13): 2016-2020.
    [70] Henning Groenzin, Oliver C. Mullins, Semih Eser, et al. Molecular size of asphaltene solubility fractions[J]. Energy & Fuels, 2003, 17(2): 498-503.
    [71] Henning Groenzin, Oliver C. Mullins. Asphaltene molecular size and structure[J]. J. Phys. Chem. A, 1999, 103(50): 11237-11245.
    [72] R. S .Mohamed, C. S. Antonio, R.Watson Loh. Aggregation behavior of two asphaltenicfractions in aromatic solvents[J]. Energy & Fuels, 1999, 13(2): 23-327.
    [73] Yingnian Xu. Characterization of Athabasca asphaltenes by small-angle X-ray scattering[J]. Fuel, 1995, 74(7): 960-964.
    [74] P. Herzog, D. Tchoubar, D. Espinat. Macrostructure of asphaltene dispersions by small-angle X-ray scattering[J]. Fuel, 1998, 67(2): 245-250.
    [75]孟昭富.小角X射线散射理论及应用[M].长春:吉林科技出版社, 1996, 188.
    [76] David A. Storm. Macrostructure of asphaltenes in vacuum residue by small-angle X-ray scattering[J]. Fuel, 1993, 72(7): 977-981.
    [77] Y. C. Liu, Eric Y. Sheu. Fractal structure of asphaltenes in toluene[J]. Fuel, 1995, 74(9): 1352-1356.
    [78] J. C. Ravey. Asphaltene macrostructure by small angle neutron scattering[J]. Fuel, 1988, 67(11): 1560-1567.
    [79] Overfield R E, Sheu, et al. SANS study of asphaltene aggregation[J]. Fuel Sci. Tech. Int, 1989, 7(5-6): 611-624.
    [80] D. Espinat, D. Fenistein. Effects of temperature and pressure on asphaltenes agglomeration in toluene. a light, X-ray, and Neutron scattering investigation[J]. Energy & Fuels, 2004, 18(5): 1243-1249.
    [81] Socrates Acevedo, Pedro Rodriguez, Henry Labrador. An electron microscopy study of crude oils and maltenes[J]. Energy & Fuels, 2004, 18(6): 1757-1763.
    [82] R.Perez-Hernandez, D.Mendoza-Anaya, G.Mondragon-Galicia, et al. Microstruc-tural study of asphaltene precipitated with methylene chloride and n-hexane[J]. Fuel, 2003, 82(8): 977-982.
    [83] Brain A. Watson, Mark A. Barteau. Imaging of petroleum asphaltenes using scanning tunneling microscopy[J]. Ind.Eng. Chem.Res, 1994, 33(10): 2358 -2363.
    [84] N.Batina, J.C. Manzano-Martinea, S. I. Andersen. AFM Characterization of organic deposits on metal substrates from mexican crude oils[J]. Energy & Fuels, 2003, 17(3): 532-542.
    [85] N.F.Carnahan, J. Louis and R. Anton et al. Properties of resins extracted from boscan crude oil and their effect on the stablity of asphaltenes in boscan and hamaca crude oils[J]. Energy & Fuels, 1999, 13(2): 309-314.
    [86] Fabricio Arteaga-Larios, Eric Y. Shen, Elias Perez. Asphaltene flocculation, precipitation, and liesegang ring[J]. Energy & Fuels, 2004, 18(5): 1324-1328.
    [87]蒲万芳.油田开发过程中的沥青质沉积[J].西南石油学院学报. 1999, 21(4): 38-41.
    [88] R.B. de Boer, Klaas Leerlooyer, M.R.P. Eigner, et al. Screening of crude oils for asphalt precipitation: theory, practice, and the selection of inhibitors[J]. SPE Production & Facilities, 1995, 10(1): 55-61.
    [89] Joel Escobedo, G. Ali Mansoori, U. Illinois. Viscometric determination of the onset of asphaltene flocculation: a novel method[J]. SPE Production & Facilities, 1995, 10(2): 115-118.
    [90]李美霞,刘晨光,梁文杰.用粘度法研究石油中沥青质沉积的起始点[J].石油大学学报(自然科学版), 1997, 21(5): 75-78.
    [91] Denis Fenistein, Loic Barre, Daniel Broseta, et al. Viscosimetric and neutron scattering study of asphaltene aggregates in mixed toluene/heptane solvents[J]. Langmuir, 1998, 14(5): 1013-1020.
    [92] Macmillan D.J, et al. A Unified approach to asphaltene precipitation[M]. Laboratory Measurement and Modeling, SPE 28990, 1995, 471-480.
    [93]杨照,林雄森.沥青质沉积点的测定与模型化计算[J].石油学报, 1995, 20(3): 91-95.
    [94] Simon Ivar Andersen. Flocculation onset titration of petroleum asphaltenes[J]. Energ y & Fuels, 1999, 13(2): 315-322.
    [95] J. Bartholdy, I.Andersen. Changes in asphaltene stability during hydrotreating[J]. Energy & Fuels, 2000, 14(1): 52-55.
    [96] Buckley J S. Predicting the onset of asphaltene precipitation from refractive index measurements[J]. Energy & Fuels, 1999, 13(2): 328-332.
    [97] P. Fotland, H. Anfindsen, F. H. Fadnes. Detection of asphaltenes precipitation and amountsprecipitated by measurement of electrical conductivity[J]. Fluid Phase Equilibria, 1993, 82(3): 157-164.
    [98] P. Fotland, H.Anfindsen. Electrical conductivity of asphaltenes in organic solvents[J]. Fuel Sci Technol Int, 1996, 14(1-2): 101-115.
    [99] P. Fotland. Precipitaton of asphaltene at high pressures-experimental technigue and results[J]. Fuel Sci Technol Int, 1996, 14(1-2): 13-325.
    [100]张龙力,杨国华,孙在春,等.质量分数电导率法研究中东常压渣油中的沥青质聚沉[J].石油学报(石油加工), 2002, 18(6): 56-60.
    [101]张龙力,杨国华,孙在春,等.质量分数电导率法研究几种不同渣油的胶体稳定性[J].燃料化学学报, 2003, 31(2): 115-118.
    [102] F. P. Mikins, A. T. Pauli and L. C. Michon et al. NMR imaging studies of asphaltene in precipitation in asphalts[J]. Fuel, 1998, 77(5): 399-405.
    [103] Alexandre Prunelet, Marc Fleury. Detection of asphaltene flocculation using NMR relaxometry[J]. C.R.Chimie, 2004, 7(3-4): 283-289.
    [104] O. Kyeongseok, S. C. Oblad and F. V.Hanson, et al. Examination of asphaltenes precipitation and self-aggregation[J]. Energy & Fuels, 2003, 17(2): 508-509.
    [105]张会成,邓文安,阙国和.胜利渣油在供氢剂和溶剂下的热裂化特性[J].石油学报, 1997, 13(2): 17-22.
    [106] L. Loeber, G. Muller, J. Morel. Bitumen in colloid science:a chemical, structural and rheological approach[J]. Fuel, 1998, 77(13): 1443-1450.
    [107] Leon O, Rogel E, Urbina A, et al. Study of the adsorption of alkyl benzene-derived amphiphiles on asphaltene particles[J]. Langmuir, 1999, 15(22): 7653-7657.
    [108]樊西惊.石油胶态分散体的稳定性[J].油田化学, 1999, 16(1): 72-76.
    [109] J. Anne Koots, James G. Speight. Relation of petroleum resins to asphaltenes[J]. Fuel, 1975, 54(3): 179-184
    [110] Fernando Alvarez-Ramirez, Edgar Ramirez-Jaramillo, et al. Calculation of the interaction potential curve between asphaltene-asphaltene, asphalten-resin, and resin-resin systems using density functional theory[J]. Energy & Fuels, 2006, 20(1): 195-204.
    [111] A.I.Victorov, N. A. Smirnova. Description of asphaltene polydispersity and precipitation by means of thermodynamic model of self-assembly[J]. Fluid Phase Equilibria, 1999, 158-160: 471-480.
    [112] Juan Murgich, JoséA. Abanero Otto, P. Strausz. Molecular recognition in aggregates formed by asphaltene and resin molecules from the athabasca oil sand[J]. Energy & Fuels, 1999, 13(2): 278-286.
    [113] Juan Murgich, Jess Rodriguez M, Yosslen Aray. Molecular recognition and molecular mechianics of micelles of some model asphaltene and resins[J]. Energy & Fuels, 1996, 10(1): 68-76.
    [114] Pereira J.C, LopezI, Salas R. Resins: the molecules responsible for the stability/instability phenomena of asphaltenes[J]. Energy & Fuels, 2007, 21(3): 1317-1321.
    [115] S. I. Andersen, K. S. Birdi. Aggregation of asphaltenes as determined by calorimetry[J]. J. Colloid and Surface Science, 1991, 142(2): 497-502.
    [116] O.Leon, E.Rogel, J.Espidel, et al. Asphaltenes: structural characterization, self-association, and stability behavior[J]. Energy & Fuels, 2000, 14(1): 6-10.
    [117] J.Ancheyta, G.Centeno, F.Trejo et al. Changes in asphaltene properties during hydrotreating of heavy crudes[J]. Energy & Fuels, 2003, 17(5): 1233-1238.
    [118]张龙力,张世杰,杨国华,等.常压渣油热反应过程中胶体的稳定性[J].石油学报(石油加工), 2003, 19(2): 82-87.
    [119]李传,石斌,李慎伟.渣油悬浮床加氢裂化与热反应过程中胶体稳定性的比较[J].石油炼制与化工, 2005, 36(4): 1-5.
    [120] Thorsten Butz, Hans-Henning Oelert. Application of petroleum asphaltenes in cracking under hydrogen[J]. Fuel, 1995, 74 (11): 1671-1676.
    [121]张会成.钌离子催化氧化法研究沥青质经加氢处理后的变化[J].石油学报(石油加工), 2007, 23(4): 32-38.
    [122] J.Bartholdy, I.Andersen. Changes in asphaltene stability during hydrotreating[J]. Energy & Fuels, 2000, 14(1): 52-55.
    [123] Seki.H, Kumata. Structural Change of petroleum asphaltenes and resins by hydrodemetallization[J]. Energy & Fuels, 2000, 14(5): 980-985.
    [124] Buch. L, Groenzin. H, Andersen. S. I, et al. Molecular size of asphaltene fractions obtained from residuum hydrotreatment[J]. Fuel, 2003, 82(9): 1075 - 1084.
    [125] M.A.Callejas, M. T. Martinez. Hydroprocessing of a maya residue. 1. inreinsic kinetics of asphaltene removal reactions[J]. Energy & Fuels, 2000, 14(6): 1304-1308.
    [126] Patrick F.Clarke, Barry B.Pruden. Asphaltene precipitation: detection using heat transfer analysis, and inhibition using chemical additives[J]. Fuel, 1997, 76(7): 607-614.
    [127]张丽娜,李传,石斌,等.椰子胺对渣油体系粘度和稳定性的影响[J].石油炼制与化工, 2007, 38(5): 49-52.
    [128] Kyeongseok Oh, Terry A.Ring, Milind D.Deo. Asphaltene aggregation in organic solvents[J]. Journal of colloidal and interface Science, 2004, 27(1): 212-219.
    [129]石斌,阙国和.四氢萘与正十二烷二元体系热反应与催化加氢反应机理的研究[J].燃料化学学报, 2002, 30(5): 473-476.
    [130]石斌,丁军委,阙国和.催化剂和供氢剂对渣油模型化合物裂化反应选择性的影响[J].燃料化学学报, 2004, 32(2): 253-256.
    [131]石斌,丁军委,王继乾.催化剂和供氢剂及其前身物对二苯甲烷裂化反应的影响[J].石油大学学报(自然科学版), 2004, 28(2): 108-113.
    [132] Chang, C-L, Fogler, H.S. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles 1. effect of the chemical structure of amphiphiles onasphaltene stabilization[J]. Fuel, 1994, 19(2): 1749-1757.
    [133] Antonio Carlos da S R. Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils[J]. Journal of Petroleum Science and Engeering, 2001, 32(3): 201-216.
    [134] O.Leon, E.Contreras, E.Rogel, et al. The influence of the adsorption of amphiphiles and resins in controlling asphaltene flocculation. Energy & Fuels, 2001, 15(5): 1028-1032.
    [135] Luiz Carlos Rocha Junior, Maira Silva Ferreira, Antonio carlos da Silva Ramos. Inhibition of asphaltene precipitation in Brazilian crude oils using new oil soluble amphiphiles[J]. Journal of Petroleum Science and Engineering, 2006, 51(1-2): 26-36.
    [136]李生华,刘晨光,阙国和.渣油单油热反应体系中第二液相中的形成特性[J].石油化工高等学校学报, 1998, 11(3): 1-4.
    [137] Wilt B, K. Determination of asphaltenes in petroleum crude oils by fourier transform infrared spectroscopy[J]. Energy & Fuels, 1998, 12(6): 1008-1012.
    [138]李锐.减压渣油搀兑沥青的减粘裂化[J].石油炼制与化工, 1997, 28(4): 29-33.
    [139]郭爱军,王宗贤,张会成,等.减压渣油搀炼工业供氢剂缓和热转化的基础研究[J].燃料化学学报, 2007, 35(6): 667-672.
    [140]刘晓欣,催化裂化-延迟焦化组合工艺[J].石油炼制与化工, 1998, 29(11): 28-33.
    [141]石亚华,牛传峰,高永灿,等.渣油加氢技术的研究:Ⅱ渣油加氢与催化裂化双向组合技术(RICP)的开发[J].石油炼制与化工, 2005, 36(11): 24-27.
    [142]张龙力,杨国华,阙国和,等.大港常压渣油各组分平均偶极矩的研究[J].燃料化学学报, 2007, 35(3):289-292.
    [143] E. Rogel, O. León, E. Contreras, et al. Assessment of asphaltene stability in crude oils using conventional techniques[J]. Energy Fuels, 2003, 17(6): 1583 -1590
    [144]张会成,颜涌杰,齐邦峰,等.渣油加氢处理对渣油胶体稳定性的影响[J].石油与天然气化工, 2007, 36(3): 197-292.
    [145]李生华,刘晨光,阙国和,等.减压渣油的胶体结构及其形成[J].石油大学学报(自然科学版), 1997, 21(6): 71-76.
    [146]王延飞,程健,贾生盛等.催化裂化油浆对渣油的改性机理[J].化工学报, 2001, 52(9): 838-841.
    [147]苏铁军,郑延成.稠油族组成与粘度关联研究[J].长江大学学报(自然科学版)理工卷, 2003, 4(1): 61-62.
    [148]梁文杰.重质油化学[M].山东东营:石油大学出版社, 2000, 51-80.
    [149]邓文安,王继乾,刘东等.轮古常渣悬浮床加氢裂化反应产物中Ni和V的分布与存在形态.石油学报(石油加工), 2007, 23(2): 57-61.
    [150]杨朝合,郑海.渣油加氢裂化反应特性及反应机理初探[J].燃料化学学报, 1999, 27(2): 97-101.
    [151]陈士锋,翁惠新,杨朝合.渣油馏分在加氢催化剂上的吸附特性[J].华东理工大学学报, 2002, 28(6): 584-587.
    [152] Koichi Matsushita, Andre Hauser, Abdulazem Marafi et al. Initial coke deposition on hydrotreating catalyst.Part 1.Changes in coke properties as a function of time on stream. Fuel,2004, 83(7-8): 1031-1038.
    [153] R.B.Solari. Asphaltenes and asphalts[M] vol.2, Elsevier Science B. V. , New York, 2000, 149.
    [154] A.Izquierdo, L.Carbognani, V.Le n, et al. Characterzation of venezuelan heavy oil vacuum residua[J]. Petroleum Science and Technology, 1989, 7(3): 561.
    [155] Baltus, R. E. Anderson, J.L.Hindered. Diffusion of asphaltenes through microporous membranes[J]. Chem. Eng.Sci. , 1983, 38(12): 1959-1969.
    [156]张磊,沐宝泉,邓文安,等.大港常压渣油悬浮床加氢裂化反应[J].石油化工高等学校学报, 2007, 20(1): 52-55.
    [157]徐春明,杨朝合.石油炼制工程[M].第4版,北京:石油工业出版社, 2009, 276.
    [158] J.Ancheyta, G.Centeno, F.Trejo et al. Changes in asphaltene properties during hydrotreating of heavy crudes[J]. Energy & Fuels, 2003, 17(5), 1233-1238.
    [159] D.A.Storm, R.J.Barresi, E.Y.Sheu et al. Microphase behavior of asphaltic micelles during catalytic and thermal upgrading [J]. Energy & Fuels, 1998, 12(1): 120-128.
    [160]邓文安,阙国和.胜利减压渣油组分热反应特性的研究[J].石油大学学报(自然科学版), 1997, 21(6): 68-70.
    [161] Longli Zhang, Guohua Yang, Guohe Que et al. Colloidal stability variation of Petroleum during thermal reaction[J]. Energy & Fuels, 2006, 20(5): 2008-2012.
    [162] Seki.H,Kumata,F. Structural change of petroleum asphaltenes and resins by hydrodemetallization[J]. Energy & Fuels. 2000, 14(5): 980-985.
    [163] P. Redelius. Bitumen solubility model using hansen solubility parameter[J]. Energy & Fuels, 2004, 18(4): 1087-1092.
    [164] E.Buenrostro-Gonzalez, S.I.Andersen, et al. Solubility/Molecular structure relationshipsof asphaltenes in polar and nonpolar media. Energy & Fuels, 2002, 16(3): 732-741.
    [165] Krevelen V.D.W. Chemical structure and properties of coalⅩⅩⅧ-coal constitution and solvent extraction[J]. Fuel, 1965, 44(3): 229-241.
    [166]刘统华,许志明,孙学文等.克拉玛依减渣热转化前后的溶解度参数研究[J].燃料化学学报, 2005, 33(3): 283-288.
    [167] Weihe I. A. Two dimensional solubility parameter mapping of heavy oils[J]. Fuel Sci Technol Int, 1996, 14(1-2): 289-312.
    [168]梁晓霏,赵锁奇.渣油超临界萃取馏分溶解度参数的测定新方法[J].石油学报(石油加工), 2002, 18(5): 86-91.
    [169] D.Fenistein, L.Barre. Experimental measurement of the mass distribution of petroleum asphaltene aggregates using ultracentrifugation and small-angle X-ray scattering[J]. Fuel, 2001, 80(2): 283-287.
    [170] Sheu E.Y and Acevedo S. Effect of pressure and temperature on colloidal structure of furrial crude oil[J]. Enery & Fuels, 2001, 15(3): 702-707.
    [171]李传,崔敏,石斌,阙国和.表面活性剂对渣油胶体性质影响的初步研究[J].石油学报(石油加工). 2007, 23(6): 44-50.
    [172]张龙力,杨国华,阙国和.中东常压渣油热反应样品Zeta电位的研究[J].燃料化学学报, 2005, 33(1): 125-128.
    [173]孟昭富.小角X射线散射理论及应用[M].长春:吉林科技出版社, 1996, 1.
    [174]董声雄,张金,洪俊明.小角X射线散射法测定超滤膜孔径[J].福州大学学报(自然科学版), 1997, 25(3): 112-115.
    [175] Ryuzo Tanaka, Eisaku Sato, Jerry E.Hunt et al. Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering[J]. Energy & Fuels, 2004, 18(1): 1118-1125.
    [176] Zhao bei, M. Becerra, J. M. Shaw. On asphaltene and resin association in athabasca bitumen and Maya crude oil[J]. Energy & Fuels, 2009, 23(9): 4431-4437.
    [177] Zhao bei, John M.Shaw. Impact of asphaltene-rich aggregate size on coke deposition on a commercial hydroprocessing catalyst[J]. Energy & Fuels, 2008, 22(2): 1080-1092.
    [178] Zhao bei, John M.Shaw. Composition and size distribution of coherent nanostructures in athabasca bitumen and Maya crude oil[J]. Energy & Fuels, 2007, 21(5): 2795-2804.
    [179]牛传峰,戴立顺,李大东.芳香性对渣油加氢反应的影响[J].石油炼制与化工, 2008, 39(6): 1-5
    [180] I.A. Wiehe. A phase-separation kinetic model for coke formation. Ind.Eng. Chem.Res , 1993, 32(1): 2557-2454.
    [181] D.A.Storm, R.J.Barresi, E.Y.Sheu et al. Microphase behavior of asphaltic micelles during catalytic and thermal upgrading[J]. Energy & Fuels, 1998, 12(1): 120-128.
    [182] D.A.Storm, E.Y.Sheu. Characterization of colloidal asphaltenic particles in heavy oil[J]. Fuel, 1995, 74(8): 1140-1145.
    [183]张龙力.渣油胶体稳定性的研究[D].石油大学(华东)博士论文, 2003.
    [184]张会成,颜涌捷,孙万付,等.渣油亚组分及其形成的胶粒颗粒尺寸的研究[J].石油学报(石油加工), 2006, 22(6): 92-97.
    [185] Riazia MR, Al-Otaibib GN. Estimation of viscosity of liquid hydrocarbon system[J]. Fuel, 2001, 80(1): 27-32.
    [186] Wakabayashi T. Viscosity correlation with specific gravity and molecular weight of crude oil fraction[J]. Fuel, 1997, 76(11): 1049-1056.
    [187]周永昌,蒋涛.用性质关联法估算重油馏分粘度[J].安徽工业大学学报, 2006, 23(1): 37-40.
    [188]邓云丽,肖红飞,肖秋国.磁场作用下乳化重油粘度变化的实验研究[J].燃料科学与技术, 2002, 8(6): 557-560.
    [189]阙国和.石油组成与转化化学[M].山东东营:中国石油大学出版社,2008, 574-586.
    [190]徐春明,杨朝合.石油炼制工程[M].山东东营:石油工业出版社, 2009, 71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700