含杂萘联苯结构共聚酰亚胺合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳香型聚酰亚胺具有优异的耐热性能、优良的机械性能、高阻燃性以及良好的电学性能,因此已广泛应用于微电子领域。其中,以聚酰亚胺为绝缘膜的无粘结剂型柔性覆铜板(FCCL)具有优良的综合性能和超薄、可挠曲性,作为柔性印制电路板基材已广泛应用于小型电子信息产品。但是传统的聚酰亚胺绝缘膜存在固化温度高、加工难度大、与铜箔粘结性能差等缺陷,因此研制综合性能优异的聚酰亚胺对FCCL的发展具有非常重要的意义。
     本文从分子结构设计出发,将扭曲、非共平面结构的杂萘联苯结构引入到聚酰亚胺分子主链中,通过溶液缩聚法合成了系列可溶性聚酰亚胺共聚物,并且系统研究了聚酰亚胺共聚物的不同分子链结构对其耐热性能、溶解性能、介电性能、尺寸稳定性、力学性能等的影响规律。
     首先以含杂萘联苯结构的二胺(DHPZDA)和双酚A型二醚二酐(BPADA)通过一步溶液缩聚法合成了杂萘联苯结构可溶性聚酰亚胺。研究了反应溶剂、温度、时间、单体摩尔比以及固含量等反应条件对聚合物分子量的影响。得到最优反应条件是:以环丁砜为溶剂,反应体系的固含量为20%,BPADA与DHPZDA的摩尔比为1.01:1,在室温反应2h后升温至210℃反应时间为16h止。在25℃下,以NMP为溶剂采用乌氏特性粘度计法测得的聚合物特性粘度达到1.12 dL/g。其玻璃化转变温度为262℃,氮气氛围下5%的热失重温度为486℃,可溶解于NMP、DMAc等有机极性非质子溶剂中。其薄膜拉伸强度为67.8 MPa,弹性模量为1.3 GPa,断裂伸长率为18%。
     为了研究聚合物分子链刚性和柔性对聚酰亚胺综合性能的影响,设计合成了两个体系的可溶性聚酰亚胺,即采用以DHPZDA、二氨基二苯醚(ODA)与二苯酮四酸二酐(BTDA)、BPADA四元共聚合成的PIA系列,和以DHPZDA、ODA与二苯醚四酸二酐(ODPA)、BPADA共聚合成的PIB系列。所合成的两个系列聚合物均可在室温下溶解于NMP、DMAc等有机极性非质子溶剂中,且均有良好的耐热性(PIA系列Tgs:252~272℃,T5%:489~510℃;PIB系列Tgs:248~267℃,T5%:485~516℃),PIA系列中随着酮基的含量增大,其玻璃化转变温度略高于含醚键多的PIB系列。PIA系列共聚物的吸水率在0.90%~0.99%;PIB系列共聚物的吸水率在0.81%~0.88%。PIA薄膜的力学性能略低于PIB系列,例如,PIA11的拉伸强度为79.6 MPa,弹性模量为1.5 GPa,断裂伸长率为26%;PIB11的拉伸强度为82.8 MPa,弹性模量为1.7GPa,断裂伸长率为28%。在100kHz下测得PIA系列的介电常数(2.6~3.3)略高于PIB系列的介电常数(2.5~3.1)。
     为了得到具有较低介电常数的聚酰亚胺,设计以BTDA和六氟二酐(6FDA)与DHPZDA和ODA为共聚单体,合成了新型含氟的聚酰亚胺共聚物PIC系列,以及以ODPA和6FDA与DHPZDA和ODA为共聚单体合成的PID系列。所合成的聚合物可溶解于NMP、DMAc等有机极性非质子溶剂中,且具有良好的耐热性(PIC系列Tgs:248~262℃,T5%:504~513℃;PID系列Tgs:243~257℃,T5%:496~505℃)。该类聚合物薄膜具有优异的力学性能(PIC系列聚合物的力拉伸强度在77.2~83.2 MPa,弹性模量在1.5~1.7 GPa,断裂伸长率在25~28%,PID系列聚合物的力拉伸强度在81.0~85.9 MPa,弹性模量在1.7~1.8 GPa,断裂伸长率在28~34%)、低的介电常数(PIC系列2.2~3.1;PID系列2.1~2.9)、较低的吸水率(PIC系列0.62%~0.88%;PID系列0.59%~0.84%)。PIC和PID两个系列共聚酰亚胺的介电常数均低于不含氟的PIA和PIB系列的介电常数,且分子链中含柔性醚键多的PID系列表现出最低的介电常数。
     以咔唑为原料,经偶联反应、亲核取代反应和还原反应得到含咔唑结构的新型二胺单体(BCZDA),并通过1H-NMR、FT-IR、MS等分析手段对其结构进行了表征和确认。研究了BCZDA的合成工艺。采用Pd/C作催化剂,反应温度在90℃左右、反应时间6h、钯/炭用量为10g/mol时目标产物收率最高。用DHPZDA、BTDA与BCZDA及BPADA进行共聚,采用溶液缩聚法合成了一系列聚酰亚胺。对其结构进行了表征,测试了其分子量及其分子量分布,其数均分子量在10,500~27,600,分子量分布在2.29~5.18。与上述四种系列共聚酰亚胺相比,由于刚性咔唑结构的引入,使所合成的聚合物表现出优异的耐热性(Tgs:295~305℃,T5%:505~526℃),且可溶解于间甲酚、NMP、DMAc等有机极性非质子溶剂中。但是其薄膜的介电常数(3.1~3.3)和吸水率(0.92%~1.06%)略高于上述四个系列聚合物,其拉伸强度在69.5~79.3 MPa,弹性模量在1.2~1.5 GPa,断裂伸长率在16%~22%。
     选用5种上述有代表性的含杂萘联苯结构的聚酰亚胺探讨其在FCCL领域的应用潜力。采用涂布法直接将聚酰亚胺溶液涂覆于铜箔上制备无粘结剂型的柔性覆铜板,测试了聚酰亚胺薄膜的随着温度变化的尺寸稳定性及柔性覆铜板的耐锡焊性、与铜箔的粘附性等。结果表明,上述系列的共聚酰亚胺具有优异的综合性能,其热膨胀系数(25×10-6~34×10-6/℃)、剥离强度(1.66~3.08kN/m)均优于聚酰亚胺柔性覆铜板国家标准(GB13555-92),满足柔性覆铜板上耐锡焊性能要求,是一类很有发展潜力的FCCL用绝缘膜。
It is well known that conventional polyimides are useful high performancematerials for their excellent comprehensive properties such as outstanding thermal stability, high flame retardance good mechanical properties and electronic properties. As a result, they have been widely used in the microelectronics as films, especially in flexible copper clad laminates (FCCLs) for flexible printed circuit board. However, the widespread applications of polyimides are generally limited by processing difficulties because of their poor solubility and high processing temperature, which are caused by their strong interchain forces, inherent macromolecular rigidity, or semicrystallinity. As a result, the development of soluble polyimides in imidized form without influence of their own excellent properties has attracted major interest.
     In this work, our efforts had been focused on synthesis of polyimides by introduction of twisted, noncoplanar phthalazinone moieties into the polymer backbone via one-pot imidization technique in the solution. The effect of molecular chain structure of polyimides on the properties of the polymers, such as thermal properties, solubility and dielectric constant was investigated systematically.
     In this thesis, the polyimides containing phthalazinone moieties were prepared from 1,2-Dihydro-2-(4-aminophenyl)-4-[4-(4-(aminophenoxyl)phenyl)](2H)phthalazin-1-one (DHPZDA) and 2,2-bis [4-(3,4dicarboxyphenoxy) phenyl] propane dianhydride (BPADA) by one-pot imidization technique in the solution firstly. The synthesis process was optimized with respect to reaction solvents, solid content, time, temperature, and molar ratio of the monomers. The best process was as follows:the polymerization was conducted at room time for 2 h and at 210℃for another 16 h in sulfolane, and the content was 20% and molar ratio of the monomers was 1.01. The inherent viscosity of this polymer could reach 1.12 dL/g in NMP at 25℃. The polyimide showed amorphous nature as determined by wide angle X-ray diffraction (WAXD) and was soluble in a variety of aprotic polar solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), chloroform etc. The polyimide exhibited good thermal properties with glass transition temperature (Tg) of 262℃and 5% loss temperature (T5%) of 486℃in nitrogen atmosphere. The polyimide film was subjected to tensile tests. And the tensile strength, elongation to break, and tensile modulus was 76.8 MPa,18%and 1.3 GPa, respectively.
     In order to analysis the effect of polymer chain flexibilty on the comprehensive performance of polyimides, two series of copolyimides were designed and synthesized by two diamines, DHPZDA and 4,4'-diaminodiphenyl ether (ODA), with two dianhydrides 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and BPADA, or by DHPZDA ODA, and 4,4'-oxydiphthalic anhydride (ODPA) and BPADA, respectively. The copolyimides were named as series of PIA and series of PIB, respectively. The obtained polymers exhibited excellent thermal stabilities (series of PIA:Tgs:252~272℃, T5%:489~510℃;series of PIB:Tgs:248~267℃, T5%:485~516℃), good solubility in polar organic solvents. The Tg values of the series PIA were higher than the series PIB with the same ratio. The copolyimides exhibited good electrical properties with surface and volume resistances on the order of magnitude of 1015Ωand 1015Ω·m, respectively. The polymer thin films exhibited good mechanical properties (PIA11:the tensile strength:79.6 MPa, tensile modulus:1.5 GPa, elongation to break:26%; PIB11:the tensile strength:82.8 MPa, the tensile strength:1.7 GPa, the tensile strength:28%), low dielectric constant (series of PIA:2.6~3.3; series of PIB: 2.5~3.1), and low water absorption (series of PIA:0.90%~0.99%; series of PIB:0.81%~0.88%), indicating that the copolyimides series of PIB exhibited better performance in mechanical properties, dielectric constant and water absorption than series of PIA.
     In order to further reduced the dielectric constant, two series of novel fluorinated copolyimides containing phthalazinone moieties were prepared with BTDA, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), DHPZDA and ODA, or ODPA, 6FDA, DHPZDA and ODA as reactive monomers, respectively. The copolyimides were named as series of PIA and series of PIB, respectively. The obtained polymers exhibited excellent thermal stabilities (series of PIC:Tgs:248~262℃,T5%:504~513℃; series of PID:Tgs:243~257℃, T5%:496~505℃) and good solubility in polar organic solvents. The copolyimides exhibited good electrical properties with surface and volume resistances on the order of magnitude of 1015Ωand 1015Ω·m, respectively. The obtained polyimides films exhibited good mechanical properties (series of PIC:tensile strength:69.5~79.3 MPa, elongation to break:16%~23%, tensile modulus:1.5~1.7 GPa; series of PIC:tensile strength:81.0~85.9 MPa, elongation to break:28~34%, tensile modulus:1.7~1.8 GPa GPa), low dielectric constant (series of PIC:2.2~3.1; series of PID:2.1~2.9) and low water absorption (series of PIC:0.62%~0.88%; series of PID:0.59%~0.84%).
     From the molecular design, a novel kind of diamine containing bicarbazole structure was synthesized and then reacted with some dianhydrides to prepare a series of soluble polyimides. Herein, the synthesis methods of diamine monomer containing carbazole moieties were studied, and the reduction process was optimized. The carbazole-based dinitro compound has been synthesized in high yield (>92%). Catalytic reduction was used to reduce the dinitro compound, which employed the Pd/C and as catalyst, with the hydrazine hydrate (80%) as reductant. The effect of reaction temperature, the amount of catalyst and solvent of the reaction were investigated in order to increase the production yield. The results showed that the Pd/C was a reasonable catalyst for the synthesis of diamine containing carbazole moieties, when the reduction was conduct after 6 hours at 90℃with Pd/C of lOg/mol, the yield of bis(N-4-amine-phenyl)-3,3'-bicarbazole (BCZDA) could reach more than 71%. The results of IR, NMR, MS showed it had the same structure as designed. A series of copolyimides were synthesized from BCZDA, BPADA, DHPZDA and BTDA. The structures of the polyimides were confirmed by IR and'H-NMR. The molecular weight and distributing of the copolymers obtained were tested by GPC. The thermal behavior data were obtained by DSC and TGA. The results showed all of the polyimides have excellent thermal stability (Tgs: 295~305℃,T5%:505~526℃) and could be soluble in some polar organic solvents such as NMP and DMAc etc. The obtained polyimides films had tensile strength, elongation to break, and tensile modulus in the ranges of 69.5-79.3 MPa,16%~23% and 1.2~1.5 GPa, respectively. Dielectric constant values of the polyimide films were in the range of 3.1~3.3.
     The flexible copper clad laminates were prepared by coating method with the polyimide solutions cast on the copper foil laminate directly. The obtained FCCL with good appearance surface and uniform dimension exhibited better comprehensive properties (dielectric constant: 2.3~3.1, water absorption:0.76%~0.94%, coefficient of thermal expansion:25×10-6~34×10-6/℃, peel strength:1.66~3.08 kN/m) than national standard GB13555-92.
引文
[1]GHOSH M K, MLTTAL K L, editors. Polyimides:Fundamentals and Appliations[M]. New York: Mareel Dekker,1996.
    [2]丁孟贤,聚酰亚胺一化学、结构与性能的关系及材料[M].北京:科学出版社,2006.
    [3]杨士勇.聚酰亚胺材料在微电子工业中的应用[J].半导体情报,1998,35(2):51-54.
    [4]EDWARDS W M, ROBINSON I M. Polyimides of pyromellitic acid[P]. US,2710853.1955-06-14.
    [5]ENDREY A L. Process for Preparing Polyimides by Treating Polyamide-Acids with Lower Fatty Monocarboxylic Acid Anhydrides[P]. US,3179630.1965-04-20.
    [6]ANGELO R J, DEL W. Polyamides and Polyimides from Diamines Containing Alkoxy Phenol Group[P].US,3420795.1969-06-07.
    [7]宋晓峰.聚酰亚胺的研究与进展[J].纤维复合材料,2007,(3):33-37.
    [8]TUMMALA R R, RYMASZEWSTRI E J,KLOPFENSTEIN A G. Microelectronics Packaging Handbook [M].New York:Van Nostrand-Reinhold,1989.
    [9]FURUKAWA N, YUASA M, OMORI F, et al. Adhesive Properties of Siloxane Modified Polyimides and Application for Multi-Layer Printed Circuit Boards[J]. The Journal of Adhesion, 1996,59(1):281-294.
    [10]KONDOH E. Material Characterization of Cu(Ti) Poly imide Thin Film Stacks [J]. Thin Solid Films,2000,359(2):255-260.
    [11]蔡积庆.无粘结剂聚酰亚胺覆铜板[J].印制电路信息,2001,(12):55-58.
    [12]严小雄,王金龙,李小兰.聚酰亚胺覆铜板[J].印制电路信息,2003,(12):33-35.
    [13]HARIHARAN R, BHUVANA S, MALBI M A, et al. Synthesis and Characterization of Polyimides Containing Pyridine Moiety[J]. Journal of Applied Polymer Science,2004,93(4): 1846-1853.
    [14]严辉,范和平.全对位二胺的合成及其聚酰亚胺的应用研究[J].绝缘材料,2006,39(6):3-6.
    [15]JANG W B, SEO M B, SEO J C, et al. Correlation of Residual Stress and Adhesion on Copper by the Effect of Chemical Structure of Polyimides for Copper-Clad Laminates [J]. Polymer International,2008,57 (2):350-358.
    [16]ISHII J, AKAMATSU T. Organo-Soluble Low CTE Polyimides and Their Applications to Photosensitive Cover Layer Materials in Flexible Printed Circuit Boards[J]. High Performance Polymers,2009,21(2):123-138.
    [17]石玉界,范和平,刘莎莎.二层法双面挠性覆铜板用热塑性聚酰亚胺的合成与应用研究[J].化学与黏合,2009,31(2):5-8.
    [18]辜信实.挠性覆铜板技术发展[J].印制电路信息,2007,(9):7-9.
    [19]黄杰堂.一种用于生产软性印刷电路板基板的粘合剂及其制备方法.CN,1405259,2003-03-26.
    [20]MAEZAWA H. Flame retardant Adhesive Composition Flexible Copper-Clad Laminate, Cover Lay and Adhesive Film[P].JP,2001019930,2001-01-23.
    [21]王劲,唐屹,曾晓丹,等.挠性印刷电路基板用三层复合聚酰亚胺膜的制备及性能研究[J].绝缘材料,2005,(1):4-8.
    [22]祝大同.对PCB基板材料重大发明案例经纬和思路的浅析(3)-涂布法二层型挠性覆铜板的技术进步[J].印制电路信息,2007,(3):13-19.
    [23]TOKUHISA K, TOKUMITSU A, KANEKO K. Adhesive Polyimide Resin and Adhesive Laminate[P]. US,2003012882A1,2003-01-16.
    [24]ONO K, FUJIHARA K, AKAHORI K. Wiring Board, Process for Producing the Sane, Polyimide Film for Use in the Wiring Board, and Etchant for Use in the Process[P]. US, 2004094512A1,2004-05-20.
    [25]刘瑞鹏,李刘合.磁控溅射镀膜技术简述[J].中国青年科技,2006,(8):56-59.
    [26]KUNIMOTO A, TAKABAYASHI S, MATSUI Y, et al. Adhesive Polyimide Film[P].JP,61264023. 1986-11-21.
    [27]MATSURA S, SUGAWARA T. MIYADERA Y, et al. Method of Producing Substrate for Flexible Printed Circuit Board[P]. JP,60210894.1985-10-23.
    [28]TAKABAYASHI S, MII K, YANO K. Process for Preparing Metallized Polyimide Film[P]. US,5130192.1992-07-14.
    [29]IMAI M, NODA K, NAKAJIMA T, Manufacture of Polyimide-Metallic Foil Composite Film[P]. JP,61111181.1986-05-29.
    [30]杨正华,张春华,王彤,等.聚醚酰亚胺柔性印刷线路基材的制备方法[P].CN.1410471.2003-4-16.
    [31]张秀娟.聚酰亚胺胶粘剂的改性[J].化学与粘合,1991,(2):104-109.
    [32]张龙庆.聚酰亚胺粘合剂[J].化学与粘合,1993,(4):39-51.
    [33]LU S X, CEBE P, CAPEL M. Thermal Stability and Thermal Expansion Studies of PEEK and Related Polyimides[Q]. Polymer,1996,37(14):2999-3009.
    [34]OOTA M, KAWASHIMA S, SONOBE Y, et al. Manufacture of Flexible Copper Lined Circuit Substrate[P]. JP,61182941.1986-08-15.
    [35]MORITA M, MIYAZAKI K, YAMAGUCHI T, et al. Production of Flexible Printed Circuit Board[P]. JP,62104840.1987-05-15.
    [36]KANAKARAJAN K, KREUZ J A. Flexible Multi-Layer Polyimide Laminates and Preparation Thereof[P]. US,5298331.1994-03-29.
    [37]张龙庆.新醚酮聚酰亚胺[J].高分子学报,1997(2):147-151.
    [38]KODAMA Y, MORI M Kodama Y. Metallic Laminate with Outstanding Low Temperature Adhesive Properties and Soldering Heat Resistance[P]. JP,2003170528.2003-06-17.
    [39]KOBAYASHI M, MORI M, KODAMA Y. Bonding Base Material with Heat Sink for Fixing Lead Frame[P]. JP,2003332510.2003-11-21.
    [40]MATSUURA S, MIYADERA Y, KATO T. Thermosetting Adhesive Film[P].JP,62235383. 1987-10-15.
    [41]OKAMOTO Y, FURUTANI H, DANNO K, et al. Thermoplastic Polyimide Polymer[P]. US, 5621068.1997-04-15.
    [42]TSUJI H, FURUTANI H, TANAKA K, et al. Polyimide Resin and Resin Composition, Adhesive Solution, Film-State Joining Component, and Adhesive Laminate Film Improved in Moisture Resistance Using It, And Production Methods Therefor[P]. US,2003045669A1. 2003-03-06.
    [43]SHIMO-OHSAKO K, ITOH T, NISHINAKA M, et al. Resin Composition[P].US,2004176526A1. 2004-09-09.
    [44]SHIMOOOSAKO K, TANAKA S, ITO T, et al. Thermoplastic Polyimide Resin, Resin Composition, Electrical Insulation Adhesive Sheet and Printed Wiring Board[P]. JP,2004155911. 2004-06-03.
    [45]NAKAMURA M, ISHIZUKA T, FUJITA K. Substrate for Polyimide Circuit[P]. JP,61106235. 1986-05-24.
    [46]OOTA T, YAMAMURO T, TAKAMIYA N, et al. Laminated Polyimide Films[P]. JP,63067145. 1988-03-25.
    [47]MIYADERA Y, YOSHIDA M, KOARAI S. Method of Producing Substrate for Flexible Printed Circuit Board[P]. JP,58157190.1983-09-19.
    [48]TOCHIMOTO T, NAKAO T. Polyimide Adhesive[P]. JP,4046983.1992-02-17.
    [49]ITO Y, NOJIRI H, NAGANO K. Flexible Printed Board and Its Manufacture[P]. JP, 4188792.1992-07-07.
    [50]IMAI M, NODA K. Manufacture of Polyimide-MMetallic Foil Composite Film[P].JP, 61111182.1986-05-29.
    [51]INOUE H, MURAMATSU T, HIRANO T. Heat-Resistant Imide Adhesive[P]. JP,4023879. 1992-01-28.
    [52]OGUNI M, YOKURA M, YOSHIMURA T. Heat-Resistant Resin Film with Metal Layer and Wiring Board, and Method for Manufacturing Them[P]. US,2003170431A1.2003-09-11.
    [53]KODAMA Y, MORI M. Resin Composition[P]. JP,2003321608.2003-11-14.
    [54]TSUJI H, KIKUCHI T, FURUYA H. Adhesive Film[P]. JP,2003027014.2003-01-29.
    [55]KANAKARAJAN K. Low Temperature Polyimide Adhesive Composition and Methods Relating Thereto[P]. US,2004099374A1.2004-05-27.
    [56]李友清,刘丽,刘润山.聚酰亚胺研究[J].精细石油化工进展,2003,4(3):38-43.
    [57]OLABISI 0, editor. Handbook of Thermoplastics[M]. New York:Marcel Dekker,1997.
    [58]MITTAL KL. Polyimides, Synthesis, Characterization and Applications[M]. New York: Halsted Press,1984.
    [59]HSIAO S H, LI C T. Synthesis and Characterization of New Adamantane-Based Polyimides[J].Macromolecules,1998,31(21):7213-7217.
    [60]AYALA D, LOZANO A E, DE ABAJO J, et al. Novel Polyimides with p-Nitrophenyl Pendant Groups Synthesis and Characterization[J]. Journal of Polymer Science Part A:Polymer Chemistry,1999,37(46):3377-3384.
    [61]YANG C P, HSIAO S H, YANG H W. Organosoluble Optically Transparent Poly (ether imide)s Based on a Tert-Butylhydroquinone Bis (Ether Anhydride) [J]. Macromolecular Chemistry and Physics,2000,201(4):409-418.
    [62]CHOI K H, LEE K H, JUNG J C. Synthesis of New Poly (Amide Imide)s with (n-Alkyloxy)Phenyloxy Side Branches[J]. Journal of Polymer Science Part A:Polymer Chemistry,2001,39(21):3818-3825.
    [63]BANERJEE S, MADHRA M K, SALUNKE A K, et al. Synthesis and Properties of Fluorinated Polyimides.3. Derived From Novel 1,3-Bis [3'-Trifluoromethyl-4'(4"-Amino Benzoxy) benzyl] Benzene and 4,4-Bis[3'-trifluoromethyl-4'(4-Amino Benzoxy) Benzyl] BBiphenyl[J]. Polymer,2003,44(3):613-622.
    [64]KIM H S, KIM Y H, AHN S K. Synthesis and Characterization of Highly Soluble and Oxygen Permeable New Polyimides Bearing a Noncoplanar Twisted Biphenyl Unit Containing Tert-butylphenyl or Trimethylsilyl Phenyl Groups[J]. Macromolecules,2003,36(7): 2327-2332.
    [65]LIAW D J, CHANG F C, LEUNG M K, et al. High Thermal Stability and Rigid Rod of Novel Organosoluble Polyimides and Polyamides Based on Bulky and Noncoplanar Naphthalene-Biphenyl Diamine[J]. Macromolecules,2005,38(9):4024-4029.
    [66]MEHDIPOUR-ATAEI S, HATAMI M. Synthesis and Characterization of Novel Heat Resistant Poly(Amide Imide)s[J]. European Polymer Journal,2005,41(5):2010-2015.
    [67]XU S G, YANG M J, CAO S K. Synthesis and Optical Properties of Two Series of Soluble Acridine-containing Copolyimides[J]. Polymer,2007,48(8):2241-2249.
    [68]GUNGOR A, SMITH C D, WESCOTT J, et al. Synthesis of Fully Imidized Phosphorous Containing Soluble Polyimides[J]. Polymer Preprints,1991,32(1):172-173.
    [69]XIE K, ZHANG S Y, LIU J G, et al. Synthesis and Characterization of Soluble Fluorine-Containing Polyimides Based on 1,4-Bis(4-Amino-2-Trifluoromethylphenoxy) benzene [J]. Journal of Polymer Science Part A:Polymer Chemistry,2001,39(15):258-2590
    [70]YANG C P, HSIAO S H, WU K L Organosoluble and Light-Colored Fluorinated Polyimides Derived from 2,3-Bis(4-Amino-2-Trifluoromethylphenoxy) naphthalene and Aromatic Dianhydrides[J]. Polymer,2003,44(23):7067-7078.
    [71]LIAW D J, HUANG C C, CHEN W H. Color Lightness and Highly Organosoluble Fluorinated Polyamides, Polyimides and Poly(Amide-Imide)s Based on Noncoplanar 2,2'-Dimethyl-4,4'-Biphenylene Units[J]. Polymer,2006,47(7):2337-2348.
    [72]ZHU Y, ZHAO P, CAI X. Synthesis and Characterization of Novel Fluorinated Polyimides Derived from Bis[4-(4'-Aminophenoxy)phenyl]-3,5-Bis(Trifluoromethyl)Phenyl Phosphine Oxide[J]. Polymer,2007,48(11):3116-3124.
    [73]IOAKIM K S, JOHN A M. Synthesis of Soluble, Blue-Light-Emitting Rigid-Rod Polyamides and Polyimides Prepared from 2,6,3,5-Tetraphenyl or Tetra(4-Biphenylyl)-4,4'-Diamino-p-Quinquephenyl[J]. Macromolecules,1998,31(2):515-521.
    [74]Chen J P, Natansohn A. Synthesis and Characterization of Novel Carbazole-Containing Soluble Polyimides[J]. Macromolecules,1999,32(10):3171-3172.
    [75]BERARD N, HAY A S. Polymers from Hydroxyphenyl Phthalazinones[J]. Polymer Preprint,1993,34(1):148-149.
    [76]蹇锡高,孟跃忠,郑海滨,等.含二氮杂萘酮结构的聚醚砜及制备法[J].CN,1098113,1995-02-01.
    [77]高红昌,方晓雯,张涛,等.1,2-二氢-4-(4-羟基苯基)(2H)二氮杂萘-1-酮的NMR谱研究[J].波谱学杂志,2001,18(4):343-349.
    [78]王锦艳.含杂萘酮结构的新型高性能树脂的研究[D].大连:大连理工大学,2001.
    [79]LIN C, JIAN X G, MAO S Z. Aromatic Polyamides Derived from Unsymmetrical Diamines containing the Phthalazinone Moiety[J]. Journal of Polymer Science Part A:Polymer Chemistry,2002,40(20):3489-3496.
    [80]RHEE S B, PARK J W, MOON B S, et al. Synthesis of Alternating Aromatic Polyimide[J]. Macromolecules,1993,26(2):404-406.
    [81]PARK J W, LEE M, LEE M H, et al. Synthesis and Characterization of Soluble Alternating Aromatic Copolyimides[J]. Macromolecules,1994,27(13):3459-3463.
    [82]SHAW S J. Adhesives in Demanding Applications[J]. Polymer International,1996,41(2): 193-207.
    [83]MANDGAL S, ST. CLAIR T L. Preparation and Properties of Silane-Endcapped Polyimide Adhesives[J]. International Journal of Adhesion & Adhesives,1984,4(3):129-132.
    [84]BELTON D J, JOSHI A. The Effect of y-APS Substrate Modification the Chemical Adhesion of Poly(Amic Acid-Imide) Films[J]. Polymer Science and Technology,1985, (27):187-240.
    [85]YAMAMOTO Y, TAKEUCHI E. Flame Resistant Resin Adhesive and Substrate for Flexible Printed Circuit by Using the Same[P]. JP,11131041.1999-05-18.
    [86]CHEN H L, HO S H, WANG T H, et al. Cur-Free High Adhesion Polyimide/Copper Laminate[J]. Journal of Applied Polymer Science,2003,51(9):1647-1652.
    [87]SAEED M B, ZHAN M S. Adhesive Strength of Partially Imidized Thermoplastic Polyimide Films in Bonded Joints[J]. International Journal of Adhesion & Adhesives,2007,27(1): 9-19.
    [88]范和平.低热膨胀聚酰亚胺与无胶FPC基材[J].印刷电路信息,1997,(5):17-21.
    [89]徐庆玉,范和平,王洛礼.低热膨胀聚酰亚胺研究进展[J].高分子材料科学与工程,2002,18(6):29-32.
    [90]CHUNG H, JANG W B, HWANG J, et al. Analysis of Dimensionally Stable Copolyimide with a Low-Level Residual Stress[J]. Journal of Polymer Science, Part B:Polymer Physics, 2001,39(7):796-810.
    [91]TANG J C, LIN G L, YANG H C, et al. Polyimide-Silica Nanocomposites Exhibiting Low Thermal Expansion Coefficient and Water Absorption from Surface-Modified Silica[J]. Journal of Applied Polymer Science,2007,104(6):4096-4105.
    [92]HASEGAWA M, KOSEKI K. Poly(Ester imide)s Possessing Low Coefficient of Thermal Expansion and Low Water Absorption [J]. High Performance Polymers,2006,18(5):697-717.
    [93]SEO J, HAN H. Water Sorption Behaviour of Polyimide Thin Films with Various Internal Linkages in the Dianhydride Component[J]. Polymer Degradation and Stability,2002, 77(3):477-482.
    [94]HUANG J, CRANFORD R J, MATSUURA T, et al. Water Vapor Sorption and Transport in Dense Polyimide Membranes[J]. Journal of Applied Polymer Science,2003,87(14):2306-2317.
    [95]HASEGAWA M. Novel Ester Group-containing Tetracarboxylic Acid Dianhydride, Novel Polyesterimide Precursor Derived Therefrom, and Polyesterimide[P]. W0,2008091011A1. 2008-07-31.
    [96]PARK S J, BAEK J O, GONG H J, et al. Synthesis of The Low-Hygroscopic Polyimide for 2-Layer Flexible Copper Clad Laminate[J]. Elastomer,2008,43(2):82-87.
    [97]WANG L H, TIAN Y, DING H Y, et al. Microstructure and Properties of Organosoluble Polyimide/Silica Hybrid Films[J]. European Polymer Journal,2006,42(11):2921-2930.
    [98]WANG C S, LEU T. Synthesis and Characterization of Polyimides Containing Naphthalene Pendant Group and Flexible Ether Linkages[J]. Polymer,2000,41(10):3581-3591.
    [99]JIN X Z, ISHII H. A Novel Positive-type Photosensitive Polyimide Based on Soluble Block Copolyimide Showing Low Dielectric Constant with a Low-Temperature Curing Process[J]. Journal of Applied Polymer Science,2006,100(5):4240-4246.
    [100]LEE Y J, HUANG J, KUO S W, et al. Low-Dielectric, Nanoporous Polyimide Films Prepared from PEO-POSS Nanoparticles[J]. Polymer,2005,46(23):10056-10065.
    [101]ROH H G, KIM G H, KIM Y H. Effect of Curing Conditions on the Fabrication of Zn-Oxide Nanoparticles Dispersed in a Polyimide Film [J]. High Performance Polymer,2006,18(5): 739-747.
    [102]YUDIN V E, OTAIGBE J U, GLADCHENKO S, et al. New Polyimide Nanocomposites Based on Silicate Type Nanotubes:Dispersion, Processing and Properties[J]. Polymer,2007, 48(5):1306-1315.
    [103]LI H S, LIU J G, WANG K, et al. Synthesis and Characterization of Novel Fluorinated Polyimides Derived from 4,4'-[2,2,2-Trifluoro-1-(3,5-Ditrifluoro Methylphenyl) Ethylidene] Diphthalic Anhydride and Aromatic Diamines[J]. Polymer,2006,47(4): 1443-1450.
    [104]CHENA Y W, KANG E T. New Approach to Nanocomposites of Polyimides Containing Polyhedral Oligomeric Silsesquioxane for Dielectric Applications[J].Materials Letters,2004,58(29):3716-3719.
    [105]LEU C M, REDDY G M, WEI K H, et al. Synthesis and Dielectric Properties of Polyimide-Chain-End Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites [J].Chemistry of Material,2003,15(11):2261-2265.
    [106]JIANG L Z, LIU J G, WU D Z, et al. Methodology for the Preparation of Nanoporous Polyimide Films with Low Dielectric Constants[J]. Thin Solid Films,2006,510(1-2): 241-246.
    [107]JIAN X G, DAI Y, ZENG L, et al. Application of Poly(Phthalazinone Ether Sulfone Ketone)s to Gas Membrane Separation[J]. Journal of Applied Polymer Science,1999, 71 (14):2385-2390.
    [108]LIU Y J, JIAN X G, LIU S J. Synthesis and Properties of Novel Poly(Phthalazinone Ether Ketone Ketone)[J]. Journal of Applied Polymer Science,2001,82(4):823-826.
    [109]GAO Y, ROBERTSON G P, GUIVER M D, et al. Synthesis and Characterization of Sulfonated Poly(Phthalazinone Ether Ketone)for Proton Exchange Membrane Materials[J].Journal of Polymer Science Part A:Polymer chemistry,2003,41(4):497-507.
    [110]LIANG Q Z, LIU P T, LIU C, et al. Synthesis and Properties of Lyotropic Liquid Crystalline Copolyamidescontaining Phthalazinone Moiety and Ether Linkages[J]. Polymer,2005,6(16):6258-6265.
    [111]SU Y, JIAN X G, ZHANG S H, et al. Preparation and Characterization of Quaternized Poly(Phthalazinone Ether Sulfone Ketone) NF Membranes[J]. Journal of Membrane Science,2005,241 (2):225-233.
    [112]ZHANG S H, JIAN X G, DAI Y. Preparation of Sulfonated Poly (Phthalazinone Ether Sulfone Ketone) Composite Nanofiltration Membrane[J]. Journal of Membrane Science,2005, 246(2):121-126.
    [113]LIU PENGTAO, WANG J Y, LIU C, et al. Lyotropic Liquid Crystalline Polyamides Containing Aromatic, Heterocyclic Structures:Preparation and Properties [J]. Macromolecular Chemistry and Physics,2006,207(17):1610-1615.
    [114]WU C R, ZHANG S H, YANG D L et al. Preparation, Characterization and Application In Wastewater Treatment of a Novel Thermal Stable Composite Membrane [J]. Journal of Membrane Science,2006,279(1-2):238-245.
    [115]LIU PENGTAO, LIU C, JIAN X G. Synthesis and Properties of Novel Aromatic Copolyamides Containing Chloro-Substituted Phthalazinone Moiety in the Main Chain [J]. Journal of Applied Polymer Science,2007,104(5):2807-2811.
    [116]SUN Q M, WANG J Y, LIU C, et al. Lyotropic Liquid Crystalline Poly(Aryl Ether Ketone) Copolymer Containing Phthalazinone Moiety and Biphenyl Mesoge[J]. European Polymer Journal,2007,43(8):3683-3687.
    [117]MAIER G. Low Dielectric Constant Polymers for Microelectronics[J]. Progress in Polymer Science,2001,26(1):3-65.
    [118]JEONG K U, KIM J J, YOON T H. Sythesis and Characterization of Novel Polyimides Containing Fluorine and Phosphine Oxide Moieties [J]. Polymer,2001,42(2):6019-6030.
    [119]WANG C S, YANG R W. Synthesis and Properties of Fluorine-Containing Polyimides [J]. Journal of Applied Polymer Science,1997,66(4):609-617.
    [120]BELFIELD A J, BROWN G R, FOUBISTERE A J. Recent Synthetic Advances in the Nucleophilic Amination of Benzenes[J]. Tetrahedron,1999,55(38):11399-11428.
    [121]O'Brien D F, Forrest S R, Koene B E, et al. Hole Transporting Materials with High Glass Transition Temperatures for Use in Organic Light-Emitting Devices [J]. Advanced Materials,1998,10(4):1108-1112.
    [122]JUNJI K, YASUHIRP L. Fabrication of Highly Efficient Organic Electroluminescent Devices[J]. Applied Physics Letters,1998,73(19):721-723.
    [123]THOMAS K R J, LIN J T, TAO Y T, et al. Light-Emitting Carbazole Derivatives:Potential Electroluminescent Materials[J]. Journal of the American Chemical Society,2001, 123(38):9404-9411.
    [124]陈蓓,王东.含硅芳香二胺的合成及其聚酰亚胺硅氧烷的热性能[J].高分子学报,1994,(6):717-724.
    [125]唐先盅,杨邦朝,何为.光敏性二胺的合成研究[J].电子科技大学学报,2000,29(3):256-230.
    [126]周定沛.粘结力的产生与黏附的配位键机理[C].粘结机理研讨会论文,1992.
    [127]XIE K, LIU J G, ZHOU H W, et al. Soluble Fluoro-Polyimides Derived from 3-Bis(4-Amino-2-Trifluoromethyl-Phenoxy) Benzene and Dianhydrides[J]. Polymer, 2001,42(17):7267-7274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700