利用酵母细胞生物转化法合成天然2-苯乙醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2-苯乙醇是一种具玫瑰气味的芳香醇,作为香料广泛用于食品、日化和轻工等领域。人们对天然香料消费需求的日益增长,推动了利用生物技术方法生产天然2-苯乙醇的研究。以发酵法或酶法生产的L-苯丙氨酸为前体,利用酵母细胞将其转化为2-苯乙醇,产品具有天然属性,可以取代从玫瑰或其它植物精油中提取的天然2-苯乙醇,具有广阔的开发前景。本文以提高2-苯乙醇转化浓度和生产率为目标,从上、中、下游系统地研究了2-苯乙醇转化合成工艺,大幅度提高了2-苯乙醇的转化浓度和生产率,为生物转化法合成天然2-苯乙醇的工业化应用奠定了良好的基础。
     从15个酵母菌株中,筛选出1株对2-苯乙醇耐受性强、转化合成2-苯乙醇浓度高的酿酒酵母(Saccharomyces cerevisiae)BD菌株,对其进行纯化并结合紫外诱变,得到酿酒酵母BD18菌株,在未经优化的培养基中,该菌株转化合成2-苯乙醇浓度达到2.04g/L,是1株适用于2-苯乙醇的生物转化合成的理想菌种。
     采用单因素试验和正交试验,优化了转化合成2-苯乙醇的培养基组成、种子培养基组成和转化培养条件,使得2-苯乙醇浓度有大幅度提高。摇瓶转化合成2-苯乙醇的最佳工艺是:种子培养基组成为葡萄糖40g/L、蛋白胨20g/L、酵母浸出粉10g/L,装量为40mL/250mL三角瓶;转化培养基组成为蔗糖120g/L、酵母浸出粉5g/L、KH_2PO_4 7.5g/L、K_2HPO_4 9.6g/L、MgSO_4·7H_2O 0.5g/L,装量为30mL/250mL三角瓶;种子培养基接种后于30℃培养24h,按10%的接种量移种至转化培养基,再加入10g/L的L-苯丙氨酸;转化体系于30℃、200r/min条件下培养18h,2-苯乙醇的浓度可达到4.64g/L,摩尔产率为62.7%,生产率为0.26g/(L·h)。
     采用Box-Behnken中心组合设计和响应面分析,建立了2-苯乙醇浓度与蔗糖、酵母浸出粉和L-苯丙氨酸之间的二次多项式回归模型,模型具有较高的准确性和实用性,可为生物转化法合成2-苯乙醇的最优化生产提供理论基础。
     采用油酸萃取,聚丙二醇2000萃取和D101大孔树脂吸附3种产物原位分离法转化合成2-苯乙醇,2-苯乙醇的摩尔产率均有所提高。在油酸与培养基体积比为1:3,振荡转速为250r/min,转化温度为30℃,底物浓度为14g/L的条件下,转化培养18h,油酸和水相中2-苯乙醇的浓度分别达到14.9g/L和1.74g/L,2-苯乙醇的摩尔产率达到64.7%,生产率达到0.37g/(L·h),较单一水相体系生物转化合成2-苯乙醇的生产率0.26g/(L·h)提高了44.3%。以聚丙二醇2000为萃取溶剂,加入体积与培养基体积比为1:2,底物浓度为12g/L时,转化18h,聚丙二醇中的2-苯乙醇浓度可达11.1g/L,摩尔产率为68.1%,生产率为0.31g/(L·h)。在30mL培养基中加入2g湿大孔树脂D101,底物浓度为12g/L,转化24h,2-苯乙醇总浓度可达6.17g/L,其中3.15g/L保留在培养基中,3.02g/L吸附到D101中,摩尔产率达到69.5%,生产率为0.26g/(L·h)。
     在5L发酵罐中,进行常规水相体系、有机溶剂萃取法和大孔树脂吸附法转化合成2-苯乙醇的放大实验,取得的结果与摇瓶工艺相近,表明摇瓶转化工艺放大较为容易。基于5L发酵罐生物转化合成2-苯乙醇得到的菌体得率、2-苯乙醇浓度、蔗糖消耗实验数据,建立了转化过程中菌体生长的Logistic模型、2-苯乙醇生成的Luedeking-Piret模型和蔗糖消耗的Luedeking-Piret相似模型。3个动力学模型具有较高的拟合精度,能准确反映2-苯乙醇生物转化过程及其动力学特征,可用于酿酒酵母转化生产2-苯乙醇过程的预测。
     通过对多种有机溶剂的筛选,得出乙酸乙酯是萃取分离2-苯乙醇的最佳溶剂,其萃取的最佳相比0.5,萃取液经减压蒸馏除去乙酸乙酯,便得到提纯的2-苯乙醇,收率为93.6%,纯度可以达到90.7%。静态吸附实验结果表明大孔树脂D101也是很好的2-苯乙醇分离吸附剂。采用大孔树脂D101柱分离2-苯乙醇中,当转化液中2-苯乙醇浓度为4.5g/L左右时,最佳上样量为5.5柱体积(BV),上样速度10BV/h。样品上柱后,用上样量同等体积的蒸馏水洗涤树脂,再用3BV的95%乙醇进行洗脱,收集洗脱液,减压蒸馏去除乙醇,此工艺条件下分离得到的2-苯乙醇样品收率为84.4%,纯度为85.2%。
2-phenylethanol is a higher aromatic alcohol with a rose-like odor,and takes on extensive applications in food,daily chemical and light industries as flavors or fragrances. The worldwide demand for natural products impels the research and development on production of 2-phenylethanol by biotechnology.The most efficient biotechnological approach used to obtain natural 2-phenylethanol is the bioconversion of L-phenylalanine to 2-phenylethanol by yeast cells.Since the precursor L-phenylalanine is now produced microbiologically,2-phenylethanol produced in this way can undoubtedly be labeled "natural",and it is considered to be the best substitute for the product extracted from essential oils of roses or other plants.The future for development and utilization of this technology is therefore bright.Aimed at improving the concentration and productivity of 2-phenylethanol,the thesis comprehensively studied the bioconversion process of 2-phenylethanol from L-phenylalanine by yeast cells.Some remarkable results were obtained finally,in which the 2-phenylethanol concentration and productivity were improved significantly,and provided an available foundation for the industrial application.
     A 2-phenylethanol-tolerant strain,Saccharomyces cerevisiae BD,capable of producing high concentration of 2-phenylethanol from L-phenylalanine,was screened out from fifteen yeast strains collected.After separation and ultraviolet radiation of the strain BD,BD18 was selected as a desirable strain for 2-phenylethanol production with the 2-phenylethanol concentration of 2.04 g/L in initial medium.
     The experiments of single factor and orthogonal design were carried out to optimize the compositions of bioconversion and seed medium,as well as cultivation conditions for 2-phenylethanol production.The best operations process was as following:The strain maintained in slant medium was inoculated into 40 mL of preculturing medium containing 40 g/L glucose,20 g/L peptone and 10 g/L yeast extract,and incubated at 30℃and 200 rpm for 24 h.Then a 3 mL cell suspension was transferred to 250 mL Erlenmeyer flasks containing 30 mL of biotransformation medium consisting of 120 g/L sucrose,5 g/L yeast extract,7.5 g/L KH_2PO_4,9.6 g/L K_2HPO_4 and 0.5 g/L MgSO_4·7H_2O. After inoculation,10 g/L L-phenylalanine,without prior sterilization,were added to the bioconversion medium and incubated at 30℃and 200 rpm.This process resulted in a improvement of 2-phenylethanol concentration,up to 4.64 g/L with a molar yield of 62.7%and productivity of 0.26 g/(L·h).
     A model of polynomial regressive equation between the 2-phenylethanol concentration and sucrose,yeast extract and L-phenylalanine in the medium was established after the Box-Behnken central composite design and the response surface analysis were put into practice.The model exhibited fine exactitude and provided a predictive model for optimizing the medium in the production of 2-phenylethanol by bioconversion.
     In situ product recovery techniques were applied to production of 2-phenylethanol by bioconversion,which was performed in aqueous/organic solvent and aqueous/solid absorbent two-phase system respectively.The selection of organic solvents and absorbents favorable for establishing two-phase system was conducted,and the bioconversion conditions in two-phase system for production of 2-phenylethanol were investigated too.When oleic acid with 1/3 volume of medium was added into medium, and shaking speed,temperature and concentration of substrate were set at 250 r/min, 30℃,14 g/L respectively,the 2-phenylethanol concentration could reach 14.9 g/L and 1.74 g/L in oleic acid phase and aqueous phase respectively after 18 h cultivation,with a molar yield of 64.7%.The productivity of 2-phenylethanol achieved at 0.37 g/(L·h). When polypropylene glycol 2000 with 1/2 volume of medium was added into medium, the concentration of substrate were set at 12 g/L,the 2-phenylethanol concentration could reach 11.1 g/L in polypropylene glycol 2000 phase after 18 h cultivation,with a molar yield of 68.1%.The productivity of 2-phenylethanol achieved at 0.31 g/(L·h).When 2g macroporous resin D101 used as adsorbent and 12 g/L L-phenylalanine were added into 30 mL medium,the total 2-phenylethanol concentration achieved was 6.17 g/L,of which 3.15 g/L remained in the aqueous phase and 3.02 g/L was adsorbed onto the resin.After 24 h cultivation,the molar yield and productivity of 2-phenylethanol reached 69.5%and 0.26 g/(L·h)respectively.
     Production of 2-phenylethanol by conventional bioconversion process and with organic solvent extraction or macroporous resin adsorption were scaled up in 5 L bioreactor,and the results were almost same as in flask scale.It means that scale-up of the bioconversion from flask scale achieved success easily for production of 2-phenylethanol.
     The kinetic models for cell growth,2-phenylethanol production and sucrose consumption of Saccharomyces cerevisiae were established based on the data of bioconversion process in 5 L bioreactor.Three kinetic models were proposed by the Logistic equation for the cell growth,the Luedeking-Piret equation for 2-phenylethanol production and the Luedeking-Piret-like equation for sucrose consumption respectively. The models exhibiting high precision for simulation could exactly describe and predict 2-phenylethanol production by biotransformation in practice.
     The selection of organic solvent favorable for extraction separation of 2-phenylethanol was performed,and it was found that acetic ether is the best extract for 2-phenylethanol separation from bioconversion liquid.In extracting separation,if phase ratio of acetic ether to bioconversion liquid was set at 0.5,the recovery and purity of 2-phenylethanol could reach 93.6%and 90.7%respectively.Through static adsorption experiments,the macroporous resin D101 was also found to be the best absorbent for 2-phenylethanol separation.If separation was conducted on column packed with D101 the optimal loading volume was 5.5 BV(bed volume),and the flow rate was 10 BV/h when the concentration of 2-phenylethanol in bioconversion liquid was about 4.5 g/L. After sample loading,D 101 was firstly leached by distilled water with the same volume of loaded sample,and then eluted by 95%ethanol with 3 BV.By this process,the product with recovery of 84.4%and purity of 85.2%was obtained after the ethanol was evaporated.
引文
[1]孙志浩,许建和.生物催化-基础与应用[M].北京:化学工业出版社,2005.
    [2]Leonida MD,Sobolov SB,Fry AJ.FAD-Mediated enzymatic conversion of NAD~+ to NADH:Application to chiral synthesis of L-lactate[J].Bioorg Med Chem Lett,1998,8:2819-2824.
    [3]Matsuyama A,Yamamoto H,Kobayashi Y.Practical application of recombinant whole-cell biocatalysts for the manufacturing of pharmaceutical intermediates such as chiral alcohols [J].Org Process Res Dev,2002,6:558-561.
    [4]Van Sonsbeek HM,Beeftink HH,Tramper J.Two liquid-phase bioreactors[J].Enzyme Microb Technol,1993,15:722-728.
    [5]Yasohara Y,Kizaki N,Hasegawa J,et al.Synthesis of optically active ethyl 4-chloro-3-hydroxybutan-oate by microbial reduction[J].Appl Microbiol Biotechnol,1999,51:847-851.
    [6]Jones JB.Enzymes in organic synthesis[J].Tetrahedron,1986,42:3351-3403.
    [7]Whitesides GM,Wong CH.Enzymes as catalysts in synthetic organic chemistry[J].Angew Chem Int Ed,1985,24:617-718.
    [8]Ogawa J,Shimizu S.Microbial enzymes:new industrial applications from traditional screening methods[J].Trends Biotechnol,1999,17:13-20.
    [9]沈同,王镜岩.生物化学(上)[M].北京:高等教育出版社,1990.
    [10]Simon H,Bader J,G(u|¨)nther H,et al.Chiral compounds synthesized by biocatalytic reductions[J].Angew Chem Int Ed,1985,24:539-553.
    [11]熊宗贵.发酵工艺原理[M].北京:中国医药科技出版社,1995.
    [12]Stewart JD.Organic transformations catalyzed by engineered yeast cells and related systems[J].Curr Opin Biotechnol,2000,11:363-368.
    [13]Shimizu S,Hata H,Yamada H.Reduction of ketopantoyl lactone to D-(-)-pantoyl lactone by microorganisms[J].Agric Biol Chem,1984,48:2285-2291.
    [14]Goswami A,Bezbaruah RL,Goswami J,et al.Microbial reduction of ω-bromoaceto-phenones in the presence of surfactants[J].Tetrahedron:Asymmetry,2000,11:3701-3709.
    [15]Shimizu S,Hattori S,Hata H,et al.Stereoselective enzymatic oxidation,and reduction system for the production of D-(-)-pantoyl lactone from a racemic mixture of pantoyl lactone[J].Enzyme Microb Technol,1987,9:411-416.
    [16]Shimizu S,Hattori S,Hata H,et al.One-step microbial conversion of a racemic mixture of pantoyl lactone to optically active D-(-)-pantoyl lactone[J].Appl Environ Microb,1987,53: 519-522.
    [17]Gl(a|¨)nzer B I,Faber K,Griengi H.Mocrobial resolution of O-acetylpantoyl lactone[J].Enzyme Microb Technol,1988,10(11):689-690.
    [18]褚志义.生物合成药物学[M].北京:化学工业出版社,2000.
    [19]王洪祚,刘世勇.酶和细胞的固定化[J].化学通报,1997,60(2):22-27.
    [20]韩静淑,赵振英,周礼恺,等.生物细胞的固定化技术及其应用[M].北京:科学出版社,1993.
    [21]孙宝国,何坚.香精概论[M].北京:化学工业出版社,1996.
    [22]刘梅森,何唯平.香精香料基本原理及发展趋势[J].中国食品添加剂,2003,(5):6-10.
    [23]蔡云升.香料香精的历史、现状和发展趋势[J].冷饮与速冻食品工业,2001,7(4):34-36.
    [24]李宏.全球香料香精工业现状与展望[J].中国化妆品(行业版),2003,(3):28-34.
    [25]食品与发酵工业.全球香料香精市场未来几年需求将大增[J],2006,32(2):82.
    [26]赵昌政,刘岩梅,李继峰.浅议食品用香精香料产品的质量控制和管理[J].中国食品添加剂,2006,(1):105-109.
    [27]US Food and Drug Administration.Code of federal regulations 21CFR101.22[R].Washington DC,2001.
    [28]The Council of the European Communities.Council Directive 88/388/EEC[R],1988.
    [29]Walton NJ.Molecules of interest:vanillin[J].Phytochemistry.2003,63(5):505-515.
    [30]Omelianski VL,Aroma- producing micro-organisms[J].J Bacteriol,1923,8:393-419.
    [31]宋钢.微生物代谢与香气成分[J].中国酿造,2006,(2):64-68.
    [32]Collins RP,Terpenes and odoriferous materials from microorganisms[J].Lloydia,1976,39:20-24.
    [33]H(a|¨)usler A,Munch T.Microbial production of natural flavours[J].ASM-News,1997,63:551-559.
    [34]Drawert F,Barton H.Biosynthesis of flavour compounds by micro-organisms.3.Production of monoterpenes by the yeast Kluyveromyces lactis[J].J Agric Food Chemistry.1978,26:765-766.
    [35]Tahara S,Fujiwara K,Ishizaka H,et al.γ-Decalactone-one of constituents of volatiles in cultured broth of Sporobolomyces odorus[J].Agri and Biol Chem,1972,36:2585-2587.
    [36]Lee SL,Cheng HY,Chen WC,et al.Production of γ-decalactone from ricinoleic acid by immobilized cells of Sporidiobolus salmonicolor[J].Process Biochem,1998,33:453-459.
    [37]Janssens L,Depooter HL,Schamp NM,et al.Production of flavours by micro-organisms [J].Process Biochem,1992,27:195-215.
    [38]Janssens L,Depooter HL,De Mey L,et al.Fusel oil as a precursor for the microbial production of fruity flavours[J].Med Fac Landbouww Rijksuniv Gent,1989,54:1387-1391.
    [39]Zylepsis Ltd.,UK.Flavour/aroma materials and their preparation:WO,0050622[P].2000-08-31.
    [40]Muheim A,Lerch K.Towards a high-yield bioconversion of ferulic acid to vanillin[J].Appl Microbiol Biotechnol,1999,51(4):456-461.
    [41]Haarmann,ReimerGmb H,Germany.Production of vanillin and suitable micro-organisms [P],EP,0761817.1997-03-06.
    [42]郑璞,郑丽蓉,孙志浩.黑曲霉CGMCC0774和朱红密孔菌CGM2CC1115两步转化阿魏酸制备生物香兰素[J].生物加工过程,2005,3(3):69-73.
    [43]Van Den Bremt K,Gasarasi G,Delvaux F,et al.Bioflavouring by refermentation:I.General introduction:natural flavours for food and beverages[J].Cerevisia:Belgian J Brewing Biotech,1999,24(4):31-39.
    [44]Krings U,Berger RG.Biotechnological production of flavours and fragrances[J].Appl Microbiol Biotechnol,1998,49:1-8.
    [45]Schrader J,Etschmann MMW,Sell D,et al.Applied biocatalysis for the synthesis of natural flavor compounds-current industrial processes and future prospects[J].Biotechnol Lett,2004,26:463-472.
    [46]Clark GS.Phenethyl alcohol[J].Perfum Flavor,1990,15:37-44.
    [47]Fabre CE,Blanc PJ,Goma G.2-Phenylethyl alcohol:an aroma profile[J].Perfum Flavor,1998,23:43-45.
    [48]Etschmann MMW,BluemkeW,Sell D,et al.Biotechnological production of 2-phenylethanol[J].Appl Microbiol Biotechnol,2002,59:1-8.
    [49]刘兆荣,刘宗歧.β-苯乙醇的合成方法与提纯[J].北京化工,1993,(3):33-38.
    [50]石英华.β-苯乙醇的制备与精制[J].香料香精化妆品,1994,(2):39-41,61.
    [51]吕绍洁,邱发礼.氧化苯乙烯加氢制β-苯乙醇的研究[J].合成化学,2001,9(5):445-448.
    [52]中华人们共和国国家发展与改革委员会.QB/T2644-2004(食品添加剂-苯乙醇)[S].北京:中国国家标准出版社,2005.
    [53]国内外香化信息.2008年1月世界香料精油类产品市场报告[J],2008,(2):1-3.
    [54]中国化工网.玫瑰精油国际市场价格有上浮趋势[EB/OL],http://news.chemnet.com/item/2008-07-25/948524.html,2008-07-25/2008-09-08.
    [55] Gassenmeier K, Schieberle P. Potent aromatic compounds in the crumb of wheat bread (French-type)-influence of preferments and studies on the formation of key odorants during dough processing [J]. Z Lebensm-Unters Forsch, 1995, 201: 241-248.
    
    [56] Kieser ME, Pollard A, Stevens PM, et al. Determination of 2-phenylethanol in cider [J].Nature, 1964,204:887.
    
    [57] Hegarty PK, Parsons R, Bamforth CW, et al. Phenyl ethanol-a factor determining lager character [C]. Proc Congr Eur Brew Conv, 1995, pp: 515-522.
    
    [58] Genomenet. Phenylalanine metabolism-Saccharomyces cerevisiae[EB/OL]. http://www.genome. ad.jp/dbget-bin/www-bget?path:sce00360,2007-03-05/2008-09-05.
    [59] Large PJ. Degradation of organic nitrogen compounds by yeasts [J]. Yeast, 1986, 2:1-34.
    
    [60] Genomenet. Phenylalanine, tyrosine and tryptophan biosynthesis -Saccharomyces cerevisiae [EB/OL]. http://www.genome.ad.jp/dbget-bin/www_bget?path:sce00400, 2008-3-22/2008-9-05.
    
    [61] Ehrlich F. liber die Bedingungen der Fuselolbildung und (?)ber ihren Zusammenhang mit dem Eiweifiaufbau der Hefe [J]. Ber Dtsch Chem Ges, 1907, 40: 1027-1047.
    
    [62] Stark D, Munch T, Sonnleitner B, et al. Extractive bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae [J]. Biotechnol Prog, 2002, 18: 514-523.
    
    [63] Rodopulo AK, Lyudnikova TA, Bezzubov AA. Effect of yeast cultivation conditions on the biosynthesis and accumulation of aromatic substances [J]. Appl Biochem Microbiol, 1985,21:332-336.
    
    [64] Fabre CE, Duviau VJ, Blanc PJ, et al. Identification of volatile flavour compounds obtained in culture of Kluyveromyces marxianus [J]. Biotechnol Lett, 1995,17: 1207-1212.
    
    [65] Huang CJ, Lee SL, Chou CC. Production of 2-phenylethanol, a flavor ingredient, by Pichia fermentans L-5 under various culture conditions [J]. Food Res Int, 2001, 34: 277-282.
    
    [66] Etschmann MMW, Sell D, Schrader J. Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium[J]. Biotechnol Lett, 2003, 25:531-536.
    
    [67] Collins RP. The production of volatile compounds by filamentous fungi [J]. Dev Ind Microbiol, 1978, 20: 239-245.
    
    [68] Fabre CE, Blanc PJ, Goma G. Production of benzaldehyde by several strains of Ischnoderma benzoinum[J]. Sci Aliments, 1996, 16: 61-68.
    
    [69] Janssens L, de Pooter HL, Vandamme EJ, et al. Bio-synthesis of esters by Geotrichum penicillatum [C]. In: Schreier P(ed) Bioflavour 87. 1988, pp: 453-463.
    
    [70] Lomascolo A, Lesage-Meessen L, Haon M, et al. Evaluation of the potential of Aspergillus niger species for the bioconversion of L-phenylalanine into 2-phenylethanol[J].World J Microbiol Biotechnol,2001,17:99-102.
    [71]Albertazzi E,Cardillo R,Servi S,et al.Biogeneration of 2-phenylethanol and 2-phenyl-ethylacetate important aroma components[J].Biotechnol Lett,1994,16:491-496.
    [72]Stark D,Extractive bioconversion of 2-phenylethanol fromL-phenylalanine by Saccharomyces cerevisiae[D].EPFL Lausanne,2001.
    [73]Seward R,Willetts JM,Dinsdale MG,et al.The effects of ethanol,hexan-l-ol,and 2-phenylethanol on cider yeast growth,viability,and energy status;synergistic inhibition [J].J Inst Brew,1996,102:439-443.
    [74]Ingram LO,Buttke TM.Effects of alcohols on microorganisms[J].Adv Microb Physiol,1987,25:253-300.
    [75]Lucchini JJ,Corre J,Cremieux A.Antibacterial activity of phenolic compouds and aromatic alcohols[J].Res Microbiol,1990,141:499-500.
    [76]Stark D,Zala D,M(u|¨)nch T.Inhibition aspects of the bioconversion of L-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae[J].Enzyme Microbial Technology,2003,32:212-223.
    [77]Freeman A,Woodley JM,Lilly MD.In situ product removal as a tool for bioprocessing[J].Bio/Technology,1993,11:1007-1012.
    [78]Lye GJ,Woodley JM.Application of in-situ product removal techniques to biocatalytic processes[J].Trends Biotechnol,1999;17:395-402.
    [79]Etschmann M,Schrader J,Sell D.Further use of molasses and molasses mash for the production of natural flavors here 2-phenylethanol[EB/OL].http://kwi.dechema.de/biovt/images/poster_pe02_epdf,2003-11-24/2008-09-05.
    [80]戎志梅.21世纪生物化工产业发展趋势及热点(上)[J].上海化工,2007,32(2):27-32.
    [81]姚汝华,周世水.微生物工程工艺原理[M];广州:华南理工大学出版社,2005.
    [82]Etschmann,MMW,Sell D,Schrader J.Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm[J].J Mol Catal B:Enzym 2004,29:187-193.
    [83]Serp D,von Stockar U,Marison IW.Enhancement of 2-phenylethanol productivity by Saccharomyces cerevisiae in two-phase fed-batch fermentations using solvent immobilization[J].Biotechnol Bioeng,2003,82:103-110.
    [84]Fabre CE,Blanc PJ,Goma G.Production of 2-Phenylethyl Alcohol by Kluyveromyces marxianus[J].Biotechnol Prog,1998,14:270-274
    [85]张龙翔,张庭芳,李令媛.生化实验方法和技术[M].北京:高等教育出版社,1997.
    [86]施巧琴,吴松刚.工业微生物育种学[M].北京:科学出版社,2003.
    [87]中华人民共和国国家标准委员会.GB/T 13662-2000(黄酒)[S].北京:中国国家标准出版社,2000.
    [88]俞俊棠,唐孝萱.生物工艺学(上册)[M].上海:华东理工大学出版社,1992.
    [89]郝学财,余晓斌,刘志钰,等.响应面方法在优化微生物培养基中的应用[J].食品研究与开发,2006,27(1):38-41.
    [90]褚以文.微生物培养基优化方法及其OPTI优化软件[J].国外医药抗生素分册,1999,20(2):58-60,66.
    [91]Hill WJ,Hunter WG.A Review of Response Surface Methodology:A Literature Review [M].Technometrics,1966.
    [92]慕运动.响应面方法及其在食品工业中的应用[J].郑州工程学院学报,2001,22(3):91-94.
    [93]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,14(3):236-240.
    [94]Etschmann MMW,Schrader J.An aqueous-organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast[J].Appl Microbiol Biotechnol,2006,71:440-443.
    [95]王雪根,何若平,欧阳平凯.生物反应-分离耦合过程研究综述[J].江苏化工,1999,27(1):7-12.
    [96]张艳红,崔波,朱兆友.催化-分离耦合过程的研究与发展[J].青岛化工学院学报,2001,22(4):320-325.
    [97]Lye GJ,Woodley JM.Application of in-situ product removal techniques to biocatalytic processes[J].Trends Biotechnol,1999,17:395-402.
    [98]Stark D,von Stockar U.In situ product removal(ISPR) in whole cell biotechnology during the last twenty years[J].Adv Biochem Eng,2003,80:150-175.
    [99]Puziss M,Heden CG.Toxin production by Clostridium tenani in biphasic liquid cultures[J].Biotechnol Bioeng,1965,7:355-366.
    [100]Kitai A,Tone H,Ishikura T,et al.Microbial production of salicylic acid from naphthalene Ⅱ.Product inhibitory kinetics and effects of product removal on the fermentation[J].J Ferment Technol,1968,46:442-451.
    [101]Schwartz RD,McCoy CJ.Epoxidation of 1,7-octadiene by Pseudomonas oleovorans:fermentation in the presence of cyclohexane[J].Appl Environ Microbiol,1977,34:47-49
    [102]Cysewski GR,Wilke CR.Rapid ethanol fermentations using vacuum and cell recycle[J]. Biotechnol Bioeng,1977,19:1125-1143.
    [103]Friedman MR,Gaden EL.Growth and acid production by Lactobacillus delbrueuckii in a dialysis culture system[J].Biotechnol Bioeng,1970,12:961-974.
    [104]Kominek LA.Cycloheximide production by Streptomyces griseus:alleviation of end-product inhibition by dialysis-extraction fermentation[J].Antimicrob Agents Chemother,1975,7:861-863.
    [105]Stark D,Kornmann H,M(u|¨)nch T,et al.Novel type of in situ extraction:Use of solvent containing microcapsules for the bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae[J].Biotechnol Bioeng,2003,83:376-38.
    [106]Fabre CE,Condoret JS,Marry A.Extractive fermentation of aroma with supercritical CO_2[J].Biotechnol Bioeng,1999,62:392-400.
    [107]Etschmann MMW,Sell D,Schrader J.Production of 2-phenylethanol and 2-phenylethylacetate from L-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation[J].Biotechnol Bioeng,2005,92:624-634.
    [108]Leon R,Fernandes P,Pinheiro H M et al.Whole-cell biocatalysis in organic media[J].Enzyme Microb Tech,1998,23:483-500.
    [109]Kollerup F,Daugulis AJ.Ethanol production by extractive fermentations-solvent identification and prototype development[J].Can J Chem Eng,1986,64:599-606.
    [110]Yeom SH,Daugulis AJ.A new method for the determination of microbial activity and critical logP in the presence of organic solvents[J].Biotechnol Tech,1999,13:549-553.
    [111]US FDA.EAFUS:A Food Additive Database[DB/OL].http://www.cfsan.fda.gov/~dms/eafus.html.2008-1-14/2008-3-1.
    [112]Fabre CE,Blanc PJ,Marry A,et al.Extraction of 2-phenylethyl alcohol by techniques such as adsorption,inclusion,supercritical CO_2,liquid-liquid and membrane separations [J].Perfum Flavor,1996,21:27-40.
    [113]吴思方.发酵工厂工艺设计概论[M].北京:轻工业出版社,2006.
    [114]吴剑波,张致平.微生物制药[M].北京:化学工业出版社,2002.
    [115]戚以政,汪叔雄.生化反应动力学与反应器[M].北京:化学工业出版社,1999.
    [116]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [117]黄建新,杨金水,卫阳.Z5-9菌生产聚β-羟基丁酸发酵动力学模型[J].化学工程,2005,33(1):44-47.
    [118]徐抗震,宋纪蓉,马海霞,等.固态发酵生产单细胞蛋白的计量学和动力学[J].化学工程,2005,33(2):48-50,54.
    [119]欧阳平凯.生物分离原理及技术[M].北京:化学工业出版社,1999.
    [120]孙彦.生物分离工程[M].北京:化学工业出版社,2005.
    [121]顾觉奋.分离纯化工艺原理[M].北京:中国医药科技出版社,2000.
    [122]严希康.生化分离工程[M].北京:化学工业出版社,2001.
    [123]U.S.Food and Drug Administration.EAFUS:A Food Additive Database[EB/OL].http://www.cfsan.fda.gov/~dms/eafus.html.2008-01-14/2008-09-15.
    [124]何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科教出版社,1995.
    [125]史作清,施荣富.吸附分离树脂在医药工业中的应用[M].北京:化学工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700